interrogating high-grade glioma regulatory networks to identify :

23
MASTER REGULATORS OF TUMOR SUBTYPE AND ASSOCIATED DRIVER MUTATIONS Interrogating High-Grade Glioma Regulatory Networks to Identify :

Upload: dasia-leopard

Post on 14-Dec-2015

230 views

Category:

Documents


3 download

TRANSCRIPT

Page 1: Interrogating High-Grade Glioma Regulatory Networks to Identify :

MASTER REGULATORS OF TUMOR SUBTYPE AND ASSOCIATED DRIVER MUTATIONS

Interrogating High-Grade Glioma Regulatory Networks to Identify :

Page 3: Interrogating High-Grade Glioma Regulatory Networks to Identify :

POST-TRANSLATIONAL INTERACTIONS

TRANSCRIPTIONAL INTERACTIONS

Zhao X et al. (2009) Dev Cell. 17(2):210-21.Mani KM et al. (2008) Mol Syst Biol. 4:169Palomero T et al., Proc Natl Acad Sci U S A 103, 18261 (Nov 28, 2006).Margolin AA et al., Nature Protocols; 1(2): 662-671 (2006)Margolin AA et al., BMC Bioinformatics 7 Suppl 1, S7 (2006).Basso K et al. (2005), Nat Genet.;37(4):382-90. (Apr. 2005)

Wang K, Saito M, et al. (2009) Nat Biotechnol. 27(9):829-39Zhao X et al. (2009) Dev Cell. 17(2):210-21.Wang K et al. (2009) Pac Symp Biocomput. 2009:264-75.Mani KM et al. (2008) Mol Syst Biol. 4:169Wang K et al. (2006) RECOMB

POST-TRANSCRIPTIONAL INTERACTIONS

Basso et al. Immunity. 2009 May;30(5):744-52Klein et al, Cancer Cell, 2010 Jan 19;17(1):28-40. Sumazin et al. 2011, in press

MASTER REGULATORS AND MECHANISM OF ACTION

The CTD2 Network (2010), Nat Biotechnol. 2010 Sep;28(9):904-906.Floratos A et al. Bioinformatics. 2010 Jul 15;26(14):1779-80Lefebvre C. et al (2010), Mol Syst. Biol, 2010 Jun 8;6:377Carro MS et al. (2010) Nature 2010 Jan 21;463(7279):318-25Mani K et al, (2008) Molecular Systems Biology, 4:169

Page 4: Interrogating High-Grade Glioma Regulatory Networks to Identify :

MINDy: Reverse Engineering of Post Translational Modulators of Transcriptional Regulation

JoeMary

Tony

MYC TERT

GSK3

Degradation

SignalMYC

TERTGSK3

Page 5: Interrogating High-Grade Glioma Regulatory Networks to Identify :

Post-Translational Network Validation (MINDy)

WB: STK38

WB: c-Myc

IP:

C-M

yc

IP:

Mo

use

IgG

STK38 (serine-threonine kinase 38, NDR1)

1) Protein-Protein interaction with MYC

2) STK38 silencing in ST486 decreases MYC stability

3) MYC mRNA is not affected

3) MYC targets are consistently affected

1

2

NT STK38 (B11)

1 1 2 2 3 3 4 4 5 5 MW

WB: STK38

WB: ACTIN

WB: MYC

3

~400 Gene Expression Profiles for Normal and Tumor Related Human B Cells

Wang K, Saito M, et al. (2009) Nat. Biotechnol. 27(9):829-39

Page 6: Interrogating High-Grade Glioma Regulatory Networks to Identify :

Cancer B Cell interactome (BCi) Breast Cancer Cell interactome (BCCi) T-ALL interactome (TALLi) AML Prostate Cancer interactome (Pci mouse/human) Glioblastoma Multiforme interactome (GBMi) Ovarian Non-small-cell Lung Cancer Colon Cancer Hepatocellular Carcinoma Neuroblastoma NET

Stem Cells Mouse EpiSC and ESC Human ESC Germ Cell Tumors (Pluripotency, Lineage Differentiation)

