interactions between algebra, geometry and combinatoricsinfusino/kwim/baur-slides.pdf ·...

57
Interactions between Algebra, Geometry and Combinatorics Karin Baur University of Graz 12 June 2018

Upload: others

Post on 15-Nov-2019

5 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Interactions between Algebra, Geometry and Combinatoricsinfusino/KWIM/Baur-Slides.pdf · Gunawan-Musiker-Vogel, 2018 Aichholzer-Andritsch-B-Vogtenhuber, 2017 B-Martin, arXiv 2017

Interactions between Algebra, Geometry andCombinatorics

Karin Baur

University of Graz

12 June 2018

Page 2: Interactions between Algebra, Geometry and Combinatoricsinfusino/KWIM/Baur-Slides.pdf · Gunawan-Musiker-Vogel, 2018 Aichholzer-Andritsch-B-Vogtenhuber, 2017 B-Martin, arXiv 2017

1 GeometryPythagoras’ theoremPtolemy’s Theorem

2 TriangulationsPolygonsSurfaces

3 Cluster theoryCluster algebrasCluster categories

4 Surfaces and combinatoricsCategories and diagonalsDimers, boundary algebras and categories of modules

5 Overview and Outlook

Page 3: Interactions between Algebra, Geometry and Combinatoricsinfusino/KWIM/Baur-Slides.pdf · Gunawan-Musiker-Vogel, 2018 Aichholzer-Andritsch-B-Vogtenhuber, 2017 B-Martin, arXiv 2017

Pythagoras’s theorem

a

b

c

Theorem (Pythagoras, 570-495 BC)

The sides of a right triangle satisfy a2 + b2 = c2.

Karin Baur Interactions between Algebra, Geometry and Combinatorics 1 / 25

Page 4: Interactions between Algebra, Geometry and Combinatoricsinfusino/KWIM/Baur-Slides.pdf · Gunawan-Musiker-Vogel, 2018 Aichholzer-Andritsch-B-Vogtenhuber, 2017 B-Martin, arXiv 2017

Ptolemy’s Theorem (Theorema Secundum)

A cyclic quadrilateral is aquadrilateral whose verticeslie on a common circle.

a

b

a

b

Theorem (Ptolemy, 70 - 168 BC)

The lengths of a sides and diagonals of a cyclic quadrilateral satisfy:|AC | · |BD| = |AB| · |CD|+ |BC | · |DA|

Karin Baur Interactions between Algebra, Geometry and Combinatorics 2 / 25

Page 5: Interactions between Algebra, Geometry and Combinatoricsinfusino/KWIM/Baur-Slides.pdf · Gunawan-Musiker-Vogel, 2018 Aichholzer-Andritsch-B-Vogtenhuber, 2017 B-Martin, arXiv 2017

Ptolemy’s Theorem (Theorema Secundum)

A cyclic quadrilateral is aquadrilateral whose verticeslie on a common circle.

a

b

a

b

AD

AB

BC

CDBD

AC

A

B

C

D

Theorem (Ptolemy, 70 - 168 BC)

The lengths of a sides and diagonals of a cyclic quadrilateral satisfy:|AC | · |BD| = |AB| · |CD|+ |BC | · |DA|

Karin Baur Interactions between Algebra, Geometry and Combinatorics 2 / 25

Page 6: Interactions between Algebra, Geometry and Combinatoricsinfusino/KWIM/Baur-Slides.pdf · Gunawan-Musiker-Vogel, 2018 Aichholzer-Andritsch-B-Vogtenhuber, 2017 B-Martin, arXiv 2017

Ptolemy’s Theorem (Theorema Secundum)

A cyclic quadrilateral is aquadrilateral whose verticeslie on a common circle.

AD

AB

BC

CDBD

AC

A

B

C

D

Theorem (Ptolemy, 70 - 168 BC)

The lengths of a sides and diagonals of a cyclic quadrilateral satisfy:|AC | · |BD| = |AB| · |CD|+ |BC | · |DA|

Karin Baur Interactions between Algebra, Geometry and Combinatorics 2 / 25

Page 7: Interactions between Algebra, Geometry and Combinatoricsinfusino/KWIM/Baur-Slides.pdf · Gunawan-Musiker-Vogel, 2018 Aichholzer-Andritsch-B-Vogtenhuber, 2017 B-Martin, arXiv 2017

TriangulationsA triangulation of an n-gon is a subdivision of the polygon into triangles.

Result: n − 2 triangles, using n − 3 diagonals (invariants of the n-gon).

Theorem (Euler’s Conjecture, 1751, Proofs: Catalan et al., 1838-39)

Number of ways to triangulate a convex n-gon:

Cn :=1

n − 1

(2n − 4

n − 2

)Catalan numbers

n 3 4 5 6 7 8

Cn 1 2 5 14 42 132

Karin Baur Interactions between Algebra, Geometry and Combinatorics 3 / 25

Page 8: Interactions between Algebra, Geometry and Combinatoricsinfusino/KWIM/Baur-Slides.pdf · Gunawan-Musiker-Vogel, 2018 Aichholzer-Andritsch-B-Vogtenhuber, 2017 B-Martin, arXiv 2017

Triangulations

A triangulation of an n-gon is a subdivision of the polygon into triangles.

Result: n − 2 triangles, using n − 3 diagonals (invariants of the n-gon).

