intermediate microeconomics (consumer model) · pdf file! 1—3! 1...

49
1—1 Intermediate Microeconomics 1 Economic Circumstances ..................................................................................................1—3 1.1 Notes from lecture – 30 th July.................................................................................1—3 1.1.1 What are economic circumstances? ............................................................1—3 1.1.2 How Economic Circumstances affect Choice (1) – Exogenous Income 1—3 1.1.3 How Economic Circumstances affect Choice (2) – Endogenous Income ....................................................................................................................................1—9 2 Indifference Curves .......................................................................................................... 2—14 2.1 Notes from lecture – 6 th August .......................................................................... 2—14 2.1.1 Notation................................................................................................................ 2—14 2.1.2 Assumptions in Tastes ................................................................................... 2—15 2.1.3 Mapping Tastes ................................................................................................. 2—16 2.1.4 Utility functions – creating indifference curves mathematically 2—20 3 “Doing the Best We Can” – budgets and preferences ........................................ 3—22 3.1 Preferences Cont’d ................................................................................................... 3—22 3.1.1 Essential Goods ................................................................................................. 3—24 3.2 Choice............................................................................................................................. 3—24 3.2.1 CobbDouglas functions ................................................................................ 3—25 3.2.2 Special Cases: Indifference Curves (Perfect Complements, Substitutes and Quasilinear) .............................................................................................................. 3—26 3.2.3 Special Cases: kinked lines ........................................................................... 3—26 4 Income and Substitution Effects ................................................................................. 4—27 4.1 Extending last week’s theory............................................................................... 4—27 4.1.1 CobbDouglas Preferences ........................................................................... 4—27 4.1.2 Quasilinear preferences ................................................................................ 4—28 4.2 Creating the model – Changing Income .......................................................... 4—29 4.2.1 Changes in Consumption associated with a change in Income (Normal, neutral and inferior goods) ..................................................................... 4—29 4.2.2 Relative consumption – luxuries and necessities .............................. 4—32 4.3 Creating the model – Changing prices ............................................................. 4—34 4.3.1 Example: A carbon tax (let’s talk it through) ....................................... 4—34 4.3.2 Example – A Carbon Tax (in pictures!) ................................................... 4—35 4.3.3 Separating the Income and Substitution Effects................................. 4—37 4.3.4 The substitution effect in more detail ..................................................... 4—39 4.4 The Wealth effect ...................................................................................................... 4—41 4.4.1 What’s the deal with Income? ..................................................................... 4—41

Upload: ledien

Post on 22-Feb-2018

217 views

Category:

Documents


1 download

TRANSCRIPT

  1—1  

Intermediate  Microeconomics  1   Economic  Circumstances  ..................................................................................................  1—3  1.1   Notes  from  lecture  –  30th  July  .................................................................................  1—3  1.1.1   What  are  economic  circumstances?  ............................................................  1—3  1.1.2   How  Economic  Circumstances  affect  Choice  (1)  –  Exogenous  Income   1—3  1.1.3   How  Economic  Circumstances  affect  Choice  (2)  –  Endogenous  Income  ....................................................................................................................................  1—9  

2   Indifference  Curves  ..........................................................................................................  2—14  2.1   Notes  from  lecture  –  6th  August  ..........................................................................  2—14  2.1.1   Notation  ................................................................................................................  2—14  2.1.2   Assumptions  in  Tastes  ...................................................................................  2—15  2.1.3   Mapping  Tastes  .................................................................................................  2—16  2.1.4   Utility  functions  –  creating  indifference  curves  mathematically  2—20  

3   “Doing  the  Best  We  Can”  –  budgets  and  preferences  ........................................  3—22  3.1   Preferences  Cont’d  ...................................................................................................  3—22  3.1.1   Essential  Goods  .................................................................................................  3—24  

3.2   Choice  .............................................................................................................................  3—24  3.2.1   Cobb-­‐Douglas  functions  ................................................................................  3—25  3.2.2   Special  Cases:  Indifference  Curves  (Perfect  Complements,  Substitutes  and  Quasilinear)  ..............................................................................................................  3—26  3.2.3   Special  Cases:  kinked  lines  ...........................................................................  3—26  

4   Income  and  Substitution  Effects  .................................................................................  4—27  4.1   Extending  last  week’s  theory  ...............................................................................  4—27  4.1.1   Cobb-­‐Douglas  Preferences  ...........................................................................  4—27  4.1.2   Quasilinear  preferences  ................................................................................  4—28  

4.2   Creating  the  model  –  Changing  Income  ..........................................................  4—29  4.2.1   Changes  in  Consumption  associated  with  a  change  in  Income  (Normal,  neutral  and  inferior  goods)  .....................................................................  4—29  4.2.2   Relative  consumption  –  luxuries  and  necessities  ..............................  4—32  

4.3   Creating  the  model  –  Changing  prices  .............................................................  4—34  4.3.1   Example:  A  carbon  tax  (let’s  talk  it  through)  .......................................  4—34  4.3.2   Example  –  A  Carbon  Tax  (in  pictures!)  ...................................................  4—35  4.3.3   Separating  the  Income  and  Substitution  Effects  .................................  4—37  4.3.4   The  substitution  effect  in  more  detail  .....................................................  4—39  

4.4   The  Wealth  effect  ......................................................................................................  4—41  4.4.1   What’s  the  deal  with  Income?  .....................................................................  4—41  

   

  1—2  

5   Demand  for  Goods,  Supply  of  Labor  and  Capital  .................................................  5—42  5.1   Last  week  ......................................................................................................................  5—42  5.1.1   How?  ......................................................................................................................  5—42  5.1.2   Goal  for  this  week:  ...........................................................................................  5—42  

5.2   Demand  and  Supply  Curves  .................................................................................  5—43  5.2.1   Demand  for  Goods  ...........................................................................................  5—43  5.2.2   Supply  of  Labor  .................................................................................................  5—46  5.2.3   Supply  of  Capital  ...............................................................................................  5—48  

5.3   Consumer  Welfare  ....................................................................................................  5—49  5.3.1   Method  1:  step  by  step  ...................................................................................  5—49  5.3.2   Method  2:  MWTP  and  the  Compensated  Demand  Function  .........  5—49  5.3.3   My  idea:  ................................................................................................................  5—49  

   

  1—3  

1 Economic  Circumstances  Chapters  2/3  of  the  Textbook  

1.1 Notes from lecture – 30th July

1.1.1 What  are  economic  circumstances?  • The  reasons  for  economic  decision-­‐making  outside  of  consumer  

preferences    • For  Example  

o Prices  o Income  o Endowments  (goods/assets,  time)  

• For  the  first  part  of  the  class,  we  will  discuss  choice  with  an  endogenous  income,  and  then  we  will  move  to  an  exogenous  model.  

1.1.2 How  Economic  Circumstances  affect  Choice  (1)  –  Exogenous  Income  Here,  income  is  given  externally,  and  there  is  no  way  for  the  participant  to  modify  it.  

1.1.2.1 Example  1:  Introducing  the  model,  and  changing  Income  • Let  us  give  Patrick  $2,  and  Johanan  $4  • The  price  of  goods  are:  

o Chocolate  -­‐  $2  o Cereal  Bar  -­‐  $1  

• Original  Choices  o Patrick  chose:  2  Cereal  bars  o Johanan  chose:  2  Cereal  bars  and  1  chocolate  

• Let  us  plot  their  choices  on  a  (Cereal,  Chocolate)  axis:  

       

  1—4  

• But  this  is  just  one  choice  of  many:  what  are  the  extreme  choices?  o Patrick  

§ (2,0)  or  (0,1)  o Johanan  

§ (4,0)  or  (0,2)  o Let  us  graph  these  

 • This  assumes  that  they  spend  all  of  their  money  –  this  is  called  the  Budget  

Line:  the  line  representing  the  maximum  they  could  possibly  purchase  • But,  it  is  possible  that  Johanan  might  purchase  (2,0)  instead  of  (2,1):  he  

can  still  afford  it.    Thus,  to  represent  all  possible  choices,  we  need  a  region  –  let  us  shade  the  appropriate  region  

 o The  blue  region  represents  Johanan’s  possible  choice  set  –  limited  

by  his  income,  and  the  purple  region  represents  Patrick’s  possible  choice  set  

   

  1—5  

• Now,  let  us  try  model  the  choice  set  algebraically:  first,  let  me  introduce  the  notation  

o C(P1,P2, I )  -­‐  The  Choice  Set  in  this  case  is  dependent  on  the  Prices  and  the  Income:  these  are  the  “Economic  Circumstances”  

o C(P1,P2, I ) = (x1, x2 )∈ R+2{ }  

§ The  Choice  Set  may  be  valid  for  any  value  of  both  goods  (x1, x2 )  

