integral calculus finals reviewer

12
INTEGRAL CALCULUS FINALS REVIEWER (2 nd Sem ‘11-12) INTEGRATION TECHNIQUES I. Integration by Parts udv = uv ∫vdu 1. lnxdx *First, determine u and dv. Yung dv, dapat laging kasama yung “dx” sa formula. For u, an easier way to find that is by using the code “LIPET”: Logarithm, Inverse, Polynomial, Exponential, Trigonometric. Kumbaga parang ‘yan yung hierarchy ng pagpipilian mo kung ano yung gagawin mong u. Logarithm being the highest and Trigonometric the lowest u = lnx dv = dx du = dx x v = x *substitute these values sa formula na udv = uv vdu lnxdx = xlnx ─ x dx x = xlnx x + c 2. x 2 lnxdx u = lnx dv = x 2 dx du = dx x v = x 3 3 x 2 lnx dx = 1 3 x 3 lnx ─ 1 3 x 3 dx x = 1 3 x 3 lnx ─ 1 3 x 2 dx u = x 2 dv = dx du = 2xdx v = x = 1 3 x 3 lnx ─ 1 3 [x 3 2x 2 dx] = 1 3 x 3 lnx ─ 1 3 x 3 + 2 3 x 3 3 = 1 3 x 3 lnx ─ 1 3 x 3 + 2x 3 9 + c = 1 3 x 3 lnx ─ 1 + 2 3 + c = 1 3 x 3 lnx ─ 1 3 + c 3. x 3 e x dx u = x 3 dv = e x dx du = 3x 2 dx v = e x x 3 e x dx = x 3 e x ─ 3 x 2 e x dx u = x 2 dv = e x dx du = 2xdx v = e x = x 3 e x ─ 3 * x 2 e x 2xe x dx ] u = x dv = e x dx du = dx v = e x = x 3 e x ─ 3x 2 e x + 6[ xe x e x dx ] = x 3 e x ─ 3x 2 e x + 6xe x 6e x + c 4. sec 3 xdx = sec 2 xsecxdx u = secx dv = sec 2 xdx du = secxtanxdx v = tanx = secxtanx ─ secxtan 2 xdx = secxtanx ─ secx(sec 2 x 1)dx = secxtanx ─ (sec 3 x secx)dx = secxtanx ─ sec 3 xdx + secx *transpose sec 3 xdx kasi same siya nung sa other side 2 sec 3 xdx = secxtanx + secx sec 3 xdx = 1 2 ( ) secxtanx + ln(secx + tanx) + c 5. e x cos2xdx u = e x dv = cos2xdx du = e x dx v = 1 2 sin2x = 1 2 e x sin2x 1 2 e x sin2xdx u = e x dv = sin2xdx du = e x dx v = 1 2 cos2x = 1 2 e x sin2x 1 2 1 2 e x cos2x ─ 1 2 e x cos2xdx = 1 2 e x sin2x + 1 4 e x cos2x ─ 1 4 e x cos2xdx *transpose e x sin2xdx kasi same siya nung sa other side e x cos2xdx + 1 4 e x cos2xdx = 1 2 e x sin2x + 1 4 e x cos2x 5 4 e x cos2xdx = 1 2 e x sin2x + 1 2 cos2x e x cos2xdx = 2 5 e x sin2x + 1 2 cos2x + c 6. (x + sinx) 2 dx = (x 2 + 2xsinx + sin 2 x)dx = x 3 3 + 2xsinxdx + sin 2 xdx = x 3 3 + 2xsinxdx + 1 2 (1 cos2x)dx = x 3 3 + 1 2 x ─ 1 2 sin2x + 2xsinxdx = x 3 3 + 1 2 x ─ 1 4 sin2x+ 2xsinxdx u = x dv = sinxdx du = dx v = cosx = x 3 3 + 1 2 x ─ 1 4 sin2x+ 2 *─xcosx +cosxdx] = x 3 3 + 1 2 x ─ 1 4 sin2x+ 2 *─xcosx + sinx + = x 3 3 + 1 2 x ─ 1 4 sin2x ─ 2xcosx + 2sinx + c

Upload: jaimee-navarro

Post on 27-May-2017

294 views

Category:

Documents


18 download

TRANSCRIPT

Page 1: Integral Calculus Finals Reviewer

INTEGRAL CALCULUS FINALS REVIEWER (2nd

Sem ‘11-‘12)