Theorem (Euler’s Conjecture, 1751, Proofs: Catalan et al., 1838-39)

Number of ways to triangulate a convex n-gon:

Cn :=1

n − 1

(2n − 4

n − 2

)Catalan numbers

n 3 4 5 6 7 8

Cn 1 2 5 14 42 132

Karin Baur Interactions between Algebra, Geometry and Combinatorics 3 / 25

Page 9: Interactions between Algebra, Geometry and Combinatoricsinfusino/KWIM/Baur-Slides.pdf · Gunawan-Musiker-Vogel, 2018 Aichholzer-Andritsch-B-Vogtenhuber, 2017 B-Martin, arXiv 2017

Figures in the plane: disk, annulus

Disk Dynkin type A

n-gon: disk with n marked points on boundary.

x x

Punctured disk Dynkin type D

Marked points on boundary, one marked point in interior. (degenerate triangles)

Annulus Dynkin type A

Marked points on both boundaries of the figure.

Finiteness (Fomin - Shapiro - D. Thurston 2005)

S Riemann surfacewith marked points M hasfinitely many triangulations

⇐⇒S is a disk andM has at most onepoint in S \ ∂S

Karin Baur Interactions between Algebra, Geometry and Combinatorics 4 / 25

Page 10: Interactions between Algebra, Geometry and Combinatoricsinfusino/KWIM/Baur-Slides.pdf · Gunawan-Musiker-Vogel, 2018 Aichholzer-Andritsch-B-Vogtenhuber, 2017 B-Martin, arXiv 2017

Figures in the plane: disk, annulus

Disk Dynkin type A

n-gon: disk with n marked points on boundary.

Punctured disk Dynkin type D

Marked points on boundary, one marked point in interior. (degenerate triangles)

x x x

Annulus Dynkin type A

Marked points on both boundaries of the figure.

Finiteness (Fomin - Shapiro - D. Thurston 2005)

S Riemann surfacewith marked points M hasfinitely many triangulations

⇐⇒S is a disk andM has at most onepoint in S \ ∂S

Karin Baur Interactions between Algebra, Geometry and Combinatorics 4 / 25

Page 11: Interactions between Algebra, Geometry and Combinatoricsinfusino/KWIM/Baur-Slides.pdf · Gunawan-Musiker-Vogel, 2018 Aichholzer-Andritsch-B-Vogtenhuber, 2017 B-Martin, arXiv 2017

Figures in the plane: disk, annulus

Disk Dynkin type A

n-gon: disk with n marked points on boundary.

Punctured disk Dynkin type D

Marked points on boundary, one marked point in interior. (degenerate triangles)

Annulus Dynkin type A

Marked points on both boundaries of the figure.

x x

Finiteness (Fomin - Shapiro - D. Thurston 2005)

S Riemann surfacewith marked points M hasfinitely many triangulations

⇐⇒S is a disk andM has at most onepoint in S \ ∂S

Karin Baur Interactions between Algebra, Geometry and Combinatorics 4 / 25

Page 12: Interactions between Algebra, Geometry and Combinatoricsinfusino/KWIM/Baur-Slides.pdf · Gunawan-Musiker-Vogel, 2018 Aichholzer-Andritsch-B-Vogtenhuber, 2017 B-Martin, arXiv 2017

Figures in the plane: disk, annulus

Disk Dynkin type A

n-gon: disk with n marked points on boundary.

Punctured disk Dynkin type D

Marked points on boundary, one marked point in interior. (degenerate triangles)

Annulus Dynkin type A

Marked points on both boundaries of the figure.

Finiteness (Fomin - Shapiro - D. Thurston 2005)

S Riemann surfacewith marked points M hasfinitely many triangulations

⇐⇒S is a disk andM has at most onepoint in S \ ∂S

Karin Baur Interactions between Algebra, Geometry and Combinatorics 4 / 25

Page 13: Interactions between Algebra, Geometry and Combinatoricsinfusino/KWIM/Baur-Slides.pdf · Gunawan-Musiker-Vogel, 2018 Aichholzer-Andritsch-B-Vogtenhuber, 2017 B-Martin, arXiv 2017

Triangles, diagonals

‘Triangles’

Figures with three or less edges: degenerate triangles.

‘Diagonals’ (FST 2005)

The number of diagonals is constant. It is the rank of the surface:

p + 3q − 3(2− b) + 6g ,where: p marked points, q punctures,b boundary components, g genus.

today: q ∈ {0, 1}, b ∈ {1, 2}, g = 0.

Karin Baur Interactions between Algebra, Geometry and Combinatorics 5 / 25

Page 14: Interactions between Algebra, Geometry and Combinatoricsinfusino/KWIM/Baur-Slides.pdf · Gunawan-Musiker-Vogel, 2018 Aichholzer-Andritsch-B-Vogtenhuber, 2017 B-Martin, arXiv 2017

Cluster algebras

\In an attempt to create an algebraic

framework for dual canonical bases

and total positivity in semi simple

groups, we initiate the study of a

new class of commutative algebras."

Fomin-Zelevinsky 2001

recursively defined algebras ⊆ Q(x1, . . . , xn)

grouped in overlapping sets of generators

many relations between the generators

Karin Baur Interactions between Algebra, Geometry and Combinatorics 6 / 25

Page 15: Interactions between Algebra, Geometry and Combinatoricsinfusino/KWIM/Baur-Slides.pdf · Gunawan-Musiker-Vogel, 2018 Aichholzer-Andritsch-B-Vogtenhuber, 2017 B-Martin, arXiv 2017

Cluster algebras

\In an attempt to create an algebraic

framework for dual canonical bases

and total positivity in semi simple

groups, we initiate the study of a

new class of commutative algebras."

Fomin-Zelevinsky 2001

recursively defined algebras ⊆ Q(x1, . . . , xn)

grouped in overlapping sets of generators

many relations between the generators

Karin Baur Interactions between Algebra, Geometry and Combinatorics 6 / 25

Page 16: Interactions between Algebra, Geometry and Combinatoricsinfusino/KWIM/Baur-Slides.pdf · Gunawan-Musiker-Vogel, 2018 Aichholzer-Andritsch-B-Vogtenhuber, 2017 B-Martin, arXiv 2017

Pentagon-recurrence (Spence, Abel, Hill)

Sequence (fi )i ⊆ Q(x1, x2): fm+1 = fm+1fm−1

with f1 := x1, f2 := x2.

f3 = x2+1x1

, f4 = x1+x2+1x1x2

, f5 = x1+1x2

, f6 = f1, f7 = f2, etc.