Neurodegenerative Disease Human and Mouse Motor Neuron (ALS) Human and Mouse whole brain (Alzheimer’s)

Available Transcriptional Interactomes:

Interactomes are generated from primary tissue profiles and thus reflect cell regulation in vivo, in the presence of all relevant paracrine, endocrine, and contact signals

Page 7: Interrogating High-Grade Glioma Regulatory Networks to Identify :

Interrogating the Assembly Manual of the Cell

Cell RegulatoryLogic

Pluripotency and Lineage Differentiation

Drug MoA and Resistance

Disease Initiation & Progression

Mechanism of Action

Biomarkers

Therapeutic Targets

Small-molecule Modulators

Page 8: Interrogating High-Grade Glioma Regulatory Networks to Identify :

MARINa: Master Regulator Inference algorithm

Over-expressed in TumorUnder-expressed in Tumor

A Master Regulator is a gene that is necessary and/or sufficient to induce a specific cellular transformation or differentiation event.

Phenotype 2 (Neoplastic)Phenotype 1 (Normal)

MRx ?

1. Carro, M. et al. (2010). "The transcriptional network for mesenchymal transformation of brain tumours." Nature 463(7279): 318-3252. Lefebvre C. et al. (2009). "A Human B Cell Interactome Identifies MYB and FOXM1 as Regulators of Germinal Centers." Mol Syst Biol, in press3. Lim, W. et al. (2009). "Master Regulators Used As Breast Cancer Metastasis Classifier." Pac Symp Biocomp 14: 492-503

TF2: Repressed: 1/5 Activated: 1/6 Coverage: 2/18 (11%)

TF1: Repressed: 5/7 Activated: 5/7 Coverage: 10/18 (55%)

Tumor Signature

Page 9: Interrogating High-Grade Glioma Regulatory Networks to Identify :

Unsupervised clustering of 176 high grade tumors by expression of 108 genes that are positively or negatively associated with survival reveals 3 tumors classes (Proneural (PN), Mesenchymal (Mes) and Proliferative (Prolif).

Phillips et al., Cancer Cell, 2006

Malignant gliomas belonging to the mesenchymal sub-class express genes linked to the most aggressive properties of glioblastoma (migration, invasion and angiogenesis).

Mesenchymal Subtype of High-Grade Gliomas

MGES

PNGES

PROGES

Page 10: Interrogating High-Grade Glioma Regulatory Networks to Identify :

Mes signature genesActivatorRepressor

Identification of a mesenchymal regulatory module

Biochemical Validation of ARACNe Inferred Targets of Stat3, C/EBPb, FosL2, and bHLH-B2

Master Regulators control >75% of the Mesenchymal Signature of High-Grade Glioma

Hierarchical Regulatory Module

Page 11: Interrogating High-Grade Glioma Regulatory Networks to Identify :

In Vitro Validation

02468

101214161820

Rela

tive m

RN

A le

vel

VectorStat3CC/EBPβStat3C+C/EBPβ

a cb

f

0200400600800

10001200

VectorStat3C+C/EBPβ

mR

NA

rela

tive le

vel

Gfap

***

**

- +Mitogens

e

Doublecortin

0

100

200

300

400VectorStat3C+C/EBPβ

***

*mR

NA

rela

tive le

vel

- +Mitogens

d

mR

NA

rela

tive le

vel

βIIITubulin

0

10

20

30

40

50VectorStat3C+C/EBPβ

***

***

- +Mitogens

0

20

40

60

80

100

Ctg

f + cells(

%o

f G

FP+ c

ells)