§ As  long  as  they  are  both  positive  rational  numbers  ∈ R +2  

o However,  this  isn’t  correct  yet:  yes,  both  goods  choices  have  to  be  positive  and  rational,  but  that  isn’t  enough  –  we  have  to  include  a  separate  condition  that  limits  the  choices  to  the  budget  

o C(P1,P2, I ) = (x1, x2 )∈ R+2 | P1x1 +P2x2 ≤ I{ }  This  is  read  as:  

§ The  choice  set  is  dependent  on  the  prices  in  the  market,  and  the  income  of  the  choice-­‐maker  

§ The  possible  choices  for  good  1  and  2  must  be  positive  rational  numbers  

§ However,  they  must  also  satisfy  the  following  condition:  P1x1 +P2x2 ≤ I ,  that  is:  

• The  price  of  the  first  good  multiplied  by  the  respective  quantity,  added  to  the  price  of  the  second  good  multiplied  by  the  respective  quantity  must  be  less  than  the  budget  (I)  

• Or:  you  can’t  spend  more  in  total  than  you  have.  • To  model  the  budget  line,  we  do  the  same,  except  the  inequality  

P1x1 +P2x2 ≤ I (representing  the  fact  that  you  must  spend  less  than  what  you  have)  becomes  an  equation  P1x1 +P2x2 = I (representing  that  you  must  spend  all  that  you  have).  In  its  full  form,  it  is  as  follows:  

o B(P1,P2, I ) = (x1, x2 )∈ R+2 | P1x1 +P2x2 = I{ }  

§ As  above  § BUT  price  of  the  first  good  multiplied  by  the  respective  

quantity,  added  to  the  price  of  the  second  good  multiplied  by  the  respective  quantity  must  be  equal  to  the  budget  (I)  

• Or:  you  must  spend  every  cent  you  have.      

  1—6  

• This  is  the  formal  way  of  looking  at  it,  but,  for  simplicity,  we  just  write  it  as  an  equation  of  the  budget  line:  

o I = P1x1 +P2x2  • But,  it  since   I,P1,P2 are  given,  it  is  best  to  make  it  an  equation  of   x2 in  

terms  of   x1  (so  that  it  is  in  the  easily  workable  form  of   y =mx + b )  

o I = P1x1 +P2x2−P2x2 = P1x1 − I

x2 =IP2−P1P2x1

 

o Thus,  we  can  see  that  the  gradient  of  the  line  is  dependent  on  the  

prices  in  the  market   P1P2  (representing  the  opportunity  cost  of  

chosing  one  good  over  the  other),  and  the  intercept  of  the  line  is  

dependent  on  both  price  and  income   IP2  

As  an  example,  let  us  model  the  line  discussed  above,  for  Patrick  and  Johanan  • Patrick’s  Choice  Set  

o CPatrick (P1,P2, I ) = (x1, x2 )∈ R+2 | P1x1 +P2x2 ≤ I{ }  

o CPatrick (1, 2, 2) = (x1, x2 )∈ R+2 | (1)x1 + (2)x2 ≤ 2{ }  

• Patrick’s  Budget  Line  o BPatrick (1, 2, 2) = (x1, x2 )∈ R+

2 | (1)x1 + (2)x2 = 2{ }  o BPatrick ⇒ (1)x1 + (2)x2 = 2  

o x2 =1−12x1  

• Johanan’s  Choice  Set  o CJohanan (1, 2, 2) = (x1, x2 )∈ R+

2 | (1)x1 + (2)x2 ≤ 4{ }  • Johanan’s  Budget  Line  

o BJohanan ⇒ x2 =IP2−P1P2x1  

o x2 = 2−12x1  

• As  expected,  the  gradient  didn’t  change,  since  there  is  no  change  in  prices  in  the  market:  all  that  changed  between  Johanan  and  Patrick  is  the  Income,  and,  therefore,  the  intercept  of  the  graph  –  in  line  with  what  we  showed  earlier,  graphically.  

• In  an  exogenous  income  model,  a  change  in  income  alone  will  shift  the  budget  line,  parallel  to  the  original.  

   

  1—7  

1.1.2.2 Example  2:  Changing  prices  • Let  us  compare  the  above  with  JJ,  who  has  received  $4,  but  has  different  

prices  assigned  to  her  P1 = 2;P2 = 2  • First,  let  us  compare  the  budget  lines  of  Johanan  and  JJ:  

o BJJ ⇒ x2 =

IP2−P1P2x1

x2 =42−22x1

 

o BJJ ⇒ x2 = 2−1x1  

o BJohanan ⇒ x2 = 2−12x1  

• Johanan  and  JJ  have  the  same   x2 intercept,  but  Johanan  has  a  flatter  gradient  –  what  does  this  mean  for  the  available  choice  set?  To  see,  let  us  graph  this  using  JJ’s  two  extremes  (0,2)  and  (2,0).  

   

• As  we  can  see,  Johanan  and  JJ  can  afford  the  same  amount  of  chocolate,  but,  due  to  the  price  difference,  and  thus,  the  change  in  gradient,  Johanan  can  afford  more  cereal  in  the  alternative  (there  is  a  smaller  opportunity  cost  for  choosing  Cereal)  –  thus,  he  has  the  more  diverse  choice  set.  

• In  an  exogenous  income  model,  a  change  in  prices  changes  the  gradient  of  the  budget  line  (and,  perhaps,  the  intercept  too).  

   

  1—8  

1.1.2.3 More  than  two  goods  • Modeling  a  choice  between  two  goods  is  convenient,  since  it  is  easy  to  

graph  (you  only  need  two  dimensions).    • However,  it  is  possible  to  algebraically  model  a  choice  between  any  

number  of  goods:  o C(P1,P2,....,Pn, I ) = (x1, x2,..., xn )∈ R+

2 | P1x1 +P2x2 +...+Pnxn ≤ I{ }  • For  the  sake  of  ease,  we  usually  synthesise  all  other  choices  (against  the  

good  we  are  focusing  on)  into  a  composite  good  “C”.    Thus,  the  above  becomes:  

o C(P1,PC, I ) = (x1,C)∈ R+2 | P1x1 +PCC ≤ I{ }  

• This  allows  us  to  use  the  same  graphical  model,  in  two  dimensions,  which  we  are  used  to.  

     

  1—9  

1.1.3 How  Economic  Circumstances  affect  Choice  (2)  –  Endogenous  Income  Here,  the  participant  may  modify  his  income  by  (e.g.)  selling  goods  to  buy  others;  trading  off  leisure  time  for  consumption;  saving  today  to  spend  more  tomorrow;  etc.  

1.1.3.1 Example  1:  Endogenous  Income  via  a  Goods  Endowment  Say  that  instead  of  money,  Henry  was  given  (2,2)  at  prices  P1 = 2;P2 =1 (he  receives  two  chocolates  worth  $2  each,  and  two  cereal  bars  worth  $1  each).  

• Let  us  start  by  plotting  the  endowment    

 • And  the  extremes  of  the  budget  line  

o If  he  sells  both  chocolates,  he  would  receive  $4,  allowing  him  to  buy  4  additional  cereal  bars,  totaling  6  cereal  bars  and  0  chocolates  

o If  he  sells  both  cereal  bars,  he  would  receive  $2,  allowing  him  to  buy  1  additional  chocolate,  totaling  0  cereals  and  3  chocolates  

 • This  is  just  like  what  we  are  used  to:  and,  like  we  are  used  to,  a  change  in  

the  endowment  will  shift  the  graph  without  pivoting  it      

  1—10  

• Let  us  look  at  what  happens  when  we  change  the  price  levels  in  the  economy  –  let  us  start  by  looking  at  it  intuitively  

o Say  that  the  prices  changed  to  P1 = 2;P2 = 2  o He  was  endowed  with  2  cereal  bars  and  2  chocolate,  so  that  point  

would  remain  unchanged  o However,  the  extreme  points  change:  if  he  sold  both  cereal  bars,  he  

would  be  able  to  buy  2  additional  chocolate  bars  (0,4);  if  he  sold  both  chocolates,  he  would  be  able  to  buy  2  additional  cereal  bars  (4,0)  

   

Thus,  a  change  in  prices  in  an  exogenous  (endowment)  situation  will  cause  a  pivot  of  the  graph  around  the  endowment  point  (you  will  always  be  able  to  afford  the  endowment,  since  it  is  yours  already).    Now,  let  us  model  this  algebraically:  

• Before,  our  budget  line  was  as  follows    o B(P1,P2, I ) = (x1, x2 )∈ R+

2 | P1x1 +P2x2 = I{ }  • But  that  was  when  our  income  was  exogenous:  how  are  we  to  model  the  

sale  of  goods  as  a  generator  of  income?  By  replacing  the  Income  term  with  a  potential  for  sale  

o Income  now  becomes  the  total  price  for  the  sale  of  the  endowment  o B(P1,P2,e1,e2 ) = (x1, x2 )∈ R+

2 | P1x1 +P2x2 = e1P1 + e2P2{ }  o Where  the  “e”  terms  are  the  endowment  

Now,  let  us  put  this  in  the  form  y=mx+b  • B⇒ P1x1 +P2x2 = P1e1 +P2e2  

• x2 =P1e1 +P2e2

P2−P1P2x1  

• There  is  no  longer  income,  there  is  wealth  (the  total  value  of  your  endowment,  sold):    

Now,  a  change  in  Prices  affects  both  the  intercept  and  the  gradient      

  1—11  

1.1.3.2 Example  2:  Endogenous  Income  –  workers  work  and  change  of  wages  Work  is  a  tradeoff  between  leisure  time  (l)  and  consumption  (C).  

