introducción - universidad del salvador · web viewen la práctica se somete una muestra...

76
Por Por Héctor Fabián Espíndola Héctor Fabián Espíndola Trabajo de Intensificación presentado como requisito para obtener el título de Ingeniero Agrónomo. Facultad de Agronomía y Facultad de Agronomía y Veterinaria Veterinaria Campus San Roque Gonzalez de Campus San Roque Gonzalez de Santa Cruz Santa Cruz Gobernador Virasoro - Corrientes Gobernador Virasoro - Corrientes Universidad del Salvador Universidad del Salvador

Upload: others

Post on 27-Apr-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Introducción - Universidad del Salvador · Web viewEn la práctica se somete una muestra (probeta), a un secado en estufa a 105 ºC hasta que alcance un peso constante. El contenido

PorPor

Héctor Fabián EspíndolaHéctor Fabián Espíndola

Trabajo de Intensificación presentado como requisito para obtener eltítulo de Ingeniero Agrónomo.

Facultad de Agronomía y VeterinariaFacultad de Agronomía y VeterinariaCampus San Roque Gonzalez de Santa CruzCampus San Roque Gonzalez de Santa Cruz

Gobernador Virasoro - CorrientesGobernador Virasoro - Corrientes

Universidad del SalvadorUniversidad del Salvador

Page 2: Introducción - Universidad del Salvador · Web viewEn la práctica se somete una muestra (probeta), a un secado en estufa a 105 ºC hasta que alcance un peso constante. El contenido

Nivel de Degradación de madera aserrada de Eucalyptus grandis de 1 pulgada de espesor, secada en cámara.

Trabajo presentado como requisito para la obtención del título de Ingeniero Agrónomo.

Profesor Guía

Ing. Ftal. Marcelo R. Vallejo Leon.

…………………………………………………………………………………………………….

…………………………………………………………………………………………………….

Director de Carrera

Ing. Agr. Carlos Lanari Vila.

…………………………………………………………………………………………………….

…………………………………………………………………………………………………….

2

Page 3: Introducción - Universidad del Salvador · Web viewEn la práctica se somete una muestra (probeta), a un secado en estufa a 105 ºC hasta que alcance un peso constante. El contenido

3

Page 4: Introducción - Universidad del Salvador · Web viewEn la práctica se somete una muestra (probeta), a un secado en estufa a 105 ºC hasta que alcance un peso constante. El contenido

Esta totalmente prohibida la reproducción total o parcial del presente trabajo, sin la autorización escrita del autor.

A MIS PADRES.

4

Page 5: Introducción - Universidad del Salvador · Web viewEn la práctica se somete una muestra (probeta), a un secado en estufa a 105 ºC hasta que alcance un peso constante. El contenido

AGRADECIMIENTOS

Quiero de alguna manera expresar mi agradecimiento a todas aquellas personas que de diferentes maneras me han ayudado a transitar este camino que llega a su final y me pone de frente a un nuevo desafío.

A mis padres, mis hermanos y mi novia, que siempre estuvieron para darme una palabra de aliento y supieron respetar mis decisiones.

A mi amigo Matías, por estar siempre en los momentos más importantes.A José Luis Espinosa y Matías Marcos Perotti Radocevich, por su ayuda en

la toma de datos y posterior procesamiento de los mismos. A mis compañeros, aquellos con los que compartí mis primeros pasos y

los que, con mucho esfuerzo, compartieron conmigo la llegada.A todo el cuerpo docente y no docente de la Facultad por ayudar a que mi

formación profesional y humana fuera lo más completa posible.A mi asesor de Tesis, Ing. Ftal. Marcelo Vallejo Leon, por darme la

oportunidad de desempeñarme en un ámbito muy profesional, por confiar en mi, por aconsejarme y por ceder horas de su descanso a mis consultas y estar siempre dispuesto a evacuar mis dudas.

A todo el personal de Forestadora Tapebicuá S.A., por ayudar de manera desinteresada a la realización de mi Tesis y por poner todos sus recursos a mi disposición.

De manera especial quiero agradecer a Dios, por haberme dado la oportunidad de compartir tantas experiencias y de concretar uno de mis más preciados sueños.

Muchas Gracias a Todos.

Héctor Fabián Espíndola.

ÍNDICEPágina

5

Page 6: Introducción - Universidad del Salvador · Web viewEn la práctica se somete una muestra (probeta), a un secado en estufa a 105 ºC hasta que alcance un peso constante. El contenido

RESUMEN 8SUMARY 9CAPÍTULOS

I. INTRODUCCIÓN 101.1. Hipótesis y Objetivos 11

II. LA HUMEDAD EN LA MADERA 122.1. Agua libre 122.2. Agua de saturación 132.3. Agua de constitución 132.4. Determinación del contenido de humedad en la madera 13

2.4.1. Secado en Estufa 142.4.1.1. Obtención de las probetas 142.4.1.2. Determinación del peso Húmedo 142.4.1.3. Secado hasta peso constante 142.4.1.4. Determinación del peso seco 15

2.5. Movimiento Migratorio del agua en la madera 152.5.1. Fuerzas capilares 152.5.2. Diferencias en la presión de vapor 162.5.3. Diferencias en el contenido de Hº 162.5.4. Difusión 16

III. BASES FÍSICAS DEL SECADO 183.1. Temperatura 183.2. Humedad Relativa 183.3. Velocidad del aire 193.4. Equilibrio Higroscópico 193.5. Tensiones del secado 19

3.5.1. Alabeos 203.5.1.1. Torceduras 203.5.1.2. Abarquillado 203.5.1.3. Combado 203.5.1.4. Encorvaduras 20

3.5.2. Grietas superficiales e internas 213.5.3. Colapso 22

3.6. Defectos de la madera 233.6.1. Sombra de nudo 233.6.2. Nudo sano 233.6.3. Podredumbre 23

6

Page 7: Introducción - Universidad del Salvador · Web viewEn la práctica se somete una muestra (probeta), a un secado en estufa a 105 ºC hasta que alcance un peso constante. El contenido

3.6.4. Médula 233.6.5. Escamado 233.6.6. Canto muerto 23

IV. MATERIALES Y MÉTODOS 244.1. Materiales 24

4.1.1. Madera 244.1.2. Instrumentos utilizados 254.1.3. Equipo de secado 25

4.2. Métodos 254.2.1. Individualización de las piezas 264.2.2. Marcación y medición 264.2.3. Toma de datos 26

4.3. Preparación del material 274.3.1. Preparación de los paquetes 274.3.2. Ubicación de los paquetes en cámara 28

V. ANÁLISIS ESTADÍSTICO 295.1. Población 295.2. Muestra 295.3. Método estadístico 295.4. Diseño experimental 30

5.4.1. Arreglo ordenado 30

VI. RESULTADOS 326.1. Pérdida de m2 326.2. Nivel de deterioro por pila 336.3. Nivel de deterioro por paquete 346.4. Deterioro en altura 356.5. Pérdida de superficie por pila / Ubicación 376.6. Principales causas de pérdida de valor 40

VII. CONCLUSIÓNES 42VIII. BIBLIOGRAFIA 43IX. ANEXOS 44

RESUMEN

7

Page 8: Introducción - Universidad del Salvador · Web viewEn la práctica se somete una muestra (probeta), a un secado en estufa a 105 ºC hasta que alcance un peso constante. El contenido

El presente trabajo se llevó a cabo en Forestadora Tapebicuá S.A., ubicada en el acceso norte

de la ciudad de Gobernador Virasoro, sobre la Ruta Nacional Nº 14, provincia de Corrientes;

Argentina.

El principal objetivo de la investigación fue cuantificar el nivel de deterioro causado por el

proceso industrial de “secado en cámara”, en madera de eucalipto, Eucalyptus grandis, de una

pulgada de espesor.

Se estudiaron 5368 tablas, agrupadas en 30 paquetes. Para ello se enumeró dichas tablas en

ambas caras y luego se evaluó la superficie (m2) utilizable de cada una. A partir de esta primera

clasificación, cuyo fundamento era seguir el comportamiento en una cámara completa, se volvieron

a seleccionar 4672 tablas, descartando aquellas que, a criterio industrial, no debían ser monitoreadas.