1

1

2

3

4

5

f4 =x1+x2+1

x1x2

1

1

1

1

1

f3 =x2+1

x14

1

2

3

5

f4

f5

1

1

1

1

1

4

1

2

3

5

Cluster algebra A := 〈(fi )i 〉 = 〈f1, f2, . . . , f5〉 ⊆ Q(x1, x2).

Relations: f1f3 = f2 + 1, f2f4 = f3 + 1, etc.

Karin Baur Interactions between Algebra, Geometry and Combinatorics 7 / 25

Page 17: Interactions between Algebra, Geometry and Combinatoricsinfusino/KWIM/Baur-Slides.pdf · Gunawan-Musiker-Vogel, 2018 Aichholzer-Andritsch-B-Vogtenhuber, 2017 B-Martin, arXiv 2017

Pentagon-recurrence (Spence, Abel, Hill)

Sequence (fi )i ⊆ Q(x1, x2): fm+1 = fm+1fm−1

with f1 := x1, f2 := x2.

f3 = x2+1x1

, f4 = x1+x2+1x1x2

, f5 = x1+1x2

, f6 = f1, f7 = f2, etc.

Cluster algebra A := 〈(fi )i 〉 = 〈f1, f2, . . . , f5〉 ⊆ Q(x1, x2).

Relations: f1f3 = f2 + 1, f2f4 = f3 + 1, etc.

Karin Baur Interactions between Algebra, Geometry and Combinatorics 7 / 25

Page 18: Interactions between Algebra, Geometry and Combinatoricsinfusino/KWIM/Baur-Slides.pdf · Gunawan-Musiker-Vogel, 2018 Aichholzer-Andritsch-B-Vogtenhuber, 2017 B-Martin, arXiv 2017

Cluster algebras

Start with {x1, . . . , xn} cluster, B = (bij) n × n a sign-skew symmetricmatrix over Z. The pair (x ,B) is a seed. Relations through mutation atk (B mutates similarly):

xk · x ′k =∏bik>0

xbiki +∏bik<0

x−biki

Mutation at k: xk 7−→ x ′k , and so (x ,B) ({x1, . . . , x ′k , . . . , xn},B ′).

Cluster variables all the xi , the x ′i , etc.

Cluster algebra A = A(x ,B) ⊂ Q(x1, . . . , xn) generated by all clustervariables.

Karin Baur Interactions between Algebra, Geometry and Combinatorics 8 / 25

Page 19: Interactions between Algebra, Geometry and Combinatoricsinfusino/KWIM/Baur-Slides.pdf · Gunawan-Musiker-Vogel, 2018 Aichholzer-Andritsch-B-Vogtenhuber, 2017 B-Martin, arXiv 2017

Cluster algebras

A = A(x ,B) ⊂ Q(x1, . . . , xn).

Properties

Laurent phenomenon: A ⊂ Z[x±1 , x±2 , . . . , x

±n ]: Fomin-Zelevinsky.

Finite type follows Dynkin type: Fomin-Zelevinsky.

Positivity: coefficients in Z>0: Musiker-Schiffler-Williams 2011,Lee-Schiffler 2015, Gross-Hacking-Keel-Kontsevich 2018.

ExamplesC[SL2], C[Gr(2, n)] (Fomin-Zelevinsky), C[Gr(k , n)] (Scott).

Karin Baur Interactions between Algebra, Geometry and Combinatorics 9 / 25

Page 20: Interactions between Algebra, Geometry and Combinatoricsinfusino/KWIM/Baur-Slides.pdf · Gunawan-Musiker-Vogel, 2018 Aichholzer-Andritsch-B-Vogtenhuber, 2017 B-Martin, arXiv 2017

Overview

Total positivity

canonical basis of Uq(g)

Fock-Goncharov, 2006

Gekhtman-Shapiro-Vainshtein, 2003

Poisson geometryintegrable systems

Teichmuller theory

Karin Baur Interactions between Algebra, Geometry and Combinatorics 10 / 25

Page 21: Interactions between Algebra, Geometry and Combinatoricsinfusino/KWIM/Baur-Slides.pdf · Gunawan-Musiker-Vogel, 2018 Aichholzer-Andritsch-B-Vogtenhuber, 2017 B-Martin, arXiv 2017

In focus

Gratz, 2016

Parsons, 2015

Parsons, 2013

Grabowski-Gratz, 2014

B-Marsh w Thomas, 2009

B-Marsh 2012

B-Dupont, 2014

Tschabold, arXiv 2015

B-Parsons-Tschabold, 2016

Vogel, 2016

B-Fellner-Parsons-Tschabold, 2018

B-Martin, 2018B-Gekhtman∗

B-Marsh∗

B-Schroll∗

Lamberti, 2011, 2012

Gratz, 2015

B-Bogdanic, 2016

B-Bogdanic-Garcıa Elsener∗

B-Coelho Simoes-Pauksztello∗

B-Bogdanic-Pressland∗

B-Marsh 2007, 2008, 2012

B-Buan-Marsh, 2014

B-King-Marsh, 2016

Lamberti, 2014

B-Torkildsen, arXiv 2015

B-Gratz, 2018

B-Faber-Gratz-Serhiyenko-Todorov, 2017

B-Faber-Gratz-Serhiyenko-Todorov∗

McMahon, arXiv 2016, 2017

Gunawan-Musiker-Vogel, 2018

Aichholzer-Andritsch-B-Vogtenhuber, 2017

B-Martin, arXiv 2017

B-Coelho Simoes, arXiv 2018

B-Laking ∗

Coelho Simoes-Parsons 2017

B-Bogdanic-Garcıa Elsener-Martsinkovsky ∗

B-Schiffler ∗

Andritsch, 2018

B-Beil ∗

B-Nasr Isfahani ∗

∗ ongoing projects

Karin Baur Interactions between Algebra, Geometry and Combinatorics 11 / 25

Page 22: Interactions between Algebra, Geometry and Combinatoricsinfusino/KWIM/Baur-Slides.pdf · Gunawan-Musiker-Vogel, 2018 Aichholzer-Andritsch-B-Vogtenhuber, 2017 B-Martin, arXiv 2017