• L  =  time  endowment  (total  hours  the  worker  is  able  to  work  in  a  week)  • W  =  wage  rate  (the  gain  from  work,  or  the  economic  cost  of  leisure)  • C  =  Consumption  (an  aggregate  of  consumption  of  a  composite  good)  • l  =  hours  of  leisure  

 The  following  graph  shows  the  choice  for  a  person  with  6  possible  work  hours  (or,  an  endowment  of  (6,0)).    

 • As  we  can  see,  the  more  leisure  time,  the  less  total  consumption,  as  could  

be  guessed.  • Further,  since  the  endowment  point  is  at  the  x  intercept,  (the  “leisure”  

intercept),  a  change  in  wages  will  not  increase  the  leisure  hours  available,  merely  modify  the  gradient  of  the  line  representing  an  increased  or  decreased  opportunity  cost  of  leisure.  

Let  us  now  fit  this  into  our  algebraic  model:  • C(W,L) = (l,C)∈ R+

2 |Wl +C ≤ LW{ }  o Or,  the  choice  set  is  dependant  on  the  amount  of  hours  (L)  

available,  and  the  wage  level  o Further,  the  choice  between  leisure  and  consumption  must  satisfy  

the  following:  § The  opportunity  cost  of  leisure  (Wl)  § Added  to  the  level  of  consumption  (C)  § Must  be  less  than  the  total  possible  wages  available  (LW)  

   

  1—12  

Let  us  now  try  to  model  this  same  equation,  but  on  a  different  set  of  axis  (Hours  Worked,  Consumption).    Whilst  all  the  above  graphs  plotted  one  good  against  another,  here,  we  are  plotting  a  good  against  a  “bad”.    

 • Here,  as  hours  work  increase,  consumption  can  increase,  thus,  there  is  a  

positive  gradient  Let  us  try  to  put  this  algebraically:  

• h  –  Hours  worked  • H  –  Total  possible  hours  • W  –  wage  rate  • C  –  Consumption  

C(W,H ) = (h,C)∈ R+2 |C ≤ hW | h ≤ H{ }  

• Or,  the  formula  to  be  satisfied  is  Consumption  has  to  be  equal  to  or  less  than  wages  earned  (hW).  

• And,  you  must  work  less  than  the  total  hours  available        

0 1 2 3 4 5 6 7

1

2

3

4

5

Hours Worked

Con

sum

ptio

n

E(5,6)

  1—13  

1.1.3.3 Example  4:  Endogenous  Income  –  Borrowing  v  saving  Here,  we  have  an  inter-­‐temporal  model,  where  we  plot  consumption  in  Period  1  (C1 )  against  consumption  in  Period  2  (C2 ),  giving  us  the  plane  (C1,C2 ).  

• The  terms  for  this  example  are  as  follows  o C1 -­‐  consumption  in  the  first  period  o C2 -­‐  consumption  in  the  second  period  o r  –  interest  rate  (to  be  earned  by  saving,  to  be  lost  by  borrowing)  o Y1 -­‐  income  in  period  1  o Y2  -­‐  income  in  period  2  

• Note,  the  maximum  amount  of  money  that  can  be  borrowed  in  the  first  period  is  the  amount  that  can  be  paid  back  in  the  second  period  (i.e.  the  second  amount  discounted  to  today)  à  Y2 •(1− r) ,  allowing  a  maximal  expenditure  in  the  first  period  of  Y1 +Y2 (1− r)  

• The  gains  from  saving  today’s  income  for  expenditure  tomorrow  are  Y1 •(1+ r) ,  allowing  for  a  maximal  expenditure  in  period  2  (assume  no  expenditure  in  period  1)  of  Y2 +Y1(1+ r)  

 Graphing  this,  we  get:  

 And,  plugging  this  into  our  algebraic  form,  we  get:  

• C(r,Y1,Y2 ) = (C1,C2 )∈ R+2 |Y1(1+ r)+Y2 ≤C1(1+ r)+C2{ }  

 Remember:  the  point  of  endowment  (the  pivot  point  for  a  change  in  interest  rates),  is  full  consumption  of  Y1  in  P1  (i.e.  C1 =Y1 )  and  full  consumption  of  Y2  in  P2  (C2 =Y2 ),  which  is  at  the  center  of  the  graph  –  any  pivot  happens  around  that  point.  

0 1 2 3 4 5

1

2

3

4

5

Consumption in Period 1

Con

sum

pti

on in

Per

iod 2

E(0,Y1(1+r)+Y2)

E(Y1+Y2(1-r),0)

More saving

  2—14  

2 Indifference  Curves  Chapters  4/5  of  the  Textbook  

2.1 Notes from lecture – 6th August Last  week  we  discussed  what  certain  economic  circumstances  allowed  a  person  to  afford:  either  via  exogenous  income  or  endowment,  via  endogenous  returns  to  labor  or  via  spending  or  saving.    What  we  mapped  were  possible  consumption  points.    This  week,  we  look  at  the  other  side  of  the  equation,  we  map  what  the  consumer  would  most  like  to  consume,  as  apposed  to  what  is  possible.    It  is  important  to  note  that  different  persons  have  different  tastes/preferences,  but  we  are  trying  to  map  a  generality.    We  will  use  the  terminology  “indifference”  to  map  all  points  of  consumption  where  the  consumer  is  equally  satisfied.  

2.1.1 Notation  • A(x1

A, x2A )  -­‐  Bundle  “A”  which  consists  of   x1

Aunits  of  consumption  of  good  “1”  and   x2

A  of  good  2  • B(x1

B, x2B )  -­‐  Bundle  “B”  

• Squiggly  ≥ -­‐  at  least  as  good  as  • -­‐  Strictly  preferred  

o ≠> -­‐  Strictly  better  • ~  -­‐  As  good  as  –  “indifferent”  

   

  2—15  

2.1.2 Assumptions  in  Tastes  1. Complete  tastes  

a. The  decider  can  always  make  a  choice  –  they  never  “can’t  choose”  between  options  

2. Transitive  Tastes  a. The  decider’s  tastes  are  always  syllogistically  sound  b. i.e.   a < b < c not   a < b;b < c;c < a  

3. Monotonicity  a. More  is  better,  or  at  least  not  worse  b. i.e.  

i. Given  two  bundles,   A(x1A, x2

A ) and  B(x1B, x2

B )  ii. Where   x1

A > x1B and   x2

A > x2B  

iii. Then   A(x1A, x2

A ) B(x1B, x2

B )  c. This  is  called  strict  monotonicity  d. Where  the   is  replaced  with  a   squiggly ≥ ,  there  is  simple  

monotonicity  4. Convexity  

a. Averages  are  better  than  extremes,  or  at  least  not  worse  b. i.e.  

i. Assuming   A ~ B and,  given  that  0 <α <1(alpha  is  just  a  term  used  to  average  A  and  B)  

ii. αA+ (1−α)B A and  αA+ (1−α)B B  c. This  means  that,  drawing  a  line  between  any  two  indifferent  points  

on  a  graph,  any  points  on  the  line  are  at  least  as  good,  if  not  better,  than  the  points  at  the  extremes  

d. This  is  because  they  lie  on  “further”  indifference  curves  5. Continuity  

a. There  are  no  sudden  “jumps”  in  satisfaction      

  2—16  

2.1.3 Mapping  Tastes  Let  us  take  a  point  A,  and  divide  the  plane  into  quadrants  around  it.  

 Using  our  assumptions,  we  can  model  where  the  indifference  curve  must  lie:  

• Monotonicity  excludes  the  NE  and  SE  quadrants  o In  the  SW  quadrant,  any  point  has  strictly  less  of  both  goods,  

therefore  the  chooser  will  be  less  satisfied  with  a  point  in  that  quadrant  

o In  the  NW  quadrant,  any  point  has  strictly  more  of  both  goods,  therefore  the  chooser  will  be  more  satisfied  with  a  point  in  that  quadrant  

o Therefore,  the  “satisfaction”  change  in  both  quadrants  excludes  an  indifference  curve  from  passing  through  either  quadrant.  