En el secadero se identificaron los paquetes con el objeto de poder establecer la relación

existente entre la ubicación dentro del secadero y el nivel de deterioro.

Una vez secas las tablas se repitieron las mediciones de superficies, especificando los

motivos de las reducciones, en los casos que así lo requerían.

Los resultados obtenidos demuestran un nivel de 1.02 % de pérdida de superficie utilizable,

valor aceptable de deterioro para el tratamiento de secado en cámara.

Palabras clave.Nivel de deterioro. Secado en cámara. Eucalyptus grandis.

8

Page 9: Introducción - Universidad del Salvador · Web viewEn la práctica se somete una muestra (probeta), a un secado en estufa a 105 ºC hasta que alcance un peso constante. El contenido

SUMARY

Kiln drying degrade level in 4/4 inch Eucapyptus grandis

This work had been developed at Forestadora Tapebicuá S.A., which is at the north of

Gobernador Virasoro and on the national road Nº 14, in the province of Corrientes, Argentina.

The main objetive of this research was the quantification of the deteriorate level caused by

the industrial process of dry at kiln dryer, in eucalipto wood with 1 inch thickness.

5368 tables were studied and grouped in thirty bundles. For that, the tables were enumerated

in both sides and then the useful surface of each one was evaluated. Taking this first classification,

which fundament was to follow the behaviour in the whole chamber, 4672 tables were selected

again, putting out those shouldn’t be monitored according to an industrial opinion.

In the kiln the bundles were identified with the object of establish the relation between the

location inside of the kiln and the deteriorate level.

Once the tables were dried, the measurements were repeated, of surfaces, specifying the

motives of the reductions, in the cases that required.

The results that were obtained shows a level of 1,02 % of looses on useful surfece, an

acceptable value of deterioration for the kiln drying treatment in the chamber.

9

Page 10: Introducción - Universidad del Salvador · Web viewEn la práctica se somete una muestra (probeta), a un secado en estufa a 105 ºC hasta que alcance un peso constante. El contenido

CAPITULO IINTRODUCCIÓN

En el contexto del comercio internacional de productos forestales, uno de los que mayor

posibilidades de crecimiento ha demostrado tener, es la madera remanufacturada de Eucalyptus

grandis, ya sea por sus cualidades físicas como por su atractivo estético y principalmente por tratarse

de madera cultivada, que reduce la presión del mercado global por la madera de bosques naturales.

Gracias a los avances logrados en la obtención de madera cultivada de alta calidad, mercados

como el europeo, donde el marco ecológico de producción juega un papel muy importante a la hora

de tomar decisiones de compra de un producto, han ampliado significativamente el horizonte de los

países productores de madera con estas características, como es el caso de la Argentina.

Teniendo en cuenta, además, que para poder remanufacturar un producto forestal, en especial

la madera de Eucalyptus, es necesario asegurar un contenido de humedad tal, que permita la

obtención de pisos, molduras, machimbres, con una estabilidad óptima de sus cualidades, el secado

en cámara se vuelve un proceso obligado que, por sus características, permite obtener maderas con

el grado de humedad deseado.

Sin dudas toda empresa que busca afianzarse como productora y exportadora de productos de

alta calidad, debe tener bien identificados cuáles son sus fortalezas y debilidades en la cadena

productiva, para ello es imprescindible cuantificar adecuadamente todas las pérdidas que se

producen como requisito lógico del proceso industrial. Esta es la razón de ser del presente trabajo, el

cuál busca reflejar el nivel de deterioro que sufre la madera de Eucalyptus grandis en el proceso de

secado, identificando también los principales defectos que ocasionan dichos deterioros.

10

Page 11: Introducción - Universidad del Salvador · Web viewEn la práctica se somete una muestra (probeta), a un secado en estufa a 105 ºC hasta que alcance un peso constante. El contenido

1.1. Hipótesis y objetivos

Hipótesis nula (H0):

La Hipótesis nula, plantea que el nivel de deterioro, provocado por el secado en cámara, es

inferior a los valores normales. (<2%).

Hipótesis alternativa (H1):

La hipótesis alternativa, en cambio, es que el nivel de deterioro, provocado por el secado en

cámara, alcanza o supera los valores de deterioro normales. (> 2%).

Objetivo general:

- Determinar el nivel de deterioro en madera de E. grandis, de una pulgada de espesor,

sometida al proceso industrial de secado en cámara.

Objetivos específicos:

- Asociar nivel de deterioro con la ubicación de los paquetes dentro del secadero.

- Verificar relación de Humedad respecto del nivel de degradación.

11

Page 12: Introducción - Universidad del Salvador · Web viewEn la práctica se somete una muestra (probeta), a un secado en estufa a 105 ºC hasta que alcance un peso constante. El contenido

CAPITULO IILA HUMEDAD EN LA MADERA

Cuando un árbol está recién cortado, su madera contiene gran cantidad de agua, variando el

contenido según la época del año, la región de procedencia y la especie forestal de que se trate. Las

maderas livianas, por ser más porosas, contienen mayor cantidad de agua que las pesadas. De igual

manera, la albura, por estar conformada por células cuya función principal es la conducción de agua,

presenta un contenido de humedad mayor que el duramen. En otras palabras, el porcentaje de agua

contenido en los espacios huecos y en las paredes celulares de la madera es muy variable en el árbol

vivo.

El agua contenida en la madera se encuentra bajo diferentes formas (agua libre, agua de

saturación y agua de constitución).

2.1. Agua Libre

Es la que se encuentra ocupando las cavidades celulares o lumen de los elementos

vasculares, dándole a la madera la condición de “verde”. La cantidad de agua libre que puede

contener una madera está limitada por su volumen de poros.

Al iniciarse el secado, el agua libre se va perdiendo fácilmente por evaporación, ya que es

retenida por fuerzas capilares muy débiles, hasta que se produce la pérdida. En este punto, la

madera estará en lo que se denomina “punto o zona de saturación de las fibras” (PSF), que

corresponde a un contenido de humedad entre el 21 y 32%. Cuando la madera ha alcanzado esta

condición, sus paredes celulares están completamente saturadas pero sus cavidades están vacías.

Durante esta fase de secado, la madera no experimenta cambios dimensionales, ni

alteraciones en sus propiedades mecánicas. Por tal razón, el PSF es muy importante desde el punto

de vista físico – mecánico y de algunas propiedades eléctricas de la madera.

12

Page 13: Introducción - Universidad del Salvador · Web viewEn la práctica se somete una muestra (probeta), a un secado en estufa a 105 ºC hasta que alcance un peso constante. El contenido

2.2. Agua de Saturación, Higroscópica o Fija.

Es el agua que se encuentra en las paredes celulares; también es llamada agua de inhibición.

Durante el secado de la madera, cuando ésta ha perdido su agua libre por evaporación y

continúa secándose, la pérdida de humedad ocurre con mayor lentitud hasta llegar a un equilibrio

higroscópico con la humedad relativa de la atmósfera circundante.

Para la mayoría de las especies, el equilibrio higroscópico está entre el 12 y 18% de

contenido de humedad, dependiendo del lugar donde se realiza el secado. La madera secada al aire

libre sólo puede alcanzar éstos valores de humedad de equilibrio. Para obtener contenidos menores

de humedad, debe acudirse al secado artificial para eliminar el resto del agua de saturación o

higroscópica.

2.3. Agua de Constitución

Es el agua que forma parte de la materia celular de la madera y que no puede ser eliminada

utilizando las técnicas normales de secado. Su separación implicaría la destrucción parcial de la

madera.

2.4. Determinación del contenido de Humedad en la Madera

La determinación del contenido de humedad en la madera se hace teniendo en cuenta sólo el

agua libre y el agua de saturación o higroscópica.

En la práctica se somete una muestra (probeta), a un secado en estufa a 105 ºC hasta que

alcance un peso constante.

El contenido de humedad (CH) se define como “el peso de la cantidad de agua presente en

una pieza de madera, expresado en función del peso seco de la misma”. Su valor numérico se

expresa en porcentaje y se calcula por medio de la siguiente fórmula:

Donde:CH = Humedad de la madera expresada como un porcentaje de su peso anhidro.Ph = Peso de la madera en estado húmedo o peso inicial.