Vector

Stat3C+C/EBPβ

Vector Stat3C+C/EBPGFP GFP

CTGF CTGF

GFP/CTGF GFP/CTGF

25mm**

Figure 8

00.20.40.60.8

11.21.41.6

Rela

tive m

RN

A le

vel

shCtrshStat3shC/EBPβshStat3+shC/EBPβ

h

00.20.40.60.8

11.21.41.61.8

2

Rela

tive m

RN

A le

vel

shCtrshStat3shC/EBPβshStat3+shC/EBPβ

i

00.20.40.60.8

11.21.4

Rela

tive m

RN

A le

vel

shCtrshStat3shC/EBPβshStat3+shC/EBPβ

j

0

10

20

30

40

50

60

Co

l5A

1+cells (%

)

shCtrshStat3shC/EBPβshStat3+shC/EBPβ

b c d

f g

05

101520253035404550

Co

l5A

1+ cells (%

)

shCtrshStat3shC/EBPβshStat3+shC/EBPβ

****

010203040506070

Fib

ron

ecti

n+cells (%

)

shCtrshStat3shC/EBPβshStat3+shC/EBPβ

**

***

***

***

**

0

2

4

6

8

10

12

YK

L40

+cells (%

)

shCtrshStat3shCebpbshStat3+shCebpb

****

0

5

10

15

20

YK

L40+ c

ells (%

)

shCtrshStat3shC/EBPβshStat3+shC/EBPβ

**

*

*

a

e

shCtr shStat3 shC/EBPβ shStat3 + shC/EBPβFibronectin/DAPIFibronectin/DAPIFibronectin/DAPI Fibronectin/DAPI

Cola51/DAPICola51/DAPICola51/DAPI Cola51/DAPI

YKL40/DAPIYKL40/DAPIYKL40/DAPI YKL40/DAPI

Cola51/DAPICola51/DAPICola51/DAPI Cola51/DAPI

YKL40/DAPIYKL40/DAPIYKL40/DAPI YKL40/DAPI

shCtr shStat3 shC/EBPβ shStat3 + shC/EBPβ

25mm

25mm

25mm

100mm

200mm

Page 12: Interrogating High-Grade Glioma Regulatory Networks to Identify :

100

Cu

mu

lati

ve S

urv

ival

Days post-injection

80

60

40

20

0120806040 100

**

Control VectorStat3-C/EBPb-Stat3-/C/EBPb-

Human Survival Data

Mouse Survival Data

Mouse immunohistochemistry

In Vivo Validation

Carro, M. et al. (2010). Nature 463(7279): 318-325

Page 13: Interrogating High-Grade Glioma Regulatory Networks to Identify :

Distinct Programs with significant overlap across distinct datasets

Phillips (2)

Sun (3)

TCGA (1)

22

10

5

6

8

4

101.9x10-7

E 1 2 3

TCGA dataset on different networksTF MES+ MES- PN+ PN- Prolif+ Prolif-

FOSL2 45 0 0 3 0 2RUNX1 37 0 0 5 0 0ZNF238 0 37 10 0 1 0CEBPD 27 0 0 6 0 1STAT3 26 0 0 3 0 1

BHLHB2 25 0 0 5 1 0MYCN 0 25 4 0 0 0FOSL1 23 0 0 2 0 0ELF4 21 0 1 7 3 0

LZTS1 20 0 0 3 0 1CEBPB 20 0 0 3 0 0

THRA 0 9 55 2 1 4OLIG2 0 12 46 1 0 8HLF 0 7 43 1 0 16

ZNF291 1 2 32 1 1 11SATB1 0 17 27 0 0 1ZNF217 12 0 0 27 2 0MSRB2 0 5 27 0 0 3

PKNOX2 0 1 24 0 0 7CUTL2 0 0 24 0 0 0

MLL 1 4 22 1 0 6SNAPC1 0 0 0 21 7 0MYT1L 0 0 20 0 0 0

HMGB2 0 0 0 7 57 0CREBL2 0 0 7 0 0 21PHTF2 0 0 0 6 26 0TCF3 2 0 1 5 21 0

PTTG1 3 1 0 5 37 0E2F6 0 0 0 5 24 0E2F8 0 0 0 4 42 0

SMAD4 0 0 0 3 23 0ZNF207 0 0 0 3 22 1KNTC1 0 0 0 1 35 0FOXM1 0 0 0 0 24 0E2F1 0 0 0 0 23 0

Me

se

nc

hy

ma

l Sig

na

ture

Pro

ne

ura

l Sig

na

ture

Pro

life

rati

ve

Sig

na

ture

1Cancer Genome Atlas Research Network, Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature. 2008 Oct 23;455(7216):1061-8

2 Phillips, H.S., et al., Molecular subclasses of high-grade glioma predict prognosis, delineate a pattern of disease progression, and resemble stages in neurogenesis. Cancer Cell, 2006. 9(3): p. 157-73.