     

100 1 2 3 4 5 6 7 8 9

10

0

1

2

3

4

5

6

7

8

9

X1(Meusli)

X2(Chocolates)

A(2,7)

NE

SESW

NW

100 1 2 3 4 5 6 7 8 9

10

0

1

2

3

4

5

6

7

8

9

X1(Meusli)

X2(Chocolates)

A(2,7)

NE

SESW

NW

  2—17  

To  further  refine  our  search  for  an  indifference  curve,  we  need  a  point  at  least  one  more  point  of  indifference:  B,  where  A~B.    The  line  between  A  and  B  represents  the  “averages”  between  them.  

 Convexity  tells  us  that  each  point  on  the  line  between  A  and  B  is  preferred  to  both  A  and  B.      

• Here,  point  F  is  preferred  to  A  and  B  because  of  Convexity.    Therefore  every  point  on  the  line  is  excluded  

• Further,  any  point  above  the  line  is  excluded,  since  monotonicity  states  it  is  preferable  to  a  point  on  a  line,  which  is,  in  turn,  preferable  to  both  A  and  B.  

     

100 1 2 3 4 5 6 7 8 9

10

0

1

2

3

4

5

6

7

8

9

X1(Meusli)

X2(Chocolates)

A(2,7)

B(7,2)

100 1 2 3 4 5 6 7 8 9

10

0

1

2

3

4

5

6

7

8

9

X1(Meusli)

X2(Chocolates)

A(2,7)

B(7,2)

F(5,4)

G(7,6)

  2—18  

From  this,  we  can  see  that  the  plane  for  drawing  the  indifference  curve  has  been  drastically  reduced.    Following  the  rule  of  convexity  –  the  closer  to  the  middle  of  A  and  B,  the  more  preferred  the  point  would  be.    Thus,  our  indifference  curve  would  look  something  like  as  follows:  

 Points  G  and  F  would  appear  on  “further”  indifference  curves,  making  them  preferred,  rather  than  indifferent  to  points  A  and  B.  

 Note,  the  slope  of  the  indifference  curve  at  any  point  is  the  Marginal  Rate  of  Substitution  (MRS):  the  willingness  to  trade  one  less  unit  of   x1 for  an  additional  unit  of   x2 (or,  the  number  of   x2 's needed  to  convince  me  to  trade  one   x1 ).  

• Because  of  strict  convexity,  there  is  a  diminishing  marginal  rate  of  substitution  –  as  you  have  more  of   x1 ,  we  are  willing  to  trade  less  for  an  additional  unit  of  it.  

     

100 1 2 3 4 5 6 7 8 9

10

0

1

2

3

4

5

6

7

8

9

X1(Meusli)

X2(Chocolates)

A(2,7)

B(7,2)

F(5,4)

G(7,6)

100 1 2 3 4 5 6 7 8 9

10

0

1

2

3

4

5

6

7

8

9

X1(Meusli)

X2(Chocolates)

A(2,7)

B(7,2)

F(5,4)

G(7,6)

  2—19  

Note  2,  whilst  indifference  curves  do  not  have  to  be  parallel,  they  can  never  cross,  since  that  would  violate  transitivity  

   

• Here,  point  A  ~  B,  and  point  B  ~  C  • But,  because  of  monotonicity   A C  • This  violates  transitivity,  since  transitivity  would  require  A  ~  B  ~  C  

     

100 1 2 3 4 5 6 7 8 9

10

0

1

2

3

4

5

6

7

8

9

X1(Meusli)

X2(Chocolates)

A(2,7)

B(7,2)

C(4,7)

  2—20  

2.1.4 Utility  functions  –  creating  indifference  curves  mathematically  Utility  functions  assign  a  value  to  the  “utility”  received  from  each  bundle  of  goods.    To  illustrate  this,  let  us  start  with  a  simple  utility  function:  u(x1, x2 ) = x1 • x2  

• This  is  read  as:  the  utility  from  consumption  of  both  goods  is  equal  to  the  product  of  both  goods  

o Given  point  A,  where   A(4,8)  § The  utility  from  this  point  would  be:  u(x1, x2 ) = (4•8) = 32  

o Now,  given  point  B,  where  B(2, 9)  § The  utility  from  this  point  would  be:  u(x1, x2 ) = 2•9 =18  

o HereuA > uB ,  therefore  bundle  A  is  to  be  preferred  (uA > uB →∴A B )  

• This  is  a  two  way  relationship:  o If (x1

A, x2A ) (x1

B, x2B )→ uA > uB  

o If uA > uB → (x1A, x2

A ) (x1B, x2

B )  • That  is,  if  the  utility  of  bundle  A  is  greater  than  the  utility  of  bundle  B,  

bundle  A  is  to  be  preferred  o And,  if  bundle  A  is  preferred  to  bundle  B,  it  is  indicative  that  

bundle  A  has  a  higher  utility    Now,  let  us  try  to  derive  from  a  utility  function  and  a  point  an  indifference  curve.  

• The  indifference  curve  exists  where  the  utility  is  unchanged:  therefore,  du = 0 (there  is  no  change  to  u).  

• But  how  do  we  find  this?  

o du = ∂u(x1, x2 )∂x1

•dx1 +∂u(x1, x2 )∂x2

•dx2 = 0  

o This  looks  complicated,  but  isn’t  

§ ∂u(x1, x2 )∂x1

•dx1Means,  simply,  what  is  the  change  in  utility  (

∂u )  for  a  given  change  in   x1 (∂x1 ).    Or,  what  is  the  marginal  utility  of   x1  -­‐  how  much  extra  utility  do  I  get  for  each  additional  unit  of   x1 .  

§ Concurrently,   ∂u(x1, x2 )∂x2

•dx2 is  the  marginal  utility  of   x2  

o Now,  let  us  rearrange  a  little,  we  get:dx2dx1

= −∂u(x1, x2 ) /∂x1∂u(x1, x2 ) /∂x2

= −MRUx1

MRUx2

=MRS  

§ The  Marginal  Rate  of  Substitution  is  equal  to  the  ratio  of  Marginal  Utilities  

§ Which  makes  sense:  the  more  utility  I  get  from  a  good,  the  more  I  am  willing  to  substitute  for  it  

§ The  negative  of  the  partial  derivative  with  respect  to   x1  over  the  partial  derivative  with  respect  to   x2  

  2—21  

2.1.4.1 Types  of  Preferences  • Perfect  substitutes  • Perfect  Complements  • Diminishing    

   

  3—22  

3 “Doing  the  Best  We  Can”  –  budgets  and  preferences  Chapters  5  and  6  of  the  textbook  

3.1 Preferences Cont’d Preferences  have  the  following  assumptions  

• Rationality  o Completeness  (can  always  choose  between  preferred,  not  

preferred  and  indifferent)  o Transitivity  (syllogistically  sound)  

• Other  o Convexity  (averages  preferred)  o Monotonicity  (more  of  both  is  better)  o Continuity  (no  jumps  in  happiness)  

Utility  Functions  

• MRS = − MRU1

MRU2

 

o Or,  the  Marginal  Rate  of  Substitution  is  equal  to  negative  the  ratio  of  the  Marginal  Rates  of  Utility  (change  in  utility  for  a  given  change  in   x1  or   x2 )  

• MRS = − ∂(x1, x2 ) /∂x1∂(x1, x2 ) /∂x2

 

o Or,  the  MRS  is  equal  to  negative  the  partial  derivative  of  the  utility  function  with  respect  to   x1over  the  partial  derivative  of  the  utility  function  with  respect  to   x2 .  