Background: algebra ←→ geometry

pentagon recurrence

cluster variables: fm+1 = fm+1fm−1

x2x1+x2+1

x1x2x1

x1x2+1x1

x1+1x2

x2

Ptolemy relation

diagonals: ac = ab + cd

(1, 4) (2, 5) (1, 3)

(1, 3) (2, 4) (3, 5) (1, 4)

1

1

2

3

4

5

f4 =x1+x2+1

x1x2

1

1

1

1

1

f3 =x2+1

x14

1

2

3

5

f4

f5

1

1

1

1

1

4

1

2

3

5

Analogies

Polygon ←→ cluster algebra: Fomin-Zelevinsky, FST

Polygon ←→ cluster category: Caldero-Chapoton-Schiffler, B-Marsh

motivates: Surfaces ! categories: B-King-Marsh

Karin Baur Interactions between Algebra, Geometry and Combinatorics 12 / 25

Page 23: Interactions between Algebra, Geometry and Combinatoricsinfusino/KWIM/Baur-Slides.pdf · Gunawan-Musiker-Vogel, 2018 Aichholzer-Andritsch-B-Vogtenhuber, 2017 B-Martin, arXiv 2017

Background: algebra ←→ geometry

pentagon recurrence

cluster variables: fm+1 = fm+1fm−1

x2x1+x2+1

x1x2x1

x1x2+1x1

x1+1x2

x2

Ptolemy relation

diagonals: ac = ab + cd

(1, 4) (2, 5) (1, 3)

(1, 3) (2, 4) (3, 5) (1, 4)

Analogies

Polygon ←→ cluster algebra: Fomin-Zelevinsky, FST

Polygon ←→ cluster category: Caldero-Chapoton-Schiffler, B-Marsh

motivates: Surfaces ! categories: B-King-Marsh

Karin Baur Interactions between Algebra, Geometry and Combinatorics 12 / 25

Page 24: Interactions between Algebra, Geometry and Combinatoricsinfusino/KWIM/Baur-Slides.pdf · Gunawan-Musiker-Vogel, 2018 Aichholzer-Andritsch-B-Vogtenhuber, 2017 B-Martin, arXiv 2017

Background: algebra ←→ geometry

pentagon recurrence

cluster variables: fm+1 = fm+1fm−1

x2x1+x2+1

x1x2x1

x1x2+1x1

x1+1x2

x2

Ptolemy relation

diagonals: ac = ab + cd

(1, 4) (2, 5) (1, 3)

(1, 3) (2, 4) (3, 5) (1, 4)

Analogies

Polygon ←→ cluster algebra: Fomin-Zelevinsky, FST

Polygon ←→ cluster category: Caldero-Chapoton-Schiffler, B-Marsh

motivates: Surfaces ! categories: B-King-Marsh

Karin Baur Interactions between Algebra, Geometry and Combinatorics 12 / 25

Page 25: Interactions between Algebra, Geometry and Combinatoricsinfusino/KWIM/Baur-Slides.pdf · Gunawan-Musiker-Vogel, 2018 Aichholzer-Andritsch-B-Vogtenhuber, 2017 B-Martin, arXiv 2017

Cluster category

Definition (Cluster category of type Q, in example: Q = 1← 2)

CQ :=Db(Q-rep)/(τ−1 ◦ [1])

C C

C 0 0 C

a) Q - rep :

Category CQ :

Fin. many indecomposable objects︸ ︷︷ ︸vertices

, arrows: irreducible morphisms.

Karin Baur Interactions between Algebra, Geometry and Combinatorics 13 / 25

Page 26: Interactions between Algebra, Geometry and Combinatoricsinfusino/KWIM/Baur-Slides.pdf · Gunawan-Musiker-Vogel, 2018 Aichholzer-Andritsch-B-Vogtenhuber, 2017 B-Martin, arXiv 2017

Cluster category

Definition (Cluster category of type Q, in example: Q = 1← 2)

CQ :=Db(Q-rep)/(τ−1 ◦ [1])

(Q - rep)[1](Q - rep)[−1]

Q - rep (Q - rep)[2]

· · · · · ·

b) Db(Q− rep) :

Category CQ :

Fin. many indecomposable objects︸ ︷︷ ︸vertices

, arrows: irreducible morphisms.

Karin Baur Interactions between Algebra, Geometry and Combinatorics 13 / 25

Page 27: Interactions between Algebra, Geometry and Combinatoricsinfusino/KWIM/Baur-Slides.pdf · Gunawan-Musiker-Vogel, 2018 Aichholzer-Andritsch-B-Vogtenhuber, 2017 B-Martin, arXiv 2017

Cluster category

Definition (Cluster category of type Q, in example: Q = 1← 2)

CQ :=Db(Q-rep)/(τ−1 ◦ [1])

c) CQ :

X

Y X

Y (1; 3)

(1; 4)

(2; 4)

(2; 5)

(3; 5)

(1; 3)

(1; 4)

Category CQ :

Fin. many indecomposable objects︸ ︷︷ ︸vertices

, arrows: irreducible morphisms.