CH = Ph - PsPs

x 100 %

13

Page 14: Introducción - Universidad del Salvador · Web viewEn la práctica se somete una muestra (probeta), a un secado en estufa a 105 ºC hasta que alcance un peso constante. El contenido

Ps = Peso de la madera en estado anhidro; peso final o constante.Para determinar el contenido de humedad existen diferentes métodos, siendo los más

aceptados el método de secado en estufa y los métodos eléctricos, los que utilizan detectores de

humedad y que a nivel industrial se conocen como métodos rápidos.

Otros métodos, como desecación al vacío mediante sustancias higroscópicas, destilación de

la madera, expulsión directa del agua por presión, centrifugación, uso de alcohol y sustancias

azucaradas, son métodos de poca utilidad práctica.

2.4.1. Secado en estufa

Es el método más exacto y el único científicamente satisfactorio para determinar el agua

contenida en la madera.

El éxito en su aplicación depende de la correcta elección de muestras o probetas para

desecación, las cuales deben ser representativas del lote de madera objeto de evaluación.

2.4.1.1. Obtención de las probetas:

De la tabla se corta un trozo de 1” (una pulgada) aprox., a 50 cm. del extremo de la misma.

Las muestras deben estar sanas y libres de defectos.

2.4.1.2. Determinación del peso húmedo:

Después de cortadas, las probetas deben pesarse en balanzas con una muy buena precisión.

2.4.1.3. Secado hasta peso constante:

Luego las probetas se introducen en una estufa para secarlas. Se recomienda controlar que la

estufa no sobrepase los 105 ºC, ya que se pueden perder, además del agua, otras sustancias

constitutivas de la madera.

14

Page 15: Introducción - Universidad del Salvador · Web viewEn la práctica se somete una muestra (probeta), a un secado en estufa a 105 ºC hasta que alcance un peso constante. El contenido

2.4.1.4. Determinación del peso seco:

Se deben hacer pesadas intermedias con el fin de determinar el momento en que el peso de la

probeta se hace constante. Después del secado las probetas deben retirarse lo más rápido posible con

el fin de que no absorban humedad del aire y pesarse. Luego se calcula el contenido de humedad con

la fórmula antes mencionada.

2.5. Movimiento Migratorio del Agua en la Madera

El agua en la madera se mueve de las zonas de alto contenido de humedad a las de más bajo

contenido, en un esfuerzo por alcanzar, por una parte, un equilibrio de humedad en toda la pieza de

madera y, por otra, una condición de equilibrio entre el contenido de humedad de la madera y las

condiciones climáticas del medio circundante.

Si la temperatura y la humedad relativa del ambiente permanecen constantes, la madera se

secará o absorberá humedad hasta que se establezca un equilibrio higroscópico.

La humedad en la madera se mueve a través de diferentes tipos de conductos, siendo los

principales las cavidades celulares o lúmenes, las puntuaciones, los radios medulares, los espacios

intercelulares de las paredes celulares y los vasos (latifoliadas).

Las características de estos conductos determinan la velocidad del movimiento del agua en

las tres direcciones o planos de corte. En una madera normal, la velocidad del agua es mayor en

sentido longitudinal, algo menor en sentido radial y mínimo en sentido tangencial.

Durante el proceso de secado el agua es impulsada por varias fuerzas que pueden actuar

simultáneamente. Estas son las siguientes:

2.5.1. Fuerzas capilares:

Son aquellas que determinan el movimiento del agua libre de una célula a otra.

Cuando una pieza madera verde comienza a secarse, la evaporación del agua de las capas

superiores origina una fuerza de atracción o arrastre sobre el agua libre de las células adyacentes. El

flujo capilar originado por esta fuerza de arrastre hace que el agua libre del interior se mueva de una

célula a otra buscando la superficie de la pieza.

15

Page 16: Introducción - Universidad del Salvador · Web viewEn la práctica se somete una muestra (probeta), a un secado en estufa a 105 ºC hasta que alcance un peso constante. El contenido

La acción capilar se desplaza progresivamente hacia el centro de la madera para desaparecer

gradualmente cuando el contenido de humedad de las células del interior tiende hacia el punto de

saturación de las fibras.

2.5.2. Diferencias en la presión del vapor:

Cuando cesa la atracción capilar, la casi totalidad de las cavidades celulares sólo contiene

aire y vapor de agua, generándose una presión de vapor que será tanto más grande cuanto más

elevado sea el contenido de vapor en dichas cavidades, alcanzando su valor máximo hacia el centro

de la pieza y decreciendo hacia la periferia.

La diferencia de presión de vapor entre dos puntos, llamada gradiente de presión de vapor, es

la responsable de que la humedad de la madera, en estado de vapor, migre del interior de la pieza

hacia el exterior, que tiene una presión menor.

2.5.3. Diferencias en el contenido de humedad:

Cuando se elimina el contenido de humedad de los espacios intercelulares de las capas

superiores de una pieza de madera, se genera una diferencia en el contenido de humedad entre la

superficie y el interior de la pieza. Como existe una gran afinidad entre el tejido celulósico de las

paredes celulares y el agua, las paredes más secas de las capas superficiales absorben la humedad de

las paredes con un contenido de humedad más alto; es decir, el agua se desplaza de las células

interiores (más húmedas) hacia las de la superficie (más secas).

2.5.4. Difusión:

Es el fenómeno provocado por la combinación de los gradientes de vapor en las cavidades

celulares y los gradientes de de contenido de humedad de las paredes celulares.

Una molécula de agua se desplaza primero a través de una pared celular debido a su

gradiente de contenido de humedad, luego a través de una cavidad celular y sus conductos debido al

gradiente de la presión de vapor, después nuevamente a través de una pared celular más seca según

el gradiente de contenido de humedad y así sucesivamente, repitiendo el proceso, hasta alcanzar la

superficie de la pieza de madera.

Cundo el flujo de agua tiene lugar en sentido longitudinal, la migración de la humedad se

hace en su mayor parte a través de las cavidades celulares, mientras que en sentido transversal 16

Page 17: Introducción - Universidad del Salvador · Web viewEn la práctica se somete una muestra (probeta), a un secado en estufa a 105 ºC hasta que alcance un peso constante. El contenido

predomina el movimiento a través de las paredes celulares. Ya que la difusión del vapor es más

rápida en sentido longitudinal la velocidad de secado también lo será. Asimismo, la humedad

difunde más rápidamente en la madera de albura que en la de duramen, puesto que los extractivos y

las puntuaciones bloqueadas de esta última ejercen una resistencia al paso de la humedad.

17

Page 18: Introducción - Universidad del Salvador · Web viewEn la práctica se somete una muestra (probeta), a un secado en estufa a 105 ºC hasta que alcance un peso constante. El contenido

CAPITULO IIIBASES FÍSICAS DEL SECADO

Tanto en el secado al aire libre como en el secado en hornos (secado en planta), el agua es

removida de las piezas de madera por evaporación. La velocidad de evaporación es regulada por la

temperatura, la humedad del ambiente y la velocidad del aire que pasa a través de la pila de secado.

3.1. Temperatura:

El calor aporta a las moléculas de agua contenidas en la madera la fuerza cinética necesaria

para la evaporación. La velocidad de esta (evaporación) depende de la cantidad de energía por

unidad de tiempo y de la capacidad del aire para absorber la humedad liberada por la madera.

Cuanto mayor sea la temperatura más intensa será la evaporación ya que el aire podrá

absorber más humedad.

A 80 ºC la velocidad del movimiento interno del agua es alrededor de cinco veces mayor que

a 25 ºC.

3.2. Humedad Relativa (HR):

Se define como la relación entre la cantidad de vapor de agua contenida en un volumen

determinado de aire y la mayor cantidad posible de vapor de agua que pueda hallarse en ese

volumen de aire, a la misma temperatura.

El elemento más utilizado para medir la humedad relativa dentro de las cámaras de secado es

el psicrómetro. El mismo esta constituido por dos termómetros, en uno de los cuales el bulbo

permanece siempre seco e indica la temperatura real del aire. El otro, llamado termómetro de bulbo

húmedo, mantiene su parte sensitiva cubierta por una tela de algodón húmeda, altamente absorbente.