Types  of  Preferences  • Perfect  Substitutes  

o u =αx1 +βx2  

o MRS = − ∂(x1, x2 ) /∂x1

∂(x1, x2 ) /∂x2

= −αβ

 

o Thus,  the  MRS  is  constant  for  perfect  substitutes  

     

u=ax1+bx2

MRS = -a/b

  3—23  

• Perfect  complements  o u =min{αx1,βx2}  

o

MRS = ?@pivot = undefined@vertical =∞@horizontal = 0

 

 • Cobb-­‐Douglas  (most  common/logical)  

o u = x1αx2

β  

o

MRS = − ∂(x1, x2 ) /∂x1∂(x1, x2 ) /∂x2

= −α(x1

(α−1) )(x2β )

β(x2(β−1) )(x1

α )

= −α • x1

α • x1−1 • x2

β

β • x2β • x2

−1 • x1α

= −α • xβ2 • x

−β2 • x2

β • xα1 • x−α1 • x1

= −αx2

1+β−β

βx11+α−α

= −αx1βx2

 

 • This  week  –  we  have  a  new  one!  Quasilinear  preferences  

o This  type  of  preference  is  like  Cobb-­‐Douglas,  but  instead  of  the  preference  depending  on  the  quantity  of  both  goods,  it  is  dependent  on  1.  

o u(x1, x2 ) =α •v(x1)+βx2  § Or,  the  utility  is  dependent  on  a  constant  multiplied  by  a  

function  of   x1à   e.g.→ v(x1)  plus  a  constant  multiplied  by  x2  

o MRS = − ∂(x1, x2 ) /∂x1

∂(x1, x2 ) /∂x2

= −α •v '(x)

β

 

u=min{ax1,bx2}

MRS = infinity

MRS = undefined MRS = 0

MRS = -ax2/bx1

u= x1^a*x2^b

  3—24  

o Eg:  

§  

u =α • ln(x1)+βx2

MRS = − ∂(x1, x2 ) /∂x1∂(x1, x2 ) /∂x2

= −α •

1x1

β= −

αx1β

= −αβx1

 

§ In  this  case,  the  gradient  is  only  dependent  on   x1 :  the  gradient  is  unchanged  through   x2  

 

3.1.1 Essential  Goods  • Essential  goods  are  goods  where  you  are  not  willing  to  take  a  package  

where  there  are  non  of  that  good  

3.2 Choice When  trying  to  optimize  choice  we  look  to  be  on  the  furthest  possible  indifference  curve  possible  for  a  given  budget.      

u= aln(x1)+bx2

MRS=-a/bx1

  3—25  

3.2.1 Cobb-­‐Douglas  functions  With  a  Cobb-­‐Douglas  function,  the  optimum  choice  occurs  when  the  budget  line  is  tangential  to  the  indifference  curve  at  the  point  of  consumption.    This  can  be  expressed  as:  the  optimum  choice  occurs  when  the  gradient  of  the  budget  line  is  equal  to  the  gradient,  at  that  point,  of  the  indifference  curve  à  mbudget =MRS .    To  find  this,  we  simultaneously  equate  the  MRS  equation  and  the  budget  line.  u(x1, x2 ) = x1

αx2β

MRS = − ∂(x1, x2 ) /∂x1∂(x1, x2 ) /∂x2

= −αx1

α−1x2β

βx2β−1x1

α

= −α(x2

β )(x21)(x2

−β )β(x1

α )(x11)(x1

−α )= −

αx2(1+β−β )

βx1(1+α−α )

m =MRS = −αx2βx1

⇒ "eq.1"

           

C(P1,P2, I ) = x1,C( )∈ R+2 | P1x1 +P2x2 = I{ }

I = P1x1 +P2x2

x2 =IP2−P1P2x1

m = −P1P2⇒ "eq.2"

 

 Simultaneously  equate  the  gradients  to  isolate  a  variable.  "eq.1"⇒ into⇒ "eq.2"

−P1P2= −

αx2βx1

P1βx1 = P2αx2

x2 =P1βP2α

x1⇒ "eq.3"

 

Substitute  this  variable  into  the  Budget  Line  Function  to  find  optimum  points  (sub  “eq.3”  into  the  Budget  Line  Function).  I = P1x1 +P2x2

I = P1x1 + P2P1βP2α

x1

P1x1 +P1βαx1 = I

P1x1α +P1βx1 = IαP1x1(α +β) = Iα

x1 =Iα

P1(α +β)

 

Substitute  this  variable  in  to  find   x2  The  point  generated   (x1, x2 ) is,  prima  facie,  the  optimum  consumption  point.      

  3—26  

3.2.2 Special  Cases:  Indifference  Curves  (Perfect  Complements,  Substitutes  and  Quasilinear)  

• Perfect  complements  are  straight  line  graphs  o Thus,  if  their  gradient  is  steeper  than  the  budget  line,  the  x  

intercept  is  the  point  of  optimum  consumption  o If  it  is  shallower,  the  y  intercept  o If  they  are  equal,  any  point  

• Perfect  substitutes  o u(x1, x2 ) =min αx1,βx2{ }  o The  optimum  usually  occurs  at  the  corner,  so  we  simultaneously  

equate  the  budget  line  with  αx1 = βx2  

§ i.e.  by  substituting   x1 =βαx2 into   I = P1x1 +P2x2  

• Quasilinear  o Solve  as  per  Cobb-­‐Douglas,  but  be  aware,  if  the  optimum  

consumption  point  is  negative,  you  have  a  corner  solution  

3.2.3 Special  Cases:  kinked  lines    • If  kinked  out,  most  likely  optimum  at  the  kink  • If  kinked  in,  more  complex,  could  have  a  point  with  two  tangencies.  

   

  4—27  

4 Income  and  Substitution  Effects  

4.1 Extending last week’s theory Last  week,  we  matched  utility  functions  with  budget  lines  to  find  the  points  of  optimum  consumption.    Now,  by  solving  this  using  “blank”  formula,  we  can  come  up  with  demand  functions  –  a  formula  expressing  how  much  is  consumed  of  each  good,  depending  on  the  economic  circumstances.  

4.1.1 Cobb-­‐Douglas  Preferences  

4.1.1.1 Utility  and  Budget  Line  u(x1, x2 ) = x1

α • x2β         I = P1x1 +P2x2  

 

4.1.1.2 Finding  MRS  and  Op.  Cost  

MRS = −δ(x1, x2 )

δx1δ(x1, x2 )

δx2

= −αx1

α−1 • x2β

x1α •βx2

β−1

= −α • x1

α • x1−1 • x2

β

β • x1α • x2

−1 • x2β= −

α • x2 • x2β • x2

−β

β • x1α • x1

−α • x1

= −αx2βx1

 

I = P1x1 +P2x2P2x2 = I −P1x1

x2 = −P1P2x1 +

IP2

y =mx + b

m = op.Cost = − P1P2

 

4.1.1.3 At  optimum  consumption,  MRS=Op.Cost  –  isolate  a  variable  

op.Cost =MRS

−P1P2= −

αx2βx1

βx1P1 =αx2P2

       x1 =

αP2βP1

x2

x2 =βP1αP2

x1

 

4.1.1.4 Find  the  Demand  Function,  mother  schlucker  

x1 =αP2βP1

x2 → I = P1x1 +P2x2

I = P1αP2β P1

x2 +P2x2 =αβP2x2 +P2x2

I = P2x2αβ+1

"

#$

%

&'= P2x2

α +ββ

"

#$

%

&'

x2 =β

α +β( )•IP2

   

x2 =βP1αP2

x1→ I = P1x1 +P2x2

I = P1x1 + P2βP1α P2

x1 =βαP1x1 +P1x1

I = P1x1 1+βα

"

#$

%

&'= P1x1

α +βα

"

#$

%

&'

x1 =α

α +β( )•IP1

 

     

  4—28  

4.1.2 Quasilinear  preferences  

4.1.2.1 Utility  and  Budget  Line  u(x1, x2 ) =α • ln x1 +βx2         I = P1x1 +P2x2  

4.1.2.2 Finding  MRS  and  Op.  Cost  

MRS = −δ(x1, x2 )

δx1δ(x1, x2 )

δx2

MRS = −αx1β

= −αβx1

         

I = P1x1 +P2x2

x2 = −P1P2x1 +

IP2

m = op.Cost = − P1P2

 

4.1.2.3 At  optimum  consumption,  MRS=Op.Cost  –  isolate  a  variable MRS = op.Cost

−αβx1

= −P1P2

P1βx1 =αP2

x1 =αP2βP1

 

4.1.2.4 Find  the  Demand  Function,  mother  schlucker  

x1 =αP2βP1

→ I = P1x1 +P2x2

I = P1αP2β P1

+P2x2

I = αP2β

+P2x2

P2x2 = I −αP2β

x2 =IP2−αP2βP2

=Iβ −αP2βP2

x2 =Iβ −αP2βP2

      x1 =αP2βP1

 

   

  4—29  

4.2 Creating the model – Changing Income

4.2.1 Changes  in  Consumption  associated  with  a  change  in  Income  (Normal,  neutral  and  inferior  goods)  

For  a  change  in  income,  what  is  the  effect  on  consumption?  • Normal  good  

o Increase  in  Income  is  echoes  by  an  increase  in  consumption  o Thus,  there  is  a  positive  income  effect  

• Neutral  good  (quasilinear)  o Increase  in  Income  leads  to  a  borderline  result  

• Inferior  good  o Increase  in  Income  leads  to  a  decrease  in  consumption  

 So,  what  are  we  actually  finding?  

