integrating)algebra)and)geometry)with)complex)numbers)projects.ias.edu/pcmi/briefs/2011revisions/algebra.geometry.pdfintegrating)algebra)and)geometry)with)complex)...

9
1 Integrating Algebra and Geometry with Complex Numbers Complex numbers in schools are often considered only from an algebraic perspective. Yet, they have a rich geometric meaning that can support developing understanding of their use as algebraic tools. Complex numbers can be used to make connections among mathematical domains for students and teachers alike. Making these connections will enable teachers and students to see the usefulness and beauty of these numbers. The development of complex numbers should build appropriate understanding. One goal is to nourish understanding to the highest possible level by considering students' backgrounds and abilities, thus seeking to arouse curiosity and bring satisfaction. One way to do this is to relate the geometric meaning with the algebraic notion in every step of an exploration of complex numbers. This brief is a list of reminders, not a comprehensive overview, of complex numbers. In the first part, important contextual steps are given recalling algebraic notions and their geometric meanings. In the second part, the stepbystep progression is addressed by pointing to the geometric meaning followed by the algebraic notation. 1. The Imaginary Unit a. Algebraic perspective: i = 1 , and the roots of x 2 + 1 = 0 are +i and –i. b. Geometric perspective: Where is (imaginary) number i with respect to the number line? Multiplication by –1 means a rotation of 180 ! on a number line (for example, (2)(–1) = –2). Multiplying a number with –1 twice returns the original to itself through a 360 ! rotation as seen in Figure 1. Figure 1 Thus, Figure 1 shows that multiplication of a number, a, by (1) ! has the meaning of rotation of 360 ! with respect to a number line; multiplication by

Upload: truonghanh

Post on 28-Mar-2018

219 views

Category:

Documents


4 download

TRANSCRIPT

1    

Integrating  Algebra  and  Geometry  with  Complex  Numbers  

Complex  numbers  in  schools  are  often  considered  only  from  an  algebraic  perspective.  Yet,  they  have  a  rich  geometric  meaning  that  can  support  developing  understanding  of  their  use  as  algebraic  tools.  Complex  numbers  can  be  used  to  make  connections  among  mathematical  domains  for  students  and  teachers  alike.    Making  these  connections  will  enable  teachers  and  students  to  see  the  usefulness  and  beauty  of  these  numbers.  

The  development  of  complex  numbers  should  build  appropriate  understanding.    One  goal  is  to  nourish  understanding  to  the  highest  possible  level  by  considering  students'  backgrounds  and  abilities,  thus  seeking  to  arouse  curiosity  and  bring  satisfaction.  One  way  to  do  this  is  to  relate  the  geometric  meaning  with  the  algebraic  notion  in  every  step  of  an  exploration  of  complex  numbers.  This  brief  is  a  list  of  reminders,  not  a  comprehensive  overview,  of  complex  numbers.  In  the  first  part,  important  contextual  steps  are  given  recalling  algebraic  notions  and  their  geometric  meanings.  In  the  second  part,  the  step-­‐by-­‐step  progression  is  addressed  by  pointing  to  the  geometric  meaning  followed  by  the  algebraic  notation.  

1. The  Imaginary  Unit  a. Algebraic  perspective:    i  =   −1,  and  the  roots  of  x2  +  1  =  0  are  +i  and  –i.  b. Geometric  perspective:    Where  is  (imaginary)  number  i  with  respect  to  the  number  

line?  

Multiplication  by  –1  means  a  rotation  of  180!  on  a  number  line  (for  example,  (2)(–1)  =  –2).  Multiplying  a  number  with  –1  twice  returns  the  original  to  itself  through  a  360!  rotation  as  seen  in  Figure  1.    

 

Figure  1  

Thus,  Figure  1  shows  that  multiplication  of  a  number,  a,  by  (−1)!  has  the  meaning  of  rotation  of  360!  with  respect  to  a  number  line;  multiplication  by  

2    

(−1)!,  a  rotation  of  180! ,  and  multiplication  by   −1!!  =   −1 = 𝑖  would  then  be  

a  rotation  of  90!  as  in  Figure  2.  

 Figure  2  

 2. Notion  for  a  Complex  Number  

a. Algebraic  perspective:    Adding  a  real  number,  𝑎,  and  an  imaginary  number,  𝑏𝑖,  gives  rise  to  the  notion  of  the  complex  number  𝑎  +  𝑏𝑖,  as  a  new  entity  often  denoted  by  z.  

b. Geometric  perspective:  The  new  complex  number,  z,  is  seen  in  the  complex  plane  as  shown  in  Figure  3.  

 

Figure  3  

3. Addition  of  Complex  Numbers  a. Algebraic  perspective:    (a  +  bi)  +  (c  +  di)  =  (a  +  c)  +  (b  +  d)i  b. Geometric  perspective:    Addition  of  complex  numbers  Is  pictured  in  Figure  4.  