3 Sun, L., et al., Neuronal and glioma-derived stem cell factor induces angiogenesis within the brain. Cancer Cell, 2006. 9(4): p. 287-300`

Page 14: Interrogating High-Grade Glioma Regulatory Networks to Identify :

The Bottleneck HypothesisG1 G2 G3 G4

G5 G6 G7 G8

G10 G11 G12

Patient X

MolecularPhenotype

E.g. GBM subtypes

G9

X

Y Z

W

V

MasterRegulatorModule(s)

DiseaseStratificationBiomarkers

Therapeutic Targets

= EGFR= PDGFRA= p16= p53= PTEN= MDM2= MDM4= MYC= NF1= ERBB2= RB1= CDK4

G1

G2

G3

G4

G5

G6

G7

G8

G9

G10

G11

G12

Glioblastoma: Carro MS et al. The transcriptional

network for mesenchymal transformation of brain tumours. Nature. 2010 Jan 21;463(7279):318-25.

Master Regulators: C/EBP + Stat3

Diffuse Large B Cell Lymphoma: Compagno M et al. Mutations of

multiple genes cause deregulation of NF-kappaB in diffuse large B-cell lymphoma. Nature. 2009 Jun 4;459(7247):717-21

Master Regulator: Nf-kB pathway

GC-Resistance in T-ALL: Real PJ et al. Gamma-secretase

inhibitors reverse glucocorticoid resistance in T cell acute lymphoblastic leukemia. Nat Med. 2009 Jan;15(1):50-8.

Master Regulator: NOTCH1 pathway

Page 15: Interrogating High-Grade Glioma Regulatory Networks to Identify :

Inhibitors of C/EBP Activity

MGES

STAT3

C/EBP

MnM1

M2

MnM1

M2

(c) MINDy Analysis

Comp1

Compn

Comp1

Compn

(a) Protein Binding Assays

(b) High Throughput Screening

Gene ID Modul ator11130    ZWINT3148     HMGB22146     EZH25984     RFC4890      CCNA26790     AURKA1894     ECT27298     TYMS780      DDR151512    GTSE129899    GPSM229097    CNIH45902     RANBP1998      CDC4210549    PRDX423228    PLCL24862     NPAS29308     CD8351285    RASL121389     CREBL2

Collaboration with: S. Schreiber (a) B. Stockwell (b) A. Iavarone and A. Lasorella (a, b, c)

Page 16: Interrogating High-Grade Glioma Regulatory Networks to Identify :

MINDy Modulators of miRNA activity

maturemiRNA

miR

target

Mod

Sumazin et al. Cell, 2011 Oct 14;147(2):370-81.

Page 17: Interrogating High-Grade Glioma Regulatory Networks to Identify :

Analysis of TCGA data for GBM and Ovarian Cancer including matched gene and miRNA expression profiles

for 422 and 587 samples

Modulation of miRNA activity on targets 7,000 Sponge modulators, participating in 248,000 miR-

mediated mRNA-mRNA interactions 148 Non-sponge modulators affecting more than 100

miRs (using only experimentally validated miRs targets) 17/430 are RNA-binding proteins or a component of the

spliceosome

Novel miR-program mediated regulatory network

Page 18: Interrogating High-Grade Glioma Regulatory Networks to Identify :

13 miR-mediated regulators of PTENG1

G2

G3

G4

G5

G6G8

G9

G10

G11

G13

G14 – G 563

PTEN

G7

564 node, 111 core sub-graph

p < 5 x 10-23

p < 2 x 10-10

Page 19: Interrogating High-Grade Glioma Regulatory Networks to Identify :