INTEGRATION TECHNIQUES

I. Integration by Parts

∫udv = uv – ∫vdu

1. ∫lnxdx *First, determine u and dv. Yung dv, dapat laging kasama yung “dx” sa formula. For u, an easier way to find that is by using the code “LIPET”: Logarithm, Inverse, Polynomial, Exponential, Trigonometric. Kumbaga parang ‘yan yung hierarchy ng pagpipilian mo kung ano yung gagawin mong u. Logarithm being the highest and Trigonometric the lowest

u = lnx dv = dx

du = dxx v = x

*substitute these values sa formula na ∫udv = uv – ∫vdu

∫lnxdx = xlnx ─ ∫x ▪ dxx

= xlnx – x + c

2. ∫x2lnxdx

u = lnx dv = x2dx

du = dxx v =

x3

3

∫ x2lnx dx =

13 x

3lnx ─

13 ∫ x

3 ▪

dxx

= 13 x

3lnx ─

13 ∫ x

2dx

u = x2 dv = dx du = 2xdx v = x

= 13 x

3lnx ─

13 [x

3 – 2∫ x

2dx]

= 13 x

3lnx ─

13 x

3 +

23 ▪

x3

3

= 13 x

3lnx ─

13 x

3 +

2x3

9 + c

= 13 x

3

lnx ─ 1 +

23 + c

= 13 x

3

lnx ─

13 + c

3. ∫x3e

xdx

u = x3 dv = exdx du = 3x2dx v = ex

∫ x3e

xdx = x

3e

x ─ 3 ∫ x

2e

xdx

u = x2 dv = exdx du = 2xdx v = ex

= x3e

x ─ 3 * x

2e

x – 2∫ xe

xdx ]

u = x dv = exdx du = dx v = ex

= x3e

x ─ 3x

2e

x + 6[ xe

x – ∫e

xdx ]

= x3e

x ─ 3x

2e

x + 6xe

x – 6e

x + c

4. ∫sec3xdx

= ∫sec2xsecxdx

u = secx dv = sec2xdx du = secxtanxdx v = tanx

= secxtanx ─ ∫secxtan2xdx

= secxtanx ─ ∫secx(sec2x – 1)dx

= secxtanx ─ ∫(sec3x – secx)dx

= secxtanx ─ ∫sec3xdx + ∫secx

*transpose ∫sec3xdx kasi same siya nung sa other side

2 ∫sec3xdx = secxtanx + ∫secx

∫sec3xdx =

12 ( )secxtanx + ln(secx + tanx) + c

5. ∫excos2xdx

u = ex dv = cos2xdx

du = exdx v = 12 sin2x

= 12 e

xsin2x –

12 ∫e

xsin2xdx

u = ex dv = sin2xdx

du = exdx v = ─ 12 cos2x

= 12 e

xsin2x –

12

12 e

xcos2x ─

12 ∫e

xcos2xdx

= 12 e

xsin2x +

14 e

xcos2x ─

14 ∫e

xcos2xdx

*transpose ∫exsin2xdx kasi same siya nung sa other side

∫excos2xdx +

14 ∫e

xcos2xdx =

12 e

xsin2x +

14 e

xcos2x

54 ∫e

xcos2xdx =

12 e

x

sin2x +

12 cos2x

∫excos2xdx =

25 e

x

sin2x +

12 cos2x + c

6. ∫(x + sinx)2dx

= ∫(x2 + 2xsinx + sin

2x)dx

= x

3

3 + 2∫xsinxdx + ∫sin2xdx

= x

3

3 + 2∫xsinxdx + 12 ∫(1 – cos2x)dx

= x

3

3 + 12

x ─

12 sin2x + 2∫xsinxdx

= x

3

3 + 12 x ─

14 sin2x+ 2∫xsinxdx

u = x dv = sinxdx du = dx v = ─ cosx

= x

3

3 + 12 x ─

14 sin2x+ 2 *─xcosx +∫cosxdx]

= x

3

3 + 12 x ─

14 sin2x+ 2 *─xcosx + sinx +

= x

3

3 + 12 x ─

14 sin2x ─ 2xcosx + 2sinx + c

Page 2: Integral Calculus Finals Reviewer

7. ∫ t3dt

1 + 3t2

= ∫ t2▪t

dt

1 + 3t2

u = t2 dv = (1 + 3t2)-1/2tdt

du = 2tdt v = 16 ▪ 2(1 + 3t2)1/2=

13 (1 + 3t2)1/2

= 13 t

21 + 3t

2 ─

23 ∫ 1 + 3t

2 tdt use undu

u = 1 + 3t2 du = 6tdt

= 13 t

21 + 3t

2 ─

23 ▪

16 ▪

23 (1 + 3t

2)

3/2

= 13 t

21 + 3t

2 ─

227 (1 + 3t

2)