El agua que conserva húmeda esta tela se mantiene en un nivel constante en un recipiente colocado

debajo.

Si la HR disminuye, también lo hace la humedad de la madera y si la HR aumenta, la

humedad de la madera también aumenta.

La HR y en consecuencia la humedad de la madera están fuertemente influenciadas por la

temperatura. El aire caliente necesita una cantidad mayor de vapor de agua para saturarse que el aire

frío y por lo tanto puede absorber mayor cantidad de agua de la madera.

18

Page 19: Introducción - Universidad del Salvador · Web viewEn la práctica se somete una muestra (probeta), a un secado en estufa a 105 ºC hasta que alcance un peso constante. El contenido

3.3. Velocidad del Aire:

La ventilación o circulación del aire a través de una pila de madera y la expulsión de la

humedad, son condiciones necesarias para asegurar la remoción del exceso de humedad dentro de

una cámara y así mantener las condiciones de humedad relativa deseadas.

La capa límite, que siempre existe entre la madera y el aire, juega un papel importante en el

secado de la madera. Cuanto menor sea el espesor de esta capa límite, más rápida será la remoción

de la humedad de la superficie de la madera. La forma de la corriente de aire es importante para la

velocidad del secado, una corriente turbulenta siempre es mejor y más eficaz en la disminución de la

capa límite que una corriente laminar.

3.4. Equilibrio Higroscópico:

Es un fenómeno que está presente en todo cuerpo poroso y se produce por la capacidad de

éstos, de absorber agua del ambiente y entregarla en forma de vapor, si las presiones de vapor

internas del cuerpo no son iguales que las del aire que lo rodea, se produce un intercambio desde la

zona de mayor presión a la de menor presión, este intercambio sigue su curso hasta que se llega al

equilibrio en las presiones, momento este, en que el cuerpo alcanzó su equilibrio higroscópico.

El equilibrio higroscópico corresponde al equilibrio en las presiones parciales de vapor del

aire del ambiente y del producto húmedo.

3.5. Tensiones de Secado en la Madera

Las tensiones que se producen en una pieza de madera durante el secado tienen diferentes

orígenes, según que su contenido de humedad se encuentre por encima o por debajo del punto de

saturación de las fibras.

Por encima, la tensión capilar es la responsable de los esfuerzos que se presentan en la

madera y en condiciones extremas puede conducir a un aplastamiento celular conocido como

colapso.

Por debajo del punto de saturación de las fibras, las tensiones de secado, responsables de la

contracción normal de la madera, se desarrollan en las paredes celulares y son una consecuencia del

gradiente de contenido de humedad que se presenta entre la superficie de la pieza y el centro de la

misma. En condiciones extremas pueden provocar grietas superficiales, grietas internas y rajaduras.

19

Page 20: Introducción - Universidad del Salvador · Web viewEn la práctica se somete una muestra (probeta), a un secado en estufa a 105 ºC hasta que alcance un peso constante. El contenido

20

Page 21: Introducción - Universidad del Salvador · Web viewEn la práctica se somete una muestra (probeta), a un secado en estufa a 105 ºC hasta que alcance un peso constante. El contenido

3.5.1. Alabeos

Son deformaciones que puede experimentar una pieza de madera por la curvatura de su eje longitudinal o transversal (o ambos a la vez), como consecuencia de la pérdida de humedad. Se distinguen los siguientes tipos de alabeos:

3.5.1.1. Torceduras:

Este defecto se caracteriza por la forma de hélice que adopta la madera. Suelen ser causadas

por la presencia de fibras desviadas o en espiral. También pueden originarse a partir de distorsiones

localizadas del grano, como por ejemplo las relacionadas a nudos, inserción de ramas, etc.

3.5.1.2. Abarquillado:

Es el alabeo de las caras de una pieza aserrada, se produce cuando una de las caras seca más

rápidamente que la opuesta, lo que puede ocurrir cuando una de las caras está expuesta a la sombra y

la opuesta al sol.

La aparición de este defecto se debe principalmente al tipo de corte efectuado en el

aserradero y a la diferencia entre contracción tangencial y radial. En general, la bibliografía

recomienda utilizar pesos sobre los paquetes entre 500 y 1000 kg/m² según espesor y especie.

3.5.1.3. Combado:

Es una deformación que provoca que la curvatura de su eje longitudinal. Se presenta como

consecuencia de una excesiva contracción longitudinal, a veces se produce por el mal apilado de la

madera; el uso de separadores demasiado distantes entre sí.

3.5.1.4. Encorvadura:

Es una deformación de los cantos por diferencias de contracción, estando la superficie de la

pieza en un mismo plano. La encorvadura es uno de los alabeos más graves, puesto que no es

posible reducir su intensidad una vez que se ha hecho presente.

21

Page 22: Introducción - Universidad del Salvador · Web viewEn la práctica se somete una muestra (probeta), a un secado en estufa a 105 ºC hasta que alcance un peso constante. El contenido

FIGURA Nº 1

PRINCIPALES DEFORMACIONES DEL SECADO EN CÁMARA.

3.5.2. Grietas Superficiales y Grietas Internas

Al inicio del secado la superficie externa reduce su humedad por debajo del punto de

saturación de las fibras. Por lo tanto comienza a contraerse, en tanto que la zona interna de la

madera permanece húmeda y con sus dimensiones iniciales.

La periferia de la tabla está sometida a tracción y el centro a compresión. Si la magnitud de

la tracción en la superficie es mayor a la tensión de rotura, aparecerían grietas superficiales.

Avanzado el secado, el interior de la madera adquiere un contenido de humedad menor al

punto de saturación de las fibras, pasando del estado de compresión a otro de tracción.

22

Page 23: Introducción - Universidad del Salvador · Web viewEn la práctica se somete una muestra (probeta), a un secado en estufa a 105 ºC hasta que alcance un peso constante. El contenido

Al inicio del secado la superficie externa reduce su humedad por debajo del punto de

saturación de las fibras. Por lo tanto comienza a contraerse, en tanto que la zona interna de la

madera permanece húmeda y con sus dimensiones iniciales.

La periferia de la tabla está sometida a tracción y el centro a compresión. Si la magnitud de

la tracción en la superficie es mayor a la tensión de rotura, aparecerían grietas superficiales.

Avanzado el secado, el interior de la madera adquiere un contenido de humedad menor al

punto de saturación de las fibras, pasando del estado de compresión a otro de tracción.

Si la magnitud de esta solicitación es mayor a la tensión de rotura, se producirían grietas

internas. Al invertirse las solicitaciones, la superficie es comprimida, cerrando las grietas originadas

durante el primer estado del secado que suelen reaparecer al cepillar la madera (Vallejo, 1995).

3.5.3. Colapso

En ciertas especies suele aparecer el colapso durante la etapa inicial del secado, cuando la

madera tiene una humedad mayor a la del punto de saturación de las fibras. El colapso o

"contracción anormal" se diferencia de la "contracción normal" porque ésta se manifiesta ante

contenidos de humedad menores al punto de saturación de las fibras.

La "contracción total" se define como la reducción de las dimensiones de la madera durante

el secado, comprende colapso y contracción normal. Parte del colapso que compone la contracción

total puede ser recuperado mediante la técnica de reacondicionamiento (normal a nivel industrial)

que emplea vapor saturado a 100C (Vallejo, 1995).

La ocurrencia de colapso durante el secado ha sido atribuida principalmente a la presencia de

tensiones hidrostáticas actuando en capilares saturados con agua.

En tanto que una segunda teoría relaciona su aparición con la presencia de solicitaciones de

compresión transversal en el centro de la madera, originada durante el primer estado del secado. La

magnitud de dichas solicitaciones debe ser mayor a la tensión límite de proporcionalidad de las

paredes celulares para provocar deformaciones plásticas y el consecuente aplastamiento de los

lúmenes celulares. Por esta razón se asocia la ocurrencia del colapso con el primer estado del

secado, donde la zona central de la madera está sometida a compresión y la externa a tracción.

A nivel macroscópico este defecto provoca depresiones y elevaciones irregulares en la

madera.

23

Page 24: Introducción - Universidad del Salvador · Web viewEn la práctica se somete una muestra (probeta), a un secado en estufa a 105 ºC hasta que alcance un peso constante. El contenido

La importancia de su cuantificación radica en que la irregularidad resultante debe ser

eliminada, lo que provoca pérdida de material.