Karin Baur Interactions between Algebra, Geometry and Combinatorics 13 / 25

Page 28: Interactions between Algebra, Geometry and Combinatoricsinfusino/KWIM/Baur-Slides.pdf · Gunawan-Musiker-Vogel, 2018 Aichholzer-Andritsch-B-Vogtenhuber, 2017 B-Martin, arXiv 2017

Properties of cluster categories

Properties

CQ is Krull-Schmidt, triangulated, of Calabi-Yau dimension 2:Buan-Marsh-Reineke-Reiten-Todorov 2005, Keller, 2005.

CAn−3 , CDn arises from triangulations of (punctured) n-gon:Caldero-Chapoton-Schiffler 2005, Schiffler 2008.

m-cluster categories in types A, D from m-angulations of (punctured)polygons: B-Marsh 2007, 2008.

Strategy

Use combinatorial geometry to describe cluster categories:Surface combinatorics yields cluster algebras, cluster categories.

Karin Baur Interactions between Algebra, Geometry and Combinatorics 14 / 25

Page 29: Interactions between Algebra, Geometry and Combinatoricsinfusino/KWIM/Baur-Slides.pdf · Gunawan-Musiker-Vogel, 2018 Aichholzer-Andritsch-B-Vogtenhuber, 2017 B-Martin, arXiv 2017

Properties of cluster categories

Properties

CQ is Krull-Schmidt, triangulated, of Calabi-Yau dimension 2:Buan-Marsh-Reineke-Reiten-Todorov 2005, Keller, 2005.

CAn−3 , CDn arises from triangulations of (punctured) n-gon:Caldero-Chapoton-Schiffler 2005, Schiffler 2008.

m-cluster categories in types A, D from m-angulations of (punctured)polygons: B-Marsh 2007, 2008.

Strategy

Use combinatorial geometry to describe cluster categories:Surface combinatorics yields cluster algebras, cluster categories.

Karin Baur Interactions between Algebra, Geometry and Combinatorics 14 / 25

Page 30: Interactions between Algebra, Geometry and Combinatoricsinfusino/KWIM/Baur-Slides.pdf · Gunawan-Musiker-Vogel, 2018 Aichholzer-Andritsch-B-Vogtenhuber, 2017 B-Martin, arXiv 2017

Categories via surfaces: 2 approaches

Approach 1:

CA2 described via diagonals in pentagon; CAn via diagonals in (n + 3)-gon.

Objects correspond to diagonals. Morphisms via rotation. Extensions viaintersections of diagonals, shift, τ , etc.

5

1

2

3

4

(1; 3)

5

1

2

3

4

In CA2 : indecomposable objects Xd where d is a diagonal in pentagon.Irreducible morphism X(2,5) → X(3,5) and Ext1C(X(1,3),X(2,4)) 6= 0.

Karin Baur Interactions between Algebra, Geometry and Combinatorics 15 / 25

Page 31: Interactions between Algebra, Geometry and Combinatoricsinfusino/KWIM/Baur-Slides.pdf · Gunawan-Musiker-Vogel, 2018 Aichholzer-Andritsch-B-Vogtenhuber, 2017 B-Martin, arXiv 2017

Algebra via geometry: Approach 1

Development

Categories CDn , CAn, CE6 , module categories, root category, derived

category etc.

B-Marsh [2007,08], Schiffler [2008], Warkentin [2009], Brustle-Zhang [2011],

Lamberti [2011,12], B-Marsh [2012], Coelho-Simoes [2012], Holm-Jørgensen

[2012], Igusa-Todorov [2012,13], B-Dupont [2014], B-Torkildsen [2015], Gratz

[2015], Torkildsen [2015], Canakci-Schroll [2017], B-Gratz [2018],

Opper-Plamondon-Schroll [2018], B-Coelho Simoes [2018] etc.

Karin Baur Interactions between Algebra, Geometry and Combinatorics 16 / 25

Page 32: Interactions between Algebra, Geometry and Combinatoricsinfusino/KWIM/Baur-Slides.pdf · Gunawan-Musiker-Vogel, 2018 Aichholzer-Andritsch-B-Vogtenhuber, 2017 B-Martin, arXiv 2017

Dimers on surfaces: Approach 2

Triangulations of disks CAn or C(Gr(2, n + 3)).

New: can get C(Gr(k , n)) for any k through surface combinatorics.

Approach 2: B-King-Marsh 2016

The Grassmannian cluster category C(Gr(k , n)) is described via(k, n)-dimers.

A dimer is an oriented graph (quiver) embedded in a surface, such that itscomplement is a union of disks. Comes with a natural potential.

β4

γ3

γ2

β3

β1

α

Rα : p1(α)− p2(α)

p2(α) = γ1γ2γ3

p1(α) = β1β2β3β4

⊖ ⊕

Potential: yields the relations Rα

Karin Baur Interactions between Algebra, Geometry and Combinatorics 17 / 25

Page 33: Interactions between Algebra, Geometry and Combinatoricsinfusino/KWIM/Baur-Slides.pdf · Gunawan-Musiker-Vogel, 2018 Aichholzer-Andritsch-B-Vogtenhuber, 2017 B-Martin, arXiv 2017

A dimer with boundary (B-King-Marsh)

A dimer with boundary Q is a quiver embedded in a surface, glued fromoriented disks. Arrows appear in 1 (boundary arrows) or 2 faces (interior).

A (k , n)-dimer

A dimer Q is a (k, n)-dimer if the surface is an n-gon and if theassociated zig-zag paths induce the permutation i 7→ i + k from Sn.