• δx1(P1,P2,Y )δI

:  the  change  in  x1  related  to  a  change  in  Income  

• If  this  derivative  is  greater  than  0,  it  is  a  normal  good;  if  it  is  equal  to  0,  it  is  a  quasilinear  good;  and,  if  it  is  less  than  0,  it  is  an  inferior  good.  

 Mathematically  

• Cobb-­‐Douglas:  U = x1α • xβ2  

o If  the  demand  function  is:   x1 =α

α +β( )•IP1  

o Then   δx1(P1,P2,Y )δI

 (the  derivative  with  respect  to  I)  

o x1 =

αα +β( )

•IP1

δx1(P1,P2,Y )δI

(α +β)P1> 0

 

o Since  all  the  variables  here  are  positive,  Cobb-­‐Douglas  functions  are  necessarily  “normal”  goods  

 x1

x2

Y1 Y2

x2a

x2b

x1a x1b

  4—30  

o Here  an  increase  in  Y  from  Y1  to  Y2  leads  to  an  increase  in  x1  (from  x1a  to  x1b)  and  an  increase  in  x2  (from  x2a  to  x2b)  –  Cobb-­‐Douglas  functions  behave  as  “normal”  goods    

 • Quasilinear  goods:  u(x1, x2 ) =α • ln x1 +βx2  

o Regarding  x1  § The  demand  function  of  a  quasilinear  good  in  x1  is:  

x1 =αP2βP1

 

§ Then   δx1(P1,P2,Y )δI

 (the  derivative  with  respect  to  I)  

§ x1 =

αP2βP1

δx1(P1,P2,Y )δI

= 0  

o Regarding  x2  § The  demand  function  of  a  quasilinear  good  in  x2  is:  

x2 =Iβ −αP2βP2

 

§ Then   δx1(P1,P2,Y )δI

 (the  derivative  with  respect  to  I)  

§ x2 =

Iβ −αP2βP2

=IββP2

−αP2βP2

δx2 (P1,P2,Y )δI

=ββP2

> 0  

§ This  is  necessarily  positive,  and  thus  “normal”  o Thus,  quasilinear  goods  have  a  neutral  income  effect  in  the  

variable  which  is  a  function,  and  are  normal  in  the  other  variable  

 o Here,  an  increase  in  Y  from  Y1  to  Y2  leads  to  an  increase  in  x2  

(from  x2a  to  x2b)  but  no  increase  in  x1a  –  Quasilinear  preferences  may  lead  to  one  good  being  “neutral”  and  the  other  being  normal  

x1

x2

Y1 Y2

x2a

x2b

x1a

  4—31  

• Inferior  goods  are  difficult  to  model  mathematically,  but  here  is  a  graphical  example  

   

o Here,  an  increase  in  Y  from  Y1  to  Y2  leads  to  an  increase  in  x2  (from  x2a  to  x2b)  but  a  decrease  in  x1  (from  x1a  to  x1b)  –  here,  we  have  a  normal  good  in  x2,  and  an  inferior  good  in  x1  

     

x1

x2

Y1 Y2

x2a

x2b

x1ax1b

  4—32  

4.2.2 Relative  consumption  –  luxuries  and  necessities  Now  we  look  to  the  scale  of  the  increase  in  consumption  associated  with  the  increase  in  income  (as  apposed  to  the  “sign”  of  the  change,  as  above).      

• Where  the  percentage  change  in  consumption  is  greater  than  the  change  in  income,  there  is  a  luxury  good.      

o x1(P1,P2, t( )• I )> tx1(P1,P2, I ) |∀t >1  o i.e.  for  an  increase  of  income  by  a  multiple  of  t,  there  is  an  increase  

of  consumption  of  x1  of  more  than  t    • Where  the  percentage  change  in  consumption  is  equal  to  the  change  in  

income,  there  is  a  borderline  (homothetic)  good.  o x1(P1,P2, t( )• I ) = tx1(P1,P2, I ) |∀t >1  

• Where  the  percentage  change  in  consumption  is  less  than  the  change  in  income,  the  good  is  a  necessity  

o x1(P1,P2, t( )• I )< tx1(P1,P2, I ) |∀t >1  Examples  

• Quasilinear  Preferences  as  luxury  goods  

o

u x1, x2( ) = βx1 +α ln x2( )

x1(P1,P2, I ) =βI −P1αβP1

I = 6 | P1 =1| P2 =1|α = 2 | β =1

x1(P1,P2, I ) =(1)(6)−1(2)(1)(1)

= 4

I = 6→ I =12 | "t"= 2[ ]

x1(P1,P2, (2)I ) =(1)(12)−1(2)

(1)(1)=10 = (2.5)x1(P1,P2, I )

∴x1(P1,P2, (t)I )> (t)x1(P1,P2, I )

 

o Increasing  Income  by  a  multiple  of  2  lead  to  an  increase  of  consumption  of  x1  by  a  multiple  of  2.5.    Thus,  there  is  a  greater  increase  in  consumption  than  the  increase  in  income  –  this  is  a  luxury  good  

• Cobb-­‐Douglas  Preferences  as  borderline  goods  

o

u(x1, x2 ) = x1α • x2

β

x1(P1,P2, I ) =α

α +βIP1

I = 6 | P1 =1| P2 =1|α = 2 | β =1

x1(P1,P2, I ) =(2)

(2)+ (1)(6)(1)

= 6

I = 6→ I =12 "t"= 2[ ]

x1(P1,P2, (2)I ) =(2)

(2)+ (1)(12)(1)

=12 = 2x1(P1,P2, I )

∴x1(P1,P2, tI ) = tx1(P1,P2, I )

 

o Increasing  Income  by  a  multiple  of  2  lead  to  an  increase  of  consumption  of  x1  by  a  multiple  of  2.    Thus,  there  is  an  equal  

  4—33  

increase  in  consumption  than  the  increase  in  income  –  this  is  a  borderline  good  

• Quasilinear  preferences  as  necessities  

o

u(x1, x2 ) =α ln(x1)+βx2

x1(P1,P2, I ) =P2αP1β

I = 6 | P1 =1| P2 =1|α = 2 | β =1

x1(P1,P2, I ) =(1)(2)(1)(1)

= 2

I = 6→ I =12 |"t"= 2

x1(P1,P2, (2)I ) =(1)(2)(1)(1)

= 2

∴x1(P1,P2, (t)I )< tx1(P1,P2, I )

 

o Here,  a  doubling  of  income  lead  to  no  increase  in  consumption  of  x1  (a  multiple  of  1  instead  of  2),  therefore  this  is  a  necessity.  

   

  4—34  

4.3 Creating the model – Changing prices This  section  looks  at  changing  the  opportunity  cost  of  good,  and  seeing  the  effects  on  consumption  and  the  requisite  compensation  required  to  maintain  utility.    

4.3.1 Example:  A  carbon  tax  (let’s  talk  it  through)  The  standard  example  shows  that,  given  a  tax,  and  a  proportionate  redistribution  of  the  taxed  revenue  so  that  utility  is  unchanged,  consumption  choices  may  change.    A  brief  explanation  of  this  example  –  the  carbon  tax  -­‐  is  below:     The  government  sees  a  problem  in  that  a  carbon  externality  is  not  being  factored  into  production  decisions,  causing  over-­‐emission  of  carbon.    The  government,  therefore  taxes  carbon  emissions.     This  causes  emissions  in  carbon  to  fall,  because  emitting  carbon  becomes  more  expensive.    However,  it  also  leads  to  substantial  hardship  in  lower  income  households.     Thus,  the  government  reimburses  the  tax  to  lower  income  households,  either  through  direct  contributions,  or  through  tax  credits.    This  is  worked  out  to  equal  out,  in  utility  terms,  the  “hardship”  created  by  the  carbon  tax.     Detractors  say  that,  since  the  tax  is  offset  by  an  equal  payout,  the  effect  of  the  tax  is  reduced.    However,  this  is  a  simplistic  analysis.    Whilst  the  “utility”  has  stayed  equal,  the  change  in  relative  prices  has  made  carbon  intensive  goods  more  expensive  than  non-­‐carbon  intensive  goods.    Thus,  there  is  a  shift  in  consumption  –  even  though  the  same  amount  (in  utility  terms)  is  consumed,  the  consumption  shifts  to  the  relatively  cheaper  (i.e.  non-­‐carbon  intensive)  good.    There  is  a  shift  along  the  indifference  curve.        