Por otra parte resulta crucial en este contexto definir al "colapso total" como la suma de

ambos componentes mencionados arriba. Es decir que serían concurrentes el "colapso debido a

tensiones hidrostáticas" con el "colapso debido a tensiones internas".

El colapso puede evitarse o disminuir su efecto sometiendo a la madera verde a un secado

lento (temperaturas normales), hasta que la madera haya perdido gran parte de su agua libre.

3.6. Defectos de la madera.

3.6.1. Sombra de nudo

Remolino o torcimiento en la fibra de la madera que usualmente ocurre cerca de un nudo,

pero no contiene un nudo.

3.6.2. Nudo sano

Un nudo que es sólido a través de su cara, tan duro como la madera que lo rodea y no

muestra indicios de podredumbre.

3.6.3. Podredumbre

Descomposición de la sustancia de la madera debido a hongos.

3.6.4. Médula

Alma pequeña y blanda localizada en el centro del tronco.

3.6.5. Escamado

Separación a lo largo de la fibra, la mayor parte de la cual ocurre entre los anillos de

crecimiento.

3.6.6. Canto muerto

Corteza o falta de madera.

24

Page 25: Introducción - Universidad del Salvador · Web viewEn la práctica se somete una muestra (probeta), a un secado en estufa a 105 ºC hasta que alcance un peso constante. El contenido

CAPITULO IVMATERIALES Y MÉTODOS

4.1. Materiales

4.1.1. Madera

La madera de Eucalyptus grandis utilizada en el ensayo, provenía de un proceso de secado al

aire libre cuya duración es de aproximadamente tres meses, proceso al que, en esta empresa, se lo

denomina “oreo”. El largo de las piezas era variable entre 6 y 11 pies (1,83 m y 3,35 m), el ancho

entre 5 y 8 pulgadas (0,13 m y 0,20 m) y el espesor era de 1 pulgada (0,0254 m) para todas las

piezas. Las piezas involucradas en el ensayo totalizaban 5368 y estaban agrupadas en 30 paquetes,

cada uno de ellos, poseía una etiqueta identificatoria, en la que constaba la fecha y turno de

elaboración, las medidas extremas, ancho, largo y espesor de las piezas que componían dicho

paquete (escuadría), la calidad de las piezas y el número del paquete.

Cada paquete se componía de 24 camadas, de “x” nº de piezas cada una, este valor depende

del ancho de cada pieza, a mayor ancho, menor nº de piezas por camada y viceversa.

FIGURA Nº 2

ESQUEMA DE UN PAQUETE

25

Page 26: Introducción - Universidad del Salvador · Web viewEn la práctica se somete una muestra (probeta), a un secado en estufa a 105 ºC hasta que alcance un peso constante. El contenido

4.1.2. Instrumentos utilizados

- Cinta métrica: metálica, largo total 5 m, valores expresados en pulgadas, pies y centímetros.

- Tiza para madera: cera de color negro.

- Balanza de precisión (0,1 g)

- Medidor de Humedad: Wagner L612

- Estufas

4.1.3. Equipo de secado

El equipo utilizado es un horno construido en aluminio, que cuenta además con los sistemas

de calefacción, ventilación, renovación de aire, humidificación y control semi –automático, en cuyo

interior caben 30 paquetes, con un distanciamiento adecuado para la circulación del aire.

El sistema de calefacción está formado por radiadores por cuyo interior circula vapor de

agua a presión, este vapor proviene de una caldera y se logra mediante la combustión continua de

biomasa (chips, aserrín, corteza, etc.).

El sistema de ventilación está compuesto por ventiladores de ejes axiales, con dirección de

giro reversible, sobre las pilas de secado. La renovación del aire se logra mediante dos ventilas de

regulación automática, una correspondiente a la expulsión del aire saturado y la otra para succión

del aire fresco.

La entrega de humedad al sistema se logra a través de un sistema de spray, la renovación de

aire saturado se logra a través de las ventilas antes mencionada.

4.2. Métodos

En este punto se hará una breve referencia a la metodología de trabajo que se empleó en la

toma de datos, la que para su mejor comprensión, se puede dividir en las siguientes etapas:

individualización de las piezas, marcación y medición de la superficie utilizable y toma de datos.

26

Page 27: Introducción - Universidad del Salvador · Web viewEn la práctica se somete una muestra (probeta), a un secado en estufa a 105 ºC hasta que alcance un peso constante. El contenido

4.2.1. Individualización de las piezas

La enumeración de las tablas tenía como principal objetivo la identificación de cada una de

las piezas, a fin de establecer los cambios individuales que sucedieran en el secado. La misma se

llevó a cabo con tiza especial para madera y en ambas caras de las piezas.

4.2.2. Marcación y Medición de la superficie utilizable

Esta tarea fue realizada por clasificadores de la empresa, los que verificaban los defectos que

poseían las piezas y determinaban, mediante la medición con cinta métrica, cuál era la superficie, en

m2, con posibilidades de ser aprovechadas.

En este punto era importante, diferenciar bien los defectos con que contaban las piezas antes

de entrar al secadero, recordemos que eran tablas que tenían un proceso de oreo previo, para poder

determinar, después del secado, si los defectos fueron producidos por éste o no.

4.2.3. Toma de datos

La toma de datos fue realizada en planillas especiales, las que fueron diseñadas por el Ing.

Ftal. Marcelo Vallejo, en se anotaron los datos más relevantes, que serían de utilidad a la hora de

hallar los resultados de la experiencia.

Una muestra de las planillas utilizadas se puede encontrar en el anexo del presente trabajo.

FIGURA Nº 3EJEMPLO DE CLASIFICACIÓN DE UNA TABLA

27

Corte nº 2 Corte nº 2 Sup.= “x” m Sup.= “x” m 2 2 Nudo Nudo

Grieta Grieta

24 24

Corte nº1 Corte nº1 Sup.= “x” m Sup.= “x” m 2 2

Espesor Espesor 0.0254 m 0.0254 m

Largo Largo 1,83 1,83 - - 3,35 m. 3,35 m.

Ancho 0,13 Ancho 0,13 - - 0,20 m. 0,20 m.

Grieta Grieta

nº de nº de tabla tabla

Corte nº 2 Corte nº 2 Sup.= “x” m Sup.= “x” m 2 2 Nudo Nudo

Grieta Grieta

24 24

Corte nº1 Corte nº1 Sup.= “x” m Sup.= “x” m 2 2

Espesor Espesor 0.0254 m 0.0254 m

Largo Largo 1,83 1,83 - - 3,35 m. 3,35 m.

Ancho 0,13 Ancho 0,13 - - 0,20 m. 0,20 m.

Grieta Grieta

nº de nº de tabla tabla

Page 28: Introducción - Universidad del Salvador · Web viewEn la práctica se somete una muestra (probeta), a un secado en estufa a 105 ºC hasta que alcance un peso constante. El contenido

4.3. Preparación del Material para el secado

Merece aclararse que el armado de paquetes es una práctica habitual en esta empresa y no

fue un método usado exclusivamente para este ensayo por lo que a la hora del secado, lo único que

había que tener en cuenta era la ubicación de dichos paquetes en el secadero, puesto que no se

buscaba evaluar formas de apilados más eficientes para el secado, sino cuantificar el nivel de

pérdida de superficie utilizable y la relación que existe entre dicha pérdida y la ubicación de los

paquetes en el secadero.

4.3.1. Preparación de los paquetes

Una vez evaluados los 30 paquetes se dispusieron en pilas formadas por tres paquetes, cada

una, a cada pila se le colocó encima una pesa, a fin de evitar deformaciones muy severas por acción

del secado (abarquillado), se midió la humedad de los paquetes antes de entrar al secadero, además,

para poder establecer la relación entre el nivel de deterioro de las piezas y la posición del paquete en

el secado, fue necesario tomar nota de la posición de cada paquete en cada una de las pilas.

En el siguiente gráfico se puede apreciar la disposición de la pesa sobre una pila de paquetes listos para entrar al secadero.

FIGURA Nº 4PILA DE SECADO.