Karin Baur Interactions between Algebra, Geometry and Combinatorics 18 / 25

Page 34: Interactions between Algebra, Geometry and Combinatoricsinfusino/KWIM/Baur-Slides.pdf · Gunawan-Musiker-Vogel, 2018 Aichholzer-Andritsch-B-Vogtenhuber, 2017 B-Martin, arXiv 2017

A dimer with boundary (B-King-Marsh)

A dimer with boundary Q is a quiver embedded in a surface, glued fromoriented disks. Arrows appear in 1 (boundary arrows) or 2 faces (interior).

A (k , n)-dimer

A dimer Q is a (k, n)-dimer if the surface is an n-gon and if theassociated zig-zag paths induce the permutation i 7→ i + k from Sn.

Karin Baur Interactions between Algebra, Geometry and Combinatorics 18 / 25

Page 35: Interactions between Algebra, Geometry and Combinatoricsinfusino/KWIM/Baur-Slides.pdf · Gunawan-Musiker-Vogel, 2018 Aichholzer-Andritsch-B-Vogtenhuber, 2017 B-Martin, arXiv 2017

A dimer with boundary (B-King-Marsh)

A dimer with boundary Q is a quiver embedded in a surface, glued fromoriented disks. Arrows appear in 1 (boundary arrows) or 2 faces (interior).

2

σ = (14)(25)(36)

(k; n) = (3; 6)

In red: zig-zag paths

A (k , n)-dimer

A dimer Q is a (k, n)-dimer if the surface is an n-gon and if theassociated zig-zag paths induce the permutation i 7→ i + k from Sn.

Karin Baur Interactions between Algebra, Geometry and Combinatorics 18 / 25

Page 36: Interactions between Algebra, Geometry and Combinatoricsinfusino/KWIM/Baur-Slides.pdf · Gunawan-Musiker-Vogel, 2018 Aichholzer-Andritsch-B-Vogtenhuber, 2017 B-Martin, arXiv 2017

Dimers and associated algebras

Definition (Dimer algebra of a dimer Q)

Dimer algebra ΛQ of Q: path algebra CQ with relations p1(α) = p2(α).

p1(α)

Let eb ∈ ΛQ be the sum of the trivial paths of the boundary vertices of Q.

Definition

Let Q be a dimer, with dimer algebra ΛQ .The boundary algebra of Q is the algebra AQ = ebΛQeb.

Karin Baur Interactions between Algebra, Geometry and Combinatorics 19 / 25

Page 37: Interactions between Algebra, Geometry and Combinatoricsinfusino/KWIM/Baur-Slides.pdf · Gunawan-Musiker-Vogel, 2018 Aichholzer-Andritsch-B-Vogtenhuber, 2017 B-Martin, arXiv 2017

Dimers and associated algebras

Definition (Dimer algebra of a dimer Q)

Dimer algebra ΛQ of Q: path algebra CQ with relations p1(α) = p2(α).

Let eb ∈ ΛQ be the sum of the trivial paths of the boundary vertices of Q.

Definition

Let Q be a dimer, with dimer algebra ΛQ .The boundary algebra of Q is the algebra AQ = ebΛQeb.

Karin Baur Interactions between Algebra, Geometry and Combinatorics 19 / 25

Page 38: Interactions between Algebra, Geometry and Combinatoricsinfusino/KWIM/Baur-Slides.pdf · Gunawan-Musiker-Vogel, 2018 Aichholzer-Andritsch-B-Vogtenhuber, 2017 B-Martin, arXiv 2017

Example: (3, 6)-dimer and its boundary algebra

Boundary algebra AQ = ebΛQeb of (3, 6)-dimer Q

Generators xi , yi , i = 1, . . . , 6.Relations: xy = yx , x3 = y3 (at each vertex) or xk = yn−k , respectively

Karin Baur Interactions between Algebra, Geometry and Combinatorics 20 / 25

Page 39: Interactions between Algebra, Geometry and Combinatoricsinfusino/KWIM/Baur-Slides.pdf · Gunawan-Musiker-Vogel, 2018 Aichholzer-Andritsch-B-Vogtenhuber, 2017 B-Martin, arXiv 2017

Example: (3, 6)-dimer and its boundary algebra

Boundary algebra AQ = ebΛQeb of (3, 6)-dimer Q

Generators xi , yi , i = 1, . . . , 6.Relations: xy = yx , x3 = y3 (at each vertex) or xk = yn−k , respectively

Karin Baur Interactions between Algebra, Geometry and Combinatorics 20 / 25

Page 40: Interactions between Algebra, Geometry and Combinatoricsinfusino/KWIM/Baur-Slides.pdf · Gunawan-Musiker-Vogel, 2018 Aichholzer-Andritsch-B-Vogtenhuber, 2017 B-Martin, arXiv 2017

Example: (3, 6)-dimer and its boundary algebra

Boundary algebra AQ = ebΛQeb of (3, 6)-dimer Q

Generators xi , yi , i = 1, . . . , 6.Relations: xy = yx , x3 = y3 (at each vertex) or xk = yn−k , respectively

Karin Baur Interactions between Algebra, Geometry and Combinatorics 20 / 25

Page 41: Interactions between Algebra, Geometry and Combinatoricsinfusino/KWIM/Baur-Slides.pdf · Gunawan-Musiker-Vogel, 2018 Aichholzer-Andritsch-B-Vogtenhuber, 2017 B-Martin, arXiv 2017

Example: (3, 6)-dimer and its boundary algebra

x5y5 y2x2

Boundary algebra AQ = ebΛQeb of (3, 6)-dimer Q

Generators xi , yi , i = 1, . . . , 6.Relations: xy = yx , x3 = y3 (at each vertex) or xk = yn−k , respectively

Karin Baur Interactions between Algebra, Geometry and Combinatorics 20 / 25

Page 42: Interactions between Algebra, Geometry and Combinatoricsinfusino/KWIM/Baur-Slides.pdf · Gunawan-Musiker-Vogel, 2018 Aichholzer-Andritsch-B-Vogtenhuber, 2017 B-Martin, arXiv 2017

(k , n)-dimers ! Grassmannians

Theorem (B-King-Marsh 2016)

Any (k , n)-dimer yields the cluster category C(Grk,n).