3    

 

Figure  4  

4. Notation  When  the  complex  plane  is  introduced,  the  horizontal  axis  is  labeled  as  x  (real  numbers)  and  the  vertical  axis  labeled  as  yi  (where  y  is  real)  .  The  set  of  complex  numbers  is  denoted  by  𝐶.  For  = 𝑎 + 𝑏𝑖,  we  write  𝑧 ∈ 𝐶,  𝑎 = 𝑅𝑒(𝑧)  and  𝑏 = 𝐼𝑚(𝑧).  The  component  𝑎  is  the  real  component  and  𝑏  the  imaginary  component  of  𝑧.    

5. Multiplication  of  Complex  Numbers  a. Algebraic  perspective:    (a  +  bi)(c  +  di)    =  ac  +  adi  +  bci  +  bdi2=  (ac  –  bd)  +  (ad  +  bc)i  b. Geometric  perspective:    The  multiplication  of  a  complex  number,  a  +  bi,  by  a  real  

number  c,  represents  a  scaling  as  in  Figure  5,  while  the  multiplication  of  a  complex  number,  a  +  bi,  by  the  imaginary  number,  i,  represents  a  rotation  of  90°.  

   

Figure  5    Multiplication  can  be  represented  as  a  composition  of  scaling,  rotation  and  addition.  For  a  comprehensive  geometric  view  of  multiplication,  refer  to  multiplication  in  polar  form  later  in  the  brief.  

 

4    

6. Properties  of  Operations  on  Complex  Numbers  a. Algebraic  perspective:    Associativity,  commutativity  and  distributivity  properties    

follow  from  properties  of  operations  on  polynomials.  b. Geometric  perspective:  Algebraic  properties  can  be  interpreted  geometrically,  for  

example  commutativity  as  in  Figure  6.      

 Figure  6  

 7. Conjugates  and  Absolute  Value  (Modulus)  of  Complex  Numbers  

a. Algebraic  perspective:       The  conjugate  of  the  complex  number,  z  =  a  +  bi  is  𝑧  =  a  –  bi.  The  modulus  of  a  complex  number  z  =  a  +  bi  is    

𝑧 =   𝑎! +  𝑏!  =   𝑎 + 𝑏𝑖 (𝑎 − 𝑏𝑖)  =   𝑧 (𝑧)    =   𝑧  Though  complex  numbers  cannot  be  ordered  as  real  numbers  can,  they  can  be  compared  by  their  absolute  values.      

b. Geometric  perspective:  The  conjugate  and  modulus  of  a  complex  number,  z,  are  seen  in  Figure  7.  

 

Figure  7  

 

5    

8. Complex  Numbers  as  Vectors  a. Algebraic  perspective:  The  complex  number,    

𝑎 + 𝑏𝑖  may  be  thought  of  as  the  vector, 𝑎, 𝑏  and  added  as  follows:     𝑎 + 𝑏𝑖 + 𝑐 + 𝑑𝑖 = 𝑎 + 𝑐 + 𝑏 + 𝑑 𝑖 ↔ 𝑎, 𝑏 + 𝑐,𝑑 = 𝑎 + 𝑐, 𝑏 + 𝑑  

b. Geometric  perspective:    Complex  numbers  treated  as  vectors  are  seen  in  Figure  8.    

 Figure  8  

 c. To  compare  the  meaning  of  the  scalar  (dot)  product  of  collinear  vectors  and  the  

product  of  associated  complex  numbers,  think  about  absolute  value  (modulus).  Multiplication  of  complex  numbers  is  not  equivalent  to  the  scalar  (or  vector)  product  of  vectors.      

 9. Division  of  Complex  Numbers  

a. Algebraic  perspective:    Let  z  be  the  complex  number  c  +  di.    Its  multiplicative  inverse  1/z  is  seen  below:  

 !!= !

!!!"= !

!!!"∙ !!!"!!!"

= !!!"!!!!!

=   !!!!  !!

−   !!!!  !!

𝑖 = !! !  

 Division  of  two  complex  numbers,  w  and  z,  can  be  treated  as  follows  where  w  =  a  +  bi  and  z  =  c  +  di:    𝑎 + 𝑏𝑖𝑐 + 𝑑𝑖 =

𝑎 + 𝑏𝑖𝑐 + 𝑑𝑖 ∙

𝑐 − 𝑑𝑖𝑐 − 𝑑𝑖 =

𝑎𝑏 + 𝑏𝑑 + 𝑏𝑐 − 𝑎𝑑 𝑖𝑐! + 𝑑! =  

(𝑎𝑏 + 𝑏𝑑)𝑐! +  𝑑! +  

(𝑏𝑐 − 𝑎𝑑)𝑐! +  𝑑! 𝑖  

 𝑤𝑧 =  

𝑤 ∙ 𝑧𝑧 !  

b. The  geometric  interpretation  of  complex  number  division  can  most  easily  be  seen  using  the  polar  form  given  later.  