28

Page 29: Introducción - Universidad del Salvador · Web viewEn la práctica se somete una muestra (probeta), a un secado en estufa a 105 ºC hasta que alcance un peso constante. El contenido

4.3.2. Ubicación de los paquetes en la cámara de secado

Ya listas las pilas, se procedió a ubicarlas de la manera más uniforme posible, para permitir

una correcta circulación del aire entre las mismas y entre las piezas, a pesar que el ancho de la

cámara de secado permite la colocación de tres pilas contiguas, las dimensiones de las pesas que se

colocan sobre las pilas, exceden los límites de los paquetes, debiendo por ello ubicarse los mismos

de manera tal que permita un acomodamiento apropiado a los fines prácticos.

En el gráfico siguiente se puede ver un ejemplo de ubicación de los paquetes en la cámara de

secado.

FIGURA Nº 5UBICACIÓN DE LAS PILAS EN EL SECADERO (VISTA EN PLANTA)

29

N N

Entrada Entrada

Tina Tina

Pila 10

Referencias Referencias : :

Pilas

Pesas

Calefactores

Pila 9

Pila 7 Pila 8

Pila 6 Pila 5

Pila 4 Pila 3

Pila 2 Pila 1

N N

Entrada Entrada

Tina Tina

Pila 10

Referencias Referencias : :

Pilas

Pesas

Pila 9

Pila 7 Pila 8

Pila 6 Pila 5

Pila 4 Pila 3

Pila 2 Pila 1

Page 30: Introducción - Universidad del Salvador · Web viewEn la práctica se somete una muestra (probeta), a un secado en estufa a 105 ºC hasta que alcance un peso constante. El contenido

CAPITULO VANÁLISIS ESTADÍSTICO

5.1. Población

En general, la estadística tiene por objeto estudiar las poblaciones y las relaciones que

existen entre ellas. Se entiende por población, universo o colectivo, a un conjunto de elementos,

personas o cosas; por ejemplo, el rodal del bosque del cual provenían los rollos que terminaron

generando las tablas muestreadas.

5.2. Muestra

Cuando la población es muy grande, la observación de todos los elementos es imposible, se

puede superar este inconveniente eligiendo una muestra lo suficientemente representativa de la

población. Se entiende por muestra, una parte representativa del conjunto total de elementos que

componen la población o universo. A los efectos de la presente tesis se seleccionó una muestra de

30 paquetes de madera aserrada.

5.3. Método estadístico

En la elaboración de este trabajo se utilizó la llamada estadística descriptiva o deductiva, es

la que describe y analiza las características de una población o muestra, deduciendo de esta

descripción conclusiones acerca de su estructura y composición y sobre las relaciones existentes con

otras poblaciones. Se diferencia de la estadística inductiva, pues ésta, se basa en los resultados

obtenidos del análisis de una muestra de la población; infiere, induce o estima las leyes generales del

comportamiento de la población y hace que por ello, se hable generalmente de “inferencia

estadística”.

Ambas ramas de la estadística utilizan métodos que en su conjunto forman los llamados

“métodos estadísticos”.

Las medidas descriptivas, como se mencionara anteriormente, pueden calcularse a partir de

los datos de una muestra o una población.

- Una medida descriptiva calculada a partir de los datos de una muestra se conoce como

estadística.

30

Page 31: Introducción - Universidad del Salvador · Web viewEn la práctica se somete una muestra (probeta), a un secado en estufa a 105 ºC hasta que alcance un peso constante. El contenido

- Una medida descriptiva calculada a partir de los datos de una población se conoce como

parámetro.

5.4. Diseño Experimental

La muestra en estudio estaba compuesta por 5368 tablas, reunidas en 30 paquetes, como ya

se mencionara anteriormente, una práctica habitual para el secado, es reunir tres paquetes, uno

encima del otro, formando una pila, por último se coloca una pesa sobre ella. Esta pila de paquetes

conforma una unidad de secado. En cada cámara de secado es posible ubicar 10 pilas, lo que hace un

total de treinta paquetes por cámara.

5.4.1. Arreglo Ordenado

Cuando se hacen mediciones de una variable sobre los elementos de una población, los

valores resultantes llegan por lo general, como un conjunto de datos desordenados. Es poco probable

que estos datos aporten alguna información hasta que hayan sido ordenados de alguna manera.

Un arreglo ordenado es una lista de valores de una colección, en orden de magnitud, desde el

valor más pequeño al más grande u ordenados de acuerdo al criterio del evaluador.

En este trabajo se realizó un arreglo ordenado para que los datos puedan ser analizados por

medio de una computadora, en el mismo se tomó nota de los valores de mayor utilidad para los

cálculos requeridos.

La variable a estudiar era la superficie de las piezas de madera. Se cuantificó la superficie

(m2) de todas las tablas, descartando aquellas que a criterio industrial no debían ser monitoreadas,

analizando la distribución de la pérdida en el total de la muestra, en los paquetes, en las pilas; de

acuerdo a la posición de las pilas dentro del secadero; de acuerdo a la posición del paquete en la pila

de secado.

En el siguiente cuadro se puede apreciar el nivel de pérdida de superficie utilizable de

acuerdo a la posición de los paquetes en el secado.

31

Page 32: Introducción - Universidad del Salvador · Web viewEn la práctica se somete una muestra (probeta), a un secado en estufa a 105 ºC hasta que alcance un peso constante. El contenido

TABLA Nº 1ORDENAMIENTO DE PAQUETES Y NIVEL DE PÉRDIDA.

Nº Pila

Posición paquete

Nº paquete

Pérdida m2

1Superior 1 0,76Medio 2 1,59Inferior 3 0,34

2Superior 4 0,87Medio 5 0,02Inferior 6 0,42

3Superior 7 1,29Medio 8 0,36Inferior 9 1,01

4Superior 10 0,52Medio 11 0,11Inferior 12 0,14

5Superior 13 0,11Medio 14 -0,09Inferior 15 0,46

6Superior 16 0,31Medio 17 0,31Inferior 18 -0,01

7Superior 19 0,86Medio 20 1,91Inferior 21 0,43

8Superior 22 -0,09Medio 23 0,51Inferior 24 0,39

9Superior 25 0,22Medio 26 0,36Inferior 27 0,34

10Superior 28 -0,01Medio 29 1,79Inferior 30 0,04

NOTA: Los valores negativos que aparecen en la tabla reflejan el aumento de superficie útil

que manifestaron algunos paquetes luego del secado.

32

Page 33: Introducción - Universidad del Salvador · Web viewEn la práctica se somete una muestra (probeta), a un secado en estufa a 105 ºC hasta que alcance un peso constante. El contenido

CAPITULO VIRESULTADOS

En los siguientes puntos se podrá apreciar cuáles fueron las variables medidas y cuáles los

resultados obtenidos.

6.1. Pérdida de m2

Para el cálculo de esta variable se tomó en cuenta el total de m2, de tablas que no eran

descartes antes del secado (1495,02 m2) y se realizó la diferencia con el total de m2 que se midieron

después del secado (1479,74 m2), obteniéndose como resultado la pérdida de 15,28 m2, lo que

representa 1,02 % del total inicial de metros.

TABLA Nº 2Pérdida en m2

  Superficie útil %Nº Total de m2 pre - secado 1495,02Nº Total de m2 pos - secado 1479,74

Diferencia (pérd.m2 ) 15,28 1,02

GRÁFICO Nº 6PÉRDIDA DE M2

33

1495,02 m 2 1479,74 m 2

0100200300400500600700800900

100011001200130014001500

m2 Pre-secado m2 post-secado

Page 34: Introducción - Universidad del Salvador · Web viewEn la práctica se somete una muestra (probeta), a un secado en estufa a 105 ºC hasta que alcance un peso constante. El contenido

6.2. Nivel de Deterioro por Pila de Secado

Este valor se obtuvo de la suma de las pérdidas parciales de los paquetes que conformaban

cada grupo de secado, hay que destacar que hubo picos importantes en los grupos 1, 3 y 7 las que en

conjunto representaron el 56 % de las pérdidas totales.