  4—35  

4.3.2 Example  –  A  Carbon  Tax  (in  pictures!)  First,  the  government  sees  that  consumption  of  carbon  intensive  goods  is  too  high  (e.g.  –  the  starting  point).  

 So,  the  government  taxes  carbon  intensive  goods,  making  them  less  affordable.  

     

Non-Carbon Intensive Good

Car

bon

Inte

nsiv

e G

ood

C1

Non-Carbon Intensive Good

Car

bon

Inte

nsiv

e G

ood

C1

Ctax

  4—36  

After  public  outcry,  the  government  raises  income  so  that  utility  was  as  per  the  beginning.  

 This  shows  the  point  of  the  example.         Whilst  Ctax  had  the  lowest  consumption  of  carbon  intensive  goods,  it  also  had  a  lower  utility  (as  shown  by  the  lower  indifference  curve  that  it  sits  on).         When  redistribution  occurred,  so  that  consumption  was  now  at  Cfinal,  we  have  the  same  utility  as  in  the  first  example  (both  consumption  points  lie  on  the  same  indifference  curve).    However,  because  of  the  change  of  slope  of  the  budget  line  (change  in  relative  prices  of  carbon  intensive  and  non-­‐carbon  intensive  goods),  the  consumption  is  on  a  different  point  on  the  indifference  curve  where  there  is  the  same  utility,  but  lower  consumption  of  carbon  intensive  goods.      

Non-Carbon Intensive Good

Car

bon

Inte

nsiv

e G

ood

C1

Ctax

Cfinal

  4—37  

4.3.3 Separating  the  Income  and  Substitution  Effects  The  income  and  substitute  effects  are  separated  thusly:    

 Verbally  

• The  movement  from  CA  to  CB  is  due  to  the  change  in  opportunity  cost  –  this  is  the  substitution  effect.  

• The  movement  from  CB  to  CC  is  due  to  the  change  in  income  –  the  income  effect.  

• These  together,  or,  the  movement  from  CA  to  CC,  is  the  “total  effect”  of  the  price  change.  

   

Non-Carbon Intensive Good

Car

bon

Inte

nsiv

e G

ood

C(B)

C(C)

C(A)

  4—38  

4.3.3.1 The  Slutzky  Equation  with  Hicksian  substitution  • This  has  been  formalized  in  the  “Slutzky  Equation”  

o

x1A → x1

C{ }= x1A → x1

B{ }− x1B → x1

C{ }δx1(P1,P2, I )

δP1

#$%

&'(=

δx1δP1

| u#$%

&'(−δx1δI

x1#$%

&'(

total.effect{ }= sub.effect{ } Y.effect{ }>=<{ }= <={ } >=<{ }

 

o Simply,  there  are  3  propositions  § The  move  from  Xa  to  Xc  =  move  from  Xa  to  Xb  minus  the  

move  from  Xb  to  Xc  § Or,  the  change  in  X1  for  a  given  change  in  P1  (derivative  of  

demand  function  with  respect  to  P1)  (can  be  greater,  equal  to  or  less  than  0)  

• Is  equal  to  the  derivative  of  the  demand  function  with  respect  to  P1,  holding  utility  equal  (must  be  equal  to  or  greater  than  0)  

• Minus  the  derivative  of  x1  with  respect  to  income,  multiplied  by  x1  (can  be  equal  to,  less  than  or  greater  than  0  

o The  total  effect  is  equal  to  the  substitution  effect  minus  the  income  effect  

 

4.3.3.2 The  Law  of  Demand  For  a  normal  good,  there  is  a  decrease  in  demand  for  a  relative  increase  in  the  price  of  that  good.  δx1(P1,P2, I )

δP1> 0  

4.3.3.3 Giffen  Good  Where  an  increase  in  the  relative  price  of  a  good  leads  to  an  increase  in  demand  for  the  same  good.  δx1(P1,P2, I )

δP1< 0  

     

  4—39  

4.3.4 The  substitution  effect  in  more  detail  The  “size”  of  the  substitution  effect  depends  on  the  substitutability  between  goods  –  the  more  substitutable  goods  are,  the  greater  the  substitution  effect.  What  we  know  from  the  graphical  analysis:  

1. The  Consumption  point  B  satisfies  the  following  a. MRS=new  op.Cost  b. Utility  is  unchanged  

2. Thus,  we  have  a  system  of  two  equations  in  two  unknowns      

  4—40  

4.3.4.1 Four  Steps  1. Set  MRS(x1, x2 ) = −P1

new P2 ,  and  solve  for   x2  a. Find  MRS:  

i.

u = x1αx2

β

MRS = − ux2 'ux1 '

MRS = −αx1α−1x2

β

βx2β−1x1

α= −

αx2βx1

 

b. Set  equality  

i.

−αx2βx1

= −P1new

P2αx2P2 = P1

newβx1

x2 =P1newβP2α

x1

 

2. Substitute  this  expression  for   x2  into  the  utility  function  

a. x2 = P1

newβ P2α • x1→ u = x1αx2

β

u(a) = x1α P1

newβP2α

x1"

#$

%

&'

β  

3. Solve  for  optimal   x1new*  

a.

u(a) = x1α P1

newβP2α

x1!

"#

$

%&

β

u(a) = x1αx1

β P1newβP2α

!

"#

$

%&

β

= x1α+β P1

newβP2α

!

"#

$

%&

β

x1α+β = u(a)[ ] P1

newβP2α

!

"#

$

%&

β

= u(a)[ ] P1newβP2α

!

"#

$

%&

−β

x1*new = u(a)[ ]

1α+β

P1newβP2α

!

"#

$

%&

−β

α+β

 4. Substitute   x1

*new to  find   x2    

x1*new = u(a)[ ]

1α+β

P1newβP2α

!

"#

$

%&

−β

α+β

→ x2 =P1newβP2α

x1

x2 = u(a)[ ]1

α+βP1newβP2α

!

"#

$

%&

−β

α+β P1newβP2α

= u(a)[ ]1

α+βP1newβP2α

!

"#

$

%&

1− βα+β

= u(a)[ ]1

α+βP1newβP2α

!

"#

$

%&

α+β −βα+β

x2*new = u(a)[ ]

1α+β

P1newβP2α

!

"#

$

%&

αα+β

 

  4—41  

4.4 The Wealth effect The  wealth  effect  changes  income  from  being  exogenous  to  income  coming  from  the  sale  of  assets.  Thus,  where  before  we  had  only  the  purchasing  decisions  change,  now  we  also  have  a  change  in  the  amount  of  income  at  our  disposal.    Where  before  we  decomposed  into  the  income  and  the  substitution  effect,  now  we  decompose  to  the  wealth  and  substitution  effect    

4.4.1 What’s  the  deal  with  Income?  In  this  model,  Y  is  0,  and  you  have  an  endowment.    Thus,  for  an  increase  in  prices,  we  have  an  increase  in  the  endowment:  an  increase  in  prices  gives  us  more  choice.    Watch  out  for  changes  in  Y,  and  then  it  is  the  same.    

   

x1A → x1

C{ }= x1A → x1

B{ }− x1B → x1

C{ }δx1(P1,P2, I )

δP1

#$%

&'(=

δx1δP1

| u#$%

&'(−δx1δI

x1#$%

&'(

total.effect{ }= sub.effect{ } Wealth.effect{ }>=<{ }= <={ } >=<{ }

 

   

100 1 2 3 4 5 6 7 8 9

10

0

1

2

3

4

5

6

7

8

9

X Axis

Y A

xis

A

B

C

  5—42  

5 Demand  for  Goods,  Supply  of  Labor  and  Capital  

5.1 Last week • What  were  the  changes  in  consumption  for  changes  in  income  and  prices?  • We  devolved  it  into:  

o Y  effect  (change  in  demand  for  a  change  in  Y  (op.Cost  unchanged))  o Substitution  effect  (change  in  demand  for  a  change  in  op.Cost)  o Wealth  effect  (change  in  demand  for  a  change  in  wealth  (op.Cost  

constant))  • This  allowed  us  to  compensate  consumers  for  changing  prices  • And  illustrated  different  responses  to  changes  in  price  (did  the  consumer  

own  any  of  the  good?)  

5.1.1 How?  • We  solved:  

o min x1,x2 Exp = P1newx1 +P2x2 | u  

o i.e.  what  is  the  minimum  budget  line  (with  the  new  opportunity  cost)  that  would  satisfy  the  condition  that  utility  is  unchanged.  