Key ingredients

Let Q, Q ′ two (k , n)-dimers, with boundary algebras AQ and AQ′ .Then AQ

∼= AQ′ (B-King-Marsh 2016).

AQ∼= B, algebra used by Jensen-King-Su 2016.

CM(B) categorifies Scott’s cluster structure of the Grassmanniancluster algebra C[Gr(k , n)], Jensen-King-Su 2016.

In CM(AQ), Plucker correspond to rank 1 modules.

(k, n)-dimers yield cluster-tilting objects.

Karin Baur Interactions between Algebra, Geometry and Combinatorics 21 / 25

Page 43: Interactions between Algebra, Geometry and Combinatoricsinfusino/KWIM/Baur-Slides.pdf · Gunawan-Musiker-Vogel, 2018 Aichholzer-Andritsch-B-Vogtenhuber, 2017 B-Martin, arXiv 2017

Results from (k , n)-dimers ! Grassmannians

(k; n)-dimers

yield C(Gr(k; n))

B-King-Marsh 2016

B-Faber-Gratz-Serh.-Todorov 2018

1 3 1 2 2 12 2 1 3 1

1 1 1 1 1 1

1 1 1 1 1

B-Bogdanic-Garcia Elsener 2018

C(Gr(3; 6))

B-Bogdanic 2017

M135=M246

Karin Baur Interactions between Algebra, Geometry and Combinatorics 22 / 25

Page 44: Interactions between Algebra, Geometry and Combinatoricsinfusino/KWIM/Baur-Slides.pdf · Gunawan-Musiker-Vogel, 2018 Aichholzer-Andritsch-B-Vogtenhuber, 2017 B-Martin, arXiv 2017

Projects around dimers with boundary

six boundary arrows

boundary

arrows

two + two

Understand dimer on general surfaces with boundary.

Develop theory of boundary algebras, of associated module categories.

Laminations, starting with (k , n)-dimers.

Friezes, SLk -friezes.

Dimer algebras and homotopy dimer algebras.

Degenerate (k , n)-dimers. k = 2: tilings.

Karin Baur Interactions between Algebra, Geometry and Combinatorics 23 / 25

Page 45: Interactions between Algebra, Geometry and Combinatoricsinfusino/KWIM/Baur-Slides.pdf · Gunawan-Musiker-Vogel, 2018 Aichholzer-Andritsch-B-Vogtenhuber, 2017 B-Martin, arXiv 2017

Approach 1

Ptolemy’s theorem

AD

AB

BC

CDBD

AC

A

B

C

D

In polygon Cluster category CA2

Polygon ←→ cluster category

(1, 4) and (2, 5) intersect,(2, 4) and (2, 5) don’t intersect.

Ext1(X(1,4),X(2,5)) 6= 0,Ext1(X(2,4),X(2,5)) = 0.

Geometric interpretation of algebraic phenomena (e.g. [1], τ). Also forgeneral surfaces and categories.

Karin Baur Interactions between Algebra, Geometry and Combinatorics 24 / 25

Page 46: Interactions between Algebra, Geometry and Combinatoricsinfusino/KWIM/Baur-Slides.pdf · Gunawan-Musiker-Vogel, 2018 Aichholzer-Andritsch-B-Vogtenhuber, 2017 B-Martin, arXiv 2017

Approach 1

Ptolemy’s theorem

AD

AB

BC

CDBD

AC

A

B

C

D

In polygon

5

42

1

3

Cluster category CA2

Polygon ←→ cluster category

(1, 4) and (2, 5) intersect,(2, 4) and (2, 5) don’t intersect.

Ext1(X(1,4),X(2,5)) 6= 0,Ext1(X(2,4),X(2,5)) = 0.

Geometric interpretation of algebraic phenomena (e.g. [1], τ). Also forgeneral surfaces and categories.

Karin Baur Interactions between Algebra, Geometry and Combinatorics 24 / 25

Page 47: Interactions between Algebra, Geometry and Combinatoricsinfusino/KWIM/Baur-Slides.pdf · Gunawan-Musiker-Vogel, 2018 Aichholzer-Andritsch-B-Vogtenhuber, 2017 B-Martin, arXiv 2017

Approach 1

Ptolemy’s theorem

AD

AB

BC

CDBD

AC

A

B

C

D

In polygon

5

42

1

3

Cluster category CA2

(1, 3)

(1, 4) (2, 5)

(2, 4) (3, 5) (1, 4)

(1, 3)

Polygon ←→ cluster category

(1, 4) and (2, 5) intersect,(2, 4) and (2, 5) don’t intersect.

Ext1(X(1,4),X(2,5)) 6= 0,Ext1(X(2,4),X(2,5)) = 0.

Geometric interpretation of algebraic phenomena (e.g. [1], τ). Also forgeneral surfaces and categories.

Karin Baur Interactions between Algebra, Geometry and Combinatorics 24 / 25

Page 48: Interactions between Algebra, Geometry and Combinatoricsinfusino/KWIM/Baur-Slides.pdf · Gunawan-Musiker-Vogel, 2018 Aichholzer-Andritsch-B-Vogtenhuber, 2017 B-Martin, arXiv 2017

Approach 1

Ptolemy’s theorem

AD

AB

BC

CDBD

AC

A

B

C

D

In polygon

5

42

1

3

Cluster category CA2

(1, 3)

(1, 4) (2, 5)

(2, 4) (3, 5) (1, 4)

(1, 3)

Polygon ←→ cluster category

(1, 4) and (2, 5) intersect,(2, 4) and (2, 5) don’t intersect.