TABLA Nº 3PÉRDIDA POR PILAS

Nº Pila Pérd. m2

1 2,692 1,313 2,664 0,775 0,486 0,617 3,208 0,819 0,92

10 1,82

GRÁFICO Nº 7PÉRDIDA DE M2 POR PILA DE SECADO

0,00

0,30

0,60

0,90

1,20

1,50

1,80

2,10

2,40

2,70

3,00

3,30

3,60

1 2 3 4 5 6 7 8 9 10

34

Page 35: Introducción - Universidad del Salvador · Web viewEn la práctica se somete una muestra (probeta), a un secado en estufa a 105 ºC hasta que alcance un peso constante. El contenido

6.3. Nivel de Deterioro por paquete

El cálculo de esta variable se logró mediante la sumatoria de las pérdidas parciales de cada

pieza, además se obtuvo el valor promedio de las pérdidas, parámetro que podemos utilizar para

apreciar la dispersión de los valores. Se puede ver con claridad que la dispersión es amplia,

obteniéndose un DS (desvío Standard) de 0,5296.

TABLA Nº 4PÉRDIDA POR PAQUETE

Promedio 0,509DS 0,5296

Nº paquete Pérdida m21 0,762 1,593 0,344 0,875 0,026 0,427 1,298 0,369 1,0110 0,5211 0,1112 0,1413 0,1114 -0,0915 0,4616 0,3117 0,3118 -0,0119 0,8620 1,9121 0,4322 -0,0923 0,5124 0,3925 0,2226 0,3627 0,3428 -0,0129 1,7930 0,04

35

Page 36: Introducción - Universidad del Salvador · Web viewEn la práctica se somete una muestra (probeta), a un secado en estufa a 105 ºC hasta que alcance un peso constante. El contenido

NOTA: Los valores negativos que aparecen en la tabla reflejan el aumento de superficie útil

que manifestaron algunos paquetes luego del secado.

GRÁFICO Nº 8DISTRIBUCIÓN DEL DETERIORO RESPECTO DE LA MEDIA

00,10,20,30,40,50,60,70,80,9

11,11,21,31,41,51,61,71,81,9

2

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

6.4. Deterioro en altura

Anteriormente se hizo mención y se explicó como estaban conformados los grupos de

secado, también se mencionó como fueron ubicados los paquetes en cada grupo, esto permitió

evaluar cuál fue el comportamiento de la pérdida de valor de las piezas en altura. Para ello se

agruparon en una tabla todos los paquetes que se encontraban en la posición inferior, media y

superior de cada grupo, cuantificándose las pérdidas observadas y realizando un gráfico que

permitiera apreciar cuál, de las posiciones antes mencionadas fue la que sufrió en mayor medida los

efectos del secado. 36

Page 37: Introducción - Universidad del Salvador · Web viewEn la práctica se somete una muestra (probeta), a un secado en estufa a 105 ºC hasta que alcance un peso constante. El contenido

TABLA Nº 5DETERIORO EN ALTURA

Grupos Pérd. m2 % PromedioSuperiores 4,84 31,70 5,09

Medios 6,87 44,99Inferiores 3,56 23,31

Total 15,27 100

Se puede ver una notoria superioridad en el nivel de pérdida sufrida por los paquetes que se

encontraban en la posición media, sin embargo hay que destacar que esta diferencia se debe

principalmente a los niveles alcanzados por tres paquetes (2, 20, 29), los que fueron los responsables

de elevar la media de este conjunto de paquetes (0,687 m2) por sobre la media muestral (0,509 m2).

GRÁFICO Nº 9

PÉRDIDA DE M2 SEGÚN LA UBICACIÓN DE LOS PAQUETES

EN LAS PILAS DE SECADO

4,84 m2

31,70 %

6,87 m244,19 %

3,56 m2

23,31 %

0,00

1,00

2,00

3,00

4,00

5,00

6,00

7,00

8,00

Superiores Medios Inferiores

37

Page 38: Introducción - Universidad del Salvador · Web viewEn la práctica se somete una muestra (probeta), a un secado en estufa a 105 ºC hasta que alcance un peso constante. El contenido

6.5. Pérdida de superficie / Ubicación de las pilas en el secadero.

Para poder establecer el nivel de pérdida, tomando como parámetro de comparación la

ubicación de las pilas dentro de la cámara de secado, fue necesaria la división, imaginaria, de la

misma en dos sectores, de manera tal que la mitad de los grupos quedaran incluidos en uno de esos

sectores.

Se tomó como referencia para la primera división los calefactores, ubicados al fondo de la

cámara, y la puerta de la misma, quedando conformados de esta manera, un sector cercano a los

calefactores y otro cercano a la puerta.

En el siguiente esquema se pueden apreciar los sectores en los que quedó dividida la cámara

y los grupos en ellos incluidos.

FIGURA Nº 6DIVISIÓN IMAGINARIA DE LA CÁMARA DE SECADO EN

SECTORES (CALEFACTORES VS. PUERTA)

Entrada Entrada

Pila 10

Referencias Referencias : :

Pilas

Pesas

Pila 9

Pila 7 Pila 8

Pila 5 N N

Tina Tina

Calefactores Calefactores

Pila 6

Pila 4 Pila 3

Pila 2 Pila 1

Pilas cercanas a la puerta.

Pilas cercanas a los calefactores. Entrada Entrada

Pila 10

Referencias Referencias : :

Pilas

Pesas

Pila 9

Pila 7 Pila 8

Pila 5 N N

Tina Tina

Calefactores Calefactores

Pila 6

Pila 4 Pila 3

Pila 2 Pila 1

Pilas cercanas a la puerta.

Pilas cercanas a los calefactores. Entrada Entrada

Pila 10

Referencias Referencias : :

Pilas

Pesas

Pila 9

Pila 7 Pila 8

Pila 5 N N

Tina Tina

Calefactores Calefactores

Pila 6

Pila 4 Pila 3

Pila 2 Pila 1

Pilas cercanas a la puerta.

Pilas cercanas a los calefactores.

38

Page 39: Introducción - Universidad del Salvador · Web viewEn la práctica se somete una muestra (probeta), a un secado en estufa a 105 ºC hasta que alcance un peso constante. El contenido

Se puede apreciar en el siguiente cuadro que el nivel de pérdida dentro del secadero, en

relación con la ubicación de las pilas, presenta un valor de 8,04 m2 (52,65 %) para las pilas ubicadas

cerca de los calefactores y 7,23 m2 (47,35 %) para las pilas cercanas a la puerta.

TABLA Nº 6

PÉRDIDA DE M2 SEGÚN LA UBICACIÓN

DE LAS PILAS EN LOS SECTORES

(CALEFACTORES VS. PUERTA)

Grupos Pérd. m2 %Calefactores 8,04 52,65

Puerta 7,23 47,35Total 15,27 100

GRÁFICO Nº 11COMPARACIÓN DE LA PÉRDIDA ENTRE SECTORES

(CALEFACTORES VS. PUERTA)

52,65% 47,35%

0,00

1,00

2,00

3,00

4,00

5,00

6,00

7,00

8,00

9,00

Calefactores Puerta

39

Page 40: Introducción - Universidad del Salvador · Web viewEn la práctica se somete una muestra (probeta), a un secado en estufa a 105 ºC hasta que alcance un peso constante. El contenido

Otra manera de evaluar la pérdida según la ubicación, fue sectorizando la cámara en sentido

norte – sur, en cuyo caso quedaron conformados los sectores correspondientes, en este caso la

pérdida fue de 6,57 m2 (43,03 %) para las pilas ubicadas en el sector norte y de 8,70 (56,97 %) para

las pilas del sector sur.

FIGURA Nº 7DIVISIÓN IMAGINARIA DE LA CÁMARA DE SECADO EN

SECTORES (NORTE VS. SUR)

TABLA Nº 7PÉRDIDA DE M2 SEGÚN LA UBICACIÓN

DE LAS PILAS EN LOS SECTORES

(NORTE VS. SUR)

Sectores Pérd. m2 %Norte 6,57 43,03Sur 8,70 56,97

Total 15,27 100

Referencias Referencias : :

Pilas

Pesas

Pila 9

Pila 7

N N

Tina Tina

Calefactores Calefactores

Pila 6

Pila 3

Pila 2

Pilas sector Sur.