• This  took  us  from  the  original  demand  functions:  

o x1old. price =

αα +β

IP1

x2old. price =

ββ +α

IP2

 

• To  the  compensated  demand  functions  

o

x1new = [u(a)]

1α+β •

P1newβP2α

!

"#

$

%&

−βα+β

x2new = [u(a)]

1α+β •

P1newβP2α

!

"#

$

%&

αα+β

 

o Which  give  us  the  new  optimal  point  of  consumption,  at  the  new  prices,  such  that  utility  is  unchanged  from  the  original  price  

5.1.2 Goal  for  this  week:  • Find  the    

o Goods  demand  curve  (x1,  x2)  o Labor  supply  curve  (c,  l)  o Capital  supply  curve  (c1,  c2)  (consumption,  saving)  

• Define  Marginal  and  Total  willingness  to  pay  o To  measure  consumer  surplus  

• Find  the  compensated  demand  curve      

  5—43  

5.2 Demand and Supply Curves There  are  three  types  of  demand  curve:  

• Income  demand  curves  (relationship  between  Y  and  Demand)  • Own-­‐price  demand  curves  (relationship  between  Price  and  Demand)  • Cross-­‐price  demand  curves  (relationship  between  Price  of  other  goods  

and  Demand)  

5.2.1 Demand  for  Goods  Take  the  following  setting:  

• I = 6P1 =1;P2 =1u(x1, x2 ) = x1

αx2β = x1

2x21 →Cobb.Douglas

 

• Allows  us  to  derive:  

o MRS = −ux1 'ux2 '

= −2 x1x2x12 = −

2x2x1

 

• And  uncompensated  demand  functions  

o x1 =α

α +βIP1  

o x2 =β

β +αIP2  

   

  5—44  

• What  happens  when  we  vary  P1?  o P1 =1→ P1

+ = 2→ P1− = 0.5  

§ x1*P1 =

22+1

•61= 4; x1

*P1+

=22+1

•62= 2; x1

*P1−

=22+1

•60.5

= 8  

§ x2*P2 =

11+ 2

61= 2 ,  since   x2

* does  not  depend  on  the  P1 ,  

changing  P1will  not  change  it.  

 • So,  we  are  looking  at  the  change  in  x1  for  a  given  change  in  Price,  sounds  

like  a  derivative!  

o

x1 =α

α +βIP1=

αIα +β

•P1−1

δx1δP1

=αIα +β

•(−1)•P1−2

= −α

α +βIP12 < 0

 

§ So,  demand  is  decreasing  in  price  

o δ 2x1δP1

2 =α

α +βIP13 > 0  

§ So,  it  is  decreasing  at  a  decreasing  rate      

0 2 4 6 8 10 12 14 16 18 20

0

1

2

3

4

5

6

7

8

x1

x2

P1

P1-

P1+

  5—45  

• Graphically  

 • Changing  income  will  shift  the  own  price  demand  function  

 o Same  demand  function,  with  different  levels  of  Income  

     

x1

x2P1

P1-P1+

P1

6

2 4 8

.5

1

2

42 8

Optimum CChanging P1

Own-Price DemandFor x1

0 1 2 3 4 5 6 7 8 9 10

0.5

1

1.5

2

2.5

3

3.5

4

X1

P1

  5—46  

5.2.2 Supply  of  Labor  We  use  the  old  Consumption,  Labor  model  from  week  3.    

• First,  we  determine  the  supply  of  leisure   l = (w,L)  • Then,  we  subtract  that  from  hours  available  to  find  the  supplied  labor  

labour(w,L) = L − l(w,L)    Given  quasilinear  preferences  in  leisure,  and  a  usual  budget  

• u(l,c) = γ ln(l)+θc  • wl + c = wL  

We  get  the  following  demand  functions  • With  respect  to  labor  

o u(l,c) = γ ln(l)+θc

MRS = − u 'lu 'c

= −γl/θ = − γ

lθ  

o wl + c = wLc = −wl +wLop.Cost = −w

 

o

MRS = op.Cost

−γlθ= −w

wlθ = γ

l = γwθ

 

• With  respect  to  consumption  

o

l = γwθ

→wl + c = wL

w γwθ

+ c = wL

c = wL − γθ

 

   

  5—47  

Now,  let  us  model  this  in  the  following  circumstance  

o L = 60;w = Pl = 20;Pc =1;γ = 400;θ =1u = γ ln(l)+θcwl + c = wL

 

o At  this  circumstance,  we  have  the  following  optimum  consumption:  

o l*[w=20] = 400

(20)(1)= 20

c*[w=20] = (20)(60)− 4001

= 800  

o What  happens  if  we  change  the  prices?  (w=10,  40)  

o l*[w=40] = 400

(40)(1)=10

c*[w=20] = (40)(60)− 4001

=1600  

o l*[w=10] = 400

(10)(1)= 40

c*[w=10] = (10)(60)− 4001

= 400  

o We  can  graph  this,  as  above  o With  the  “x1”  being  replaced  by  leisure  o We  flip  this  around  to  find  the  labor  curve  

§ Just  puzzle  that  shit  o What  does  math  tell  us  about  the  demand  for  leisure?  

o l = γ

wθ=γθw−1

δlδw

=γθw−2 = −

γw2θ

< 0  

§ demand  for  leisure  is  decreasing  with  increasing  wages  

o

δlδw

= −γw2θ

= −γθw−2

δ 2lδw2 =

2γw3θ

> 0  

§ it  is  decreasing  at  a  decreasing  rate      

  5—48  

5.2.3 Supply  of  Capital  Same  idea  as  above:  lets  have  a  look  at  the  shit  we  need  to  do!  We  use  the  intertemporal  model  (c1,c2)  

• To  find  the  demand  for  current  consumption  c1(r,e1,e2 )  • Capital  supply  is  then s1(r,e1,e2 ) = e1 − c1(r,e1,e2 )  • If  savings  are  negative,  we  are  borrowing  

 A  Cobb-­‐Douglas  example:  here  are  our  circumstances  

• Utility  function:u = c1αc2

β  • Budget:   (1+ r)c1 + c2 = (1+ r)e1 + e2  

Let’s  work  out  those  demand  functions!  • Try  the  easy  way:  

o C1* =

αα +β

IP1;P1 = (1+ r); I = e1(1+ r)+ e2

C1* =

αα +β

e1(1+ r)+ e2(1+ r)

 

o C2* =

ββ +α

IP2;P2 = (1+ r); I = e1(1+ r)+ e2

C2* =

ββ +α

e1(1+ r)+ e2(1+ r)

 

• The  Easy  Way  WORKS!  • So,  how  do  we  find  savings?  Savings  is   e1 −C1  

o S1* = e1 −

αα +β

e1(1+ r)+ e2(1+ r)

 

So  …  now  let’s  have  a  look  at  what  the  capital  supply  curve  looks  like:  

• S1* = e1 −

αα +β

e1(1+ r)+ e2(1+ r)

δSδr

= +ve;δ2Sδr2

= −ve  

• just  look  to  the  “r”  at  the  bottom;  it  flips  the  sign  with  each  derivative  • Thus,  savings  increases  with  the  interest  rates,  at  a  decreasing  rate  

Savings  function,  plot  Savings  against  IR    

 

  5—49  

5.3 Consumer Welfare To  work  out  consumer  welfare,  we  need  to  work  out  the  following:  

1. The  Marginal  Willingness  to  Pay  for  each  unit  of  x1  2. The  total  willingness  to  pay  (TWTP)  for  x1  (the  sum  of  the  MWTP)  3. The  consumer  surplus  is  the  difference  between  the  amount  paid  and  the  

TWTP  

5.3.1 Method  1:  step  by  step  

5.3.1.1 Step  1:  MWTP  For  each  unit,  the  MWTP  is  equal  to  the  MRS  at  that  point.  

• u = x1

αx2β

MRS = −ux1,

ux2, = −

αx2βx1

 

• at   (x1i, x2

j )→MWTP =MRS(x1

i ,x2j )= −

αx2j

βx1i  

We  can  plot  these  to  make  the  MWTP  curve.  

5.3.1.2 Step  2:  TWTP  The  TWTP  is  the  area  below  the  MWTP  curve.  

5.3.1.3 Step  3:  Consumer  Surplus  Consumer  surplus  is  the  area  below  the  MWTP  curve,  above  the  price  paid.  

5.3.2 Method  2:  MWTP  and  the  Compensated  Demand  Function  The  Compensated  Demand  Function  is  equal  to  the  MWTP  

5.3.3 My  idea:  I  think  that  the  MWTP=MRS=Slope  …  so  we  can  just  derive  the  demand  function,  and  find  the  area  underneath  that