Ext1(X(1,4),X(2,5)) 6= 0,Ext1(X(2,4),X(2,5)) = 0.

Geometric interpretation of algebraic phenomena (e.g. [1], τ). Also forgeneral surfaces and categories.

Karin Baur Interactions between Algebra, Geometry and Combinatorics 24 / 25

Page 49: Interactions between Algebra, Geometry and Combinatoricsinfusino/KWIM/Baur-Slides.pdf · Gunawan-Musiker-Vogel, 2018 Aichholzer-Andritsch-B-Vogtenhuber, 2017 B-Martin, arXiv 2017

Approach 2

(3, 6)-dimer

boundary algebra C(Gr(3, 6))

Dimer ←→ Category of modules

verticesboundary vertices

indecomposable objectsprojective-injective indec’s

Karin Baur Interactions between Algebra, Geometry and Combinatorics 25 / 25

Page 50: Interactions between Algebra, Geometry and Combinatoricsinfusino/KWIM/Baur-Slides.pdf · Gunawan-Musiker-Vogel, 2018 Aichholzer-Andritsch-B-Vogtenhuber, 2017 B-Martin, arXiv 2017

Approach 2

(3, 6)-dimer boundary algebra

x5y5

y4

y2

x4

x2yx = xy

x3= y

3

C(Gr(3, 6))

Dimer ←→ Category of modules

verticesboundary vertices

indecomposable objectsprojective-injective indec’s

Karin Baur Interactions between Algebra, Geometry and Combinatorics 25 / 25

Page 51: Interactions between Algebra, Geometry and Combinatoricsinfusino/KWIM/Baur-Slides.pdf · Gunawan-Musiker-Vogel, 2018 Aichholzer-Andritsch-B-Vogtenhuber, 2017 B-Martin, arXiv 2017

Approach 2

(3, 6)-dimer boundary algebra

x5y5

y4

y2

x4

x2yx = xy

x3= y

3

C(Gr(3, 6))

••

••

••

••

••

• • •• • • •

•••

Dimer ←→ Category of modules

verticesboundary vertices

indecomposable objectsprojective-injective indec’s

Karin Baur Interactions between Algebra, Geometry and Combinatorics 25 / 25

Page 52: Interactions between Algebra, Geometry and Combinatoricsinfusino/KWIM/Baur-Slides.pdf · Gunawan-Musiker-Vogel, 2018 Aichholzer-Andritsch-B-Vogtenhuber, 2017 B-Martin, arXiv 2017

Approach 2

(3, 6)-dimer boundary algebra

x5y5

y4

y2

x4

x2yx = xy

x3= y

3

C(Gr(3, 6))

••

••

••

••

••

• • •• • • •

•••

Dimer ←→ Category of modules

verticesboundary vertices

indecomposable objectsprojective-injective indec’s

Karin Baur Interactions between Algebra, Geometry and Combinatorics 25 / 25

Page 53: Interactions between Algebra, Geometry and Combinatoricsinfusino/KWIM/Baur-Slides.pdf · Gunawan-Musiker-Vogel, 2018 Aichholzer-Andritsch-B-Vogtenhuber, 2017 B-Martin, arXiv 2017

CV

Karin Baur, PhD in Mathematics, born in Zurich.

Education

1977 - 1989 Schools in Zurich, Matura type B (classical).1990 - 1996 Studies (Mathematics, Philosophy, French Literature),

University of Zurich.1994 Erasmus (Paris VI).1997 - 2001 PhD studies in Mathematics, University of Basel.

Karin Baur Interactions between Algebra, Geometry and Combinatorics 25 / 25

Page 54: Interactions between Algebra, Geometry and Combinatoricsinfusino/KWIM/Baur-Slides.pdf · Gunawan-Musiker-Vogel, 2018 Aichholzer-Andritsch-B-Vogtenhuber, 2017 B-Martin, arXiv 2017

CV, continued

Academic positions

2002 - 2003 Post-doctoral assistant, ETH Zurich.2003 - 2005 Post-doc (SNSF) University of California, San Diego, USA2005 - 2007 Research associate (EPSRC), University of Leicester2007 - 2011 Assistant professor (SNSF Professor), ETH Zurich2011 - Full professor, University of Graz, Austria2018 - Professor, University of Leeds, UK.

Karin Baur Interactions between Algebra, Geometry and Combinatorics 25 / 25

Page 55: Interactions between Algebra, Geometry and Combinatoricsinfusino/KWIM/Baur-Slides.pdf · Gunawan-Musiker-Vogel, 2018 Aichholzer-Andritsch-B-Vogtenhuber, 2017 B-Martin, arXiv 2017

Karin Baur Interactions between Algebra, Geometry and Combinatorics 25 / 25

Page 56: Interactions between Algebra, Geometry and Combinatoricsinfusino/KWIM/Baur-Slides.pdf · Gunawan-Musiker-Vogel, 2018 Aichholzer-Andritsch-B-Vogtenhuber, 2017 B-Martin, arXiv 2017

Doubts and strategies

Questions along the way

Are there jobs?

Unknown area: new maths, newquestions. Which direction?

Endurance, patience.

Geographically: where?

What are the alternatives?

Resources

Family

Peers, friends

Mentors

Collaborators

Deadlines

Interest

Karin Baur Interactions between Algebra, Geometry and Combinatorics 25 / 25

Page 57: Interactions between Algebra, Geometry and Combinatoricsinfusino/KWIM/Baur-Slides.pdf · Gunawan-Musiker-Vogel, 2018 Aichholzer-Andritsch-B-Vogtenhuber, 2017 B-Martin, arXiv 2017

Aspects of the job of a mathematician

Karin Baur Interactions between Algebra, Geometry and Combinatorics 25 / 25