   

6    

10. Polar  Form  of  a  Complex  Number  a. Geometric  perspective:  A  complex  number  z,  is  seen  in  polar  form  in  Figure  9.  

 

Figure  9  

b. Algebraic  perspective:    For    =  𝑎  +  𝑏𝑖  ,  we  have  𝑧   =  𝑟(𝑐𝑜𝑠  𝜑  +  𝑖  𝑠𝑖𝑛𝜑)  ,  where  

r  =   𝑎! +  𝑏!  and      tan  (𝜑) =   !!.  

c. Notation:  Considering  a  complex  number  𝑧 = 𝑟(𝑐𝑜𝑠  𝜑  +  𝑖  𝑠𝑖𝑛  𝜑)  in  a  polar  form,  we  say  that  r  is  the  absolute  value  (modulus)  (see  number  7  above)  and  𝜑  is  the  argument  of  a  complex  number  𝑧.  

   

11. Multiplication  of  Two  Complex  Numbers  in  Polar  Form  a. Geometric  perspective:  The  multiplication  of  two  complex  numbers,  w  and  z,  is  

seen  in  Figure  10.  

 Figure  10  

 

7    

b. Algebraic  perspective:  Let    z  =  r(cos  𝜑  +  i  sin  𝜑)  and  𝑤  =    q(cos  𝜌  +  i  sin  𝜌).  

Thus,  z𝑤  =  rq(cos  (𝜑 +  𝜌)  +  i  sin(𝜑 +  𝜌)).  

12. Division  of  Two  Complex  Numbers  in  Polar  Form  a. Geometric  perspective:  A  geometric  look  at  the  division  of  two  complex  numbers  is  

seen  in  Figure  11.    

 Figure  11  

 b. Algebraic  perspective:  The  division  of  two  complex  numbers,  w  and  z,  is  given  in  

the  following:  !!  =  !

!𝑐𝑜𝑠  (𝜌 − 𝜑)  +  𝑖  𝑠𝑖𝑛(𝜌 − 𝜑 ).  

 

13. Power  of  a  Complex  Number  a. Geometric  perspective:  Figure  12  shows  different  powers  of  the  complex  number,  z.  

8    

 Figure  12  

 b. Algebraic  perspective:    If  z  =  r(cos  𝜑  +  i  sin  𝜑),  then  𝑧!  =  𝑟!(cos  (𝑛𝜑)  +  i  sin(𝑛𝜑)).  

 14. Roots  of  a  Complex  Number  in  Polar  Form  

a.  Geometric  perspective:    Figure  13  depicts  the  roots  of  a  complex  number,  z.  

 Figure  13  

9    

b. Algebraic  perspective:    If  z  =  r(cos  𝜑  +  i  sin  𝜑),  then  𝜔1= 𝑧! =   𝑟! (𝑐𝑜𝑠 !!+

 𝑖  𝑠𝑖𝑛 !!.  Hence,  𝜔1

3  =  𝜔23  =  𝜔3

3  =z.  

For  all  nth  roots  of  z:       𝑟! (𝑐𝑜𝑠 !!!!"!

+  𝑖  𝑠𝑖𝑛 !!!!"!

,  where  k  =  0,  1,  2,  ...,  n-­‐1.  

All  nth  roots  give  rise  to  a  regular  n-­‐gon  inscribed  in  a  circle  of  modulus  r.    

15. Isometries  of  a  Plane  through  Complex  Numbers  Compositions  of  reflections,  rotations  and  translations  can  be  represented  with  complex  numbers  as  seen  in  Table  1.  Table  1  

Geometric     Algebraic  Reflections,  conjugation   𝑧 → 𝑧  

Rotations   𝑧 → 𝑢  𝑧    where  𝑢 ∈ 𝐶    and     𝑢 = 1  Translations   𝑧 → 𝑧 + 𝑎    where  𝑎 ∈ 𝐶  

 

16. 𝑒!"  Notation  The  usefulness  and  meaning  of  the  notation  𝑒!"  =  cos  𝜑  +  i  sin  𝜑  can  be  explored.  In  particular,  formulas  for  cos  (𝜑 + 𝜌)  and  sin  (𝜑 + 𝜌)  can  easily  be  derived.    

17. 𝑒!" + 1 = 0  The  formula  𝑒!" +  1  =  0,  which  connects  five  most  important  constants  in  mathematics,  its  meaning  and  historical  perspectives  can  be  explored.