Pilas sector Norte. Entrada Entrada

Pila 10

Pila 8

Pila 5

Pila 4

Pila 1

Referencias Referencias : :

Pilas

Pesas

Pila 9

Pila 7

N N

Tina Tina

Calefactores Calefactores

Pila 6

Pila 3

Pila 2

Pilas sector Sur.

Pilas sector Norte. Entrada Entrada

Pila 10

Pila 8

Pila 5

Pila 4

Pila 1

40

Page 41: Introducción - Universidad del Salvador · Web viewEn la práctica se somete una muestra (probeta), a un secado en estufa a 105 ºC hasta que alcance un peso constante. El contenido

GRÁFICO Nº 12COMPARACIÓN DE LA PÉRDIDA ENTRE SECTORES

(NORTE VS. SUR)

43,03%

56,97%

0,00

1,00

2,00

3,00

4,00

5,00

6,00

7,00

8,00

9,00

Norte Sur

6.6. Principales causas de pérdida de valor

Las principales causas que produjeron pérdida de valor en las piezas fueron, el escamado,

grietas, manifestaciones de colapso de células y el aumento en la longitud de rajaduras, en algunos

casos las pérdidas se produjeron por acción conjunta de varios de estos defectos, todos ellos fueron

evaluados y medidos por clasificadores de la empresa, los que cuentan con una capacitación especial

para realizar este trabajo.

La cuantificación de estos defectos fue de suma importancia para poder determinar cuál

presenta mayor nivel de ocurrencia y severidad.

41

Page 42: Introducción - Universidad del Salvador · Web viewEn la práctica se somete una muestra (probeta), a un secado en estufa a 105 ºC hasta que alcance un peso constante. El contenido

TABLA Nº 8CAUSAS DE PÉRDIDA DE SUPERFICIE ÚTIL

Causas m2 %Colapso 0,64 3,74Grietas 8,34 48,74

Escamado 6,53 38,16Rajaduras 1,00 5,84

Esc. - Grietas 0,33 1,93Esc. - Rajaduras 0,27 1,58

Total 17,11 100

Se puede apreciar que tanto las grietas (48,74 %) como el escamado (38,16 %) fueron los

defectos que presentaron mayor severidad como causantes de pérdida de valor de las tablas en

estudio.

GRÁFICO Nº 14PARTICIPACIÓN DE CADA DEFECTO EN

EL NIVEL TOTAL DE PÉRDIDA.

Esc. - Rajaduras1,58%

Grietas48,74%

Escamado38,16%

Esc. - Grietas1,93%Rajaduras

5,84%Colapso

3,74%

42

Page 43: Introducción - Universidad del Salvador · Web viewEn la práctica se somete una muestra (probeta), a un secado en estufa a 105 ºC hasta que alcance un peso constante. El contenido

CAPITULO VIICONCLUSIONES

1- La pérdida total registrada en el proceso de secado en cámara fue de 15,27 m2,

representando el 1,02 % del total de metros en estudio, esto permite aceptar la hipótesis nula de que

la pérdida registrada en el secado en cámara es inferior al 2%.

2- No se observa relación entre la ubicación de las pilas de paquetes y el nivel de deterioro

sufrido por los mismos.

3- Los paquetes que mayor pérdida de valor presentaron fueron los que se encontraban en la

posición media en las pilas de secado.

4- Las principales causas de pérdidas fueron las grietas y el escamado, totalizando entre

ambas 87 % del total registrado.

43

Page 44: Introducción - Universidad del Salvador · Web viewEn la práctica se somete una muestra (probeta), a un secado en estufa a 105 ºC hasta que alcance un peso constante. El contenido

CAPITULO VIIIBIBLIOGRAFÍA

Vargas, M Julio O. (1987). Anatomía y Tecnología de la madera. Manual del

Técnico Forestal.

Wayne, Daniel W. 1993. Bioestadística. (Georgia State University) tercera edición.

Ed. Limusa. Grupo Noriega Editores.

FAO. 1981. El Eucalyptus en la repoblación Forestal. Edición 11. Roma.

Manual del Grupo Andino para el Secado de Maderas. Junta del acuerdo de

Cartagena (JUNAC). 1989. Colombia.

Cantatore de Frank Norma M. 1980. Manual de estadística aplicada. Primera

edición. Ed. Hemisferio Sur S.A.

Tuset Reinaldo y Duran Fernando. Manual de maderas comerciales, equipos y

procesos de utilización. Ed. Agrop. Hemisferio Sur S.R.L. Montevideo.

OTRAS FUENTES:

Vallejo Leon Marcelo R. 1995. Tesis Magister. Universidad de Chile. Facultad de

Ciencias Agrarias y Forestales. Escuela de Postgrado.

44

Page 45: Introducción - Universidad del Salvador · Web viewEn la práctica se somete una muestra (probeta), a un secado en estufa a 105 ºC hasta que alcance un peso constante. El contenido

CAPITULO IXANEXOS

Anexo 1.

ENSAYO SECADERO Nº 2 CARGA Nº 1920

Nº Paquete Paquete % Hº Desv. Std. Mayor valor Menor valor40119263 1 9,0 1,1 11,1 6,440127096 2 8,4 1,2 10,8 6,440205274 3 8,8 1,1 10,6 5,440211113 4 7,8 1,2 9,9 5,840128243 5 9,1 1,1 11,6 7,240206261 6 8,6 1,0 10,8 6,240130124 7 8,7 1,2 10,7 6,040119243 8 8,8 1,3 10,7 5,640206242 9 8,2 1,3 11,2 5,740126241 10 8,5 1,3 10,7 5,340203099 11 8,2 1,3 10,5 5,740203108 12 7,8 1,4 10,9 6,040130110 13 8,5 1,4 11,3 5,840128250 14 8,8 1,6 10,9 4,240127110 15 8,6 1,2 11,1 6,340127259 16 8,2 1,2 11,4 6,340216107 17 8,2 1,3 10,3 4,540219108 18 9,0 1,2 10,9 6,440220121 19 9,5 1,2 11,9 6,931120259 20 9,0 1,2 11,2 6,340126096 21 8,8 1,2 11,0 6,340127106 22 8,3 1,0 10,0 6,040206265 23 8,5 1,2 10,9 6,440218093 24 8,9 1,5 12,3 5,840123116 25 9,1 1,3 11,3 6,940131099 26 8,2 1,3 10,5 5,240127115 27 8,7 1,5 11,3 5,840206250 28 8,6 1,2 10,7 6,040130256 29 8,9 1,3 11,7 6,040120241 30 8,8 0,9 10,2 6,3

CH% SD8,6 1,24

45

Page 46: Introducción - Universidad del Salvador · Web viewEn la práctica se somete una muestra (probeta), a un secado en estufa a 105 ºC hasta que alcance un peso constante. El contenido

Anexo 2.

Distribución de la Humedad en los Paquetes

0,0

1,0

2,0

3,0

4,0

5,0

6,0

7,0

8,0

9,0

10,0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Nº de paquete

%

46

Page 47: Introducción - Universidad del Salvador · Web viewEn la práctica se somete una muestra (probeta), a un secado en estufa a 105 ºC hasta que alcance un peso constante. El contenido

Anexo 3.

Frecuencia de niveles de Hº en los distintos rangos

Rangos de Hº Nº de lecturas< 26 828 37910 32612 2114 016 018 020 022 024 026 0> 0

Frecuencia de Hº

0

50

100

150

200

250

300

350

400

< 6 8 10 12 14 16 18 20 22 24 26 >

% Hº

Frec

uenc

ia

47

Page 48: Introducción - Universidad del Salvador · Web viewEn la práctica se somete una muestra (probeta), a un secado en estufa a 105 ºC hasta que alcance un peso constante. El contenido

48

Page 49: Introducción - Universidad del Salvador · Web viewEn la práctica se somete una muestra (probeta), a un secado en estufa a 105 ºC hasta que alcance un peso constante. El contenido

49

Page 50: Introducción - Universidad del Salvador · Web viewEn la práctica se somete una muestra (probeta), a un secado en estufa a 105 ºC hasta que alcance un peso constante. El contenido

50

Page 51: Introducción - Universidad del Salvador · Web viewEn la práctica se somete una muestra (probeta), a un secado en estufa a 105 ºC hasta que alcance un peso constante. El contenido

51