3/2 + c

8. ∫xCsc-1

xdx

u = Csc-1x dv = xdx

du = ─ dx

x x2 ─ 1 v =

x2

2

= 12 x

2Csc

-1x +

12 ∫ x

2 ▪

dx

x x2 ─ 1

= 12 x

2Csc

-1x +

12 ∫ xdx

x2 ─ 1

= 12 x

2Csc

-1x +

12 ∫ (x

2 – 1)

-1/2xdx use undu

= 12 x

2Csc

-1x +

12 (x

2 – 1)

1/2 + c

9. ∫sin x dx

y = x y2 = x 2ydy = dx

=∫ siny ▪ 2ydy

= 2∫ysinydy

u = y dv = sinydy du = dy v = ─cosy

= 2 * ─ycosy + ∫cosydy ]

= ─2ycosy + 2siny + c

*substitute x back sa mga y

= ─2 x cos x + 2sin x + c

10. ∫x3(1 – x

2)

1/3dx ∫x

2x(1 – x

2)

1/3dx

u = x2 dv = (1 – x2)1/3xdx

du = 2xdx v = ─12 ▪

34 (1 – x2)4/3

= ─38 x

2(1 – x

2)

4/3 +

38 ∫ (1 – x

2)

4/3xdx use undu

= ─38 x

2(1 – x

2)

4/3 +

34 ▪

12 ▪

37 (1 – x

2)

7/3

= ─38 x

2(1 – x

2)

4/3 +

956 (1 – x

2)

7/3

= ─38 (1 – x

2)

4/3

x

2 +

37 (1 ─ x

2)

= ─38 (1 – x

2)

4/3

x

2 +

37 ─

37 x

2

= ─38 (1 – x

2)

4/3

4

7 x2 +

37

= ─ 3

56 (1 – x2)

4/3(4x

2 + 3) + c

11. ∫Sec-11

x dx

u = Sec-11x dv = dx

du = ─

dxx2

1x

1x2 ─ 1

v = x

= ─

dxx2

1x

1 ─ x2

x2

= ─

dxx2

1x ▪

1x 1 ─ x2

= ─ dx

1 ─ x2

= xSec-11

x + ∫ xdx

1 ─ x2 use undu

= xSec-11

x + 12 ▪

21 (1 – x

2)

1/2 + c

= xSec-11

x + 1 – x2 + c

12. ∫ln3xdx

u = ln3x dv = dx

du = 3ln2xdx

x v = x

= xln3x ─ 3 ∫x ▪

ln2xdxx

= xln3x ─ 3 ∫ln

2xdx

u = ln2x dv = dx

du = 2lnxdx

x v = x

= xln3x ─ 3 [xln

2x ─ 2 ∫ x ▪

lnxdxx

= xln3x ─ 3xln

2x + 6 ∫lnxdx

u = lnx dv = dx

du = dxx v = x

= xln3x ─ 3xln

2x + 6 *xlnx ─ ∫ x ▪

dxx ]

= xln3x ─ 3xln

2x + 6 *xlnx ─ ∫ dx]

= xln3x ─ 3xln

2x + 6xlnx ─ 6x + c

Page 3: Integral Calculus Finals Reviewer

13. π2

0sin

5xdx sin

4xsinxdx

u = sin4x dv = sinxdx du = 4sin3xcosxdx v = ─cosxdx

= ─sin4xcosx + 4∫ sin

3xcos

2xdx

= ─sin4xcosx + 4∫ sin

3x(1 – sin

2x)dx

= ─sin4xcosx + 4∫ (sin

3x – sin

5x) dx use undu

= ─sin4xcosx + 4∫sin

3xdx – 4∫sin

5xdx

*transpose ∫sin5xdx kasi same siya nung sa other side

4∫sin5xdx +∫sin

5xdx = ─sin

4xcosx + 4∫sin

3xdx

5∫sin5xdx = ─sin

4xcosx + 4∫sin

3xdx

u = sin2x dv = sinxdx du = 2sinxcosxdx v = ─cosxdx

∫sin5xdx =

15 ( )─sin

4xcosx + 4∫sin

3xdx

= ─sin4xcosx + 4

cos4x

4 + cos

6x

6 ]

π2

0

ADDITIONAL FORMULA: WALLIS’ FORMULA

*only works when the upper and lower limits are π2 and 0.

π2

0sin

mxcos

nxdx =

[(m-1)(m-3)…2 or 1+▪*(n-1)(n-3)…2 or 1+(m+n)(m+n-2)(m+n-4)…2 or 1 • α

where: α = π2 , if both m and n are EVEN

= 1, if other wise

*yung “2 or 1”, ibig sabihin yung subtraction blah, yung value nun diba paliit nang paliit. Basta until maging 2 OR 1 ka magsstop.