13 miR-mediated regulators of PTEN

Page 20: Interrogating High-Grade Glioma Regulatory Networks to Identify :

Silencing PTEN mPR regulators affects SNB19 cell growth rate

Pro

life

rati

on

fo

ld c

ha

ng

e

Days

PTEN over expression and silencing effects on SNB19 cell growth rate

Pro

life

rati

on

fo

ld c

ha

ng

e

A B

Days

Days Days

Silencing PTEN mPR regulators affects SF188 cell growth rate

PTEN over expression and silencing effects on SF188 cell growth rate

C D

Pro

life

rati

on

fo

ld c

ha

ng

e

Pro

life

rati

on

fo

ld c

ha

ng

e

Page 21: Interrogating High-Grade Glioma Regulatory Networks to Identify :

Targeted Drug Development

Hit compound

Compound Mechanism

of Action

Biomarkers:Response/Efficacy

Molecular Target(s)Clinical Trials

CTD2 Network

Broad Inst.S.Schreiber

CSHLS.Power

ColumbiaA.Califano

Dana FarberB.Hahn

UT South-westernM.Reich

Page 22: Interrogating High-Grade Glioma Regulatory Networks to Identify :

Current emphasis on genes harboring genetic and epigenetic alterations may not be sufficient We should also focus on Master Regulator and Master Integrator genes

Current approach to biomarker discovery should be re-evaluated in a molecular interaction network context. It is not the genes/proteins that change the most but rather those that change

most consistently. (mRNA is not informative)

From GWAS (Genome-Wide Association Studies) to NBAS (Network-Based Association Studies) Califano A, Butte A, Friend S, Ideker T, and Schadt EE, Integrative Network-based

Association Studies: Leveraging cell regulatory models in the post-GWAS era, Nat. Genetics, in press. Accessible in Nature Preceedings: http://precedings.nature.com/documents/5732/version/1

One disease – One target – One drug Multi-target combinations Optimal combination of drugs selected from a repertoire of safe, target-specific

compounds using predictive tools. Identification of genetic dependencies (addictions) from Ex Vivo Models Identification of candidate therapeutic agents from In Vitro mechanistic models.

Conclusions and Reflections

Page 23: Interrogating High-Grade Glioma Regulatory Networks to Identify :

Acknowledgements

Funding Sources: NCI, NIAID, NIH Roadmap

Califano Lab Experimental Gabrielle Rieckhof, Ph.D. (Exec

Director) Mariano Alvarez, Ph.D. Brygida Bisikirska, Ph.D. Xuerui Yang, Ph.D. Yao Shen, Ph.D. Presha Rajbhandari, M.A. (Sr. Res. Worker) Jorida Coku, M.A. (Staff Associate) Hesed Kim, (Staff Associate) Sergey Pampou, Ph.D.

A. Iavarone & A. Lasorella (CU) Maria Stella Carro

K. Aldape (MD Anderson)

R. Dalla Favera (CUMC) Katia Basso Ulf Klein

R. Chaganti (MSKCC)

M. White & J. Minna (UTSW)

J. Silva (CU)

C. Abate-Shen & M. Shen (CU)

D. Felsher (Stanford)

Califano Lab (Computational) Mukesh Bansal, Ph.D. Archana Iyer, Ph.D. Celine Lefebvre, Ph.D. Yishai Shimoni, Ph.D. Maria Rodriguez-Martinez, Ph.D. Antonina Mitrofanova, Ph.D. Jose’ Morales, Ph.D. Paola Nicoletti, Ph.D. Pavel Sumazin, Ph.D. Gonzalo Lopez, Ph.D. James Chen, (GRA) Hua-Sheng Chu (GRA) Wei-Jen Chung (GRA) In Sock Jang (GRA) William Shin (GRA) Jiyang Yu (GRA) Wei-Jen Chung (GRA) Alex Lachman (GRA) Pradeep Bandaru M.A. Manjunath Kustagi (Programmer)

Software Development Aris Floratos, Ph.D. (Exec. Director) Ken Smith, Ph.D. Min Yu, (Programmer)