1. π4

0

(1 ─ cos22x)

7/2dx

tan42xcsc

24xsinxcosx

= ∫ (sin22x)

7/2 dx

sin42x

cos42x ▪

14sin

22xcos

22x ▪

12 sin2x

*okay so isa-isahin natin yung mga chuchu sa denominator: a. tan42x

recall sa identities na tanx = sinxcosx . Kaya naging tan42x=

sin42xcos42x yay

b. csc24x 1

sin24x

recall the trigonometric transformation formula sinxcosx = 12

sin2x. So ang main agenda mo is to get sin24x

sinxcosx = 12 sin2x

*i-double mo yung angle ng right side. so pag dinouble mo yung angle sa right side, double the angle sa left as well

sin2xcos2x = 12 sin4x

*square both sides

sin22xcos22x = 14 sin24x *transpose

14

4sin22xcos22x = sin24x tadaaaaa yay you

c. sinxcosx recall the identity sin2x = 2sinxcosx. Just transpose 2 to the other

side. So you’ll get 12 sin2x = sinxcosx

= ∫ sin72x dx

18

sin52x

sin22xcos

62x

= 8 ∫sin72x dx

sin

32x

cos62x

= 8 ∫sin42xcos

62xdx

*represent 2x as y. so y = 2x. And dy = 2dx. So dx = dy2

= 8 ▪ 12 ∫sin

4ycos

6ydy

*change the limits. To do that, substitute x sa y = 2x.

x 0 π4

y 0 π

2

= 4 π2

0sin

4ycos

6ydy

*use Wallis’ formula

= 4 ▪ [(4-1)(4-3)][(6-1)(6-3)(6-5)]

(6+4)(6+4-2)(10-4)(10-6)(10-8) ▪ π2

= 4 ▪ (3▪1)(5▪3▪1)10▪8▪6▪4▪2 ▪

π2

= 3π2

7

II. Substitution Methods

A. Substitution of Functions

1. ∫x 1 + x dx u = 1 + x x = u – 1 dx = du

*substitute all x’s with u’s

= ∫(u – 1)u1/2

du

= ∫(u3/2

– u1/2

)du

= 25 u

5/2 –

23 u

3/2 + c

= 6u

5/2 – 10u

3/2

15 + c

= 2

15 u3/2

(3u – 5) + c

= 2

15 (1 + x)3/2

[3(1 + x) – 5] + c

= 2

15 (1 + x)3/2

(3x – 2) + c

Page 4: Integral Calculus Finals Reviewer

2. ∫ x3dx

(x2 + a

2)

3 x

2xdx

(x2 + a

2)

3

u = x2 + a2

x2 = u – a2

2xdx = du *substitute all x’s with u’s

= 12 ∫(u - a

2)du

u3

= 12 ∫(u

-2 – a

2u

-3)du

= 12

u

-1

-1 ─ a

2u

-2

-2 + c

= 12

1u +

a2

2u2 + c

= 12

-2u + a

2

2u2 + c

*substitute the value of u back to x2 + a2

= 12

-2(x

2 + a

2) + a

2

2(x2 + a

2)

2 + c

= 1

4(x2 + a

2)

2 [a2 – 2(x

2 + a

2)] + c

= ─ 1

4(x2 + a

2)

2 (2x2 + a

2) + c

3. ∫ y +3(3 - 2y)

2/3 dy x

2xdx

(x2 + a

2)

3

u = 3 – 2y

2y = 3 – u 2dy = ─du

= ─ 12 ∫

3 - u + 62

u2/3 du

= ─ 14 ∫(9 – u)u

-2/3du

= ─ 14 ∫(9u

-2/3 – u

1/3)du

= ─ 14

3 ▪ 9u

1/3

1 ─ 3u

4/3

4 + c

= ─3

16 u1/3

(36 – u) + c

= ─3

16 (3 – 2y)1/3

(2y + 33) + c

B. Algebraic Substitution

1. ∫x 1 + x dx

u = 1 + x u2 = 1 + x x = u2 – 1 dx = 2udu

= 2∫(u2 – 1) ▪ u ▪ udu

= 2∫u2(u

2 – 1)du

= 2∫ (u4 – u

2)du

= 2

u

5

5 ─ u

3

3 + c

= 2

3u

5 ─ 5u

3

15 + c

= 2

15 u3 (3u

2 – 5) + c

= 2

15 (1 + x)3/2

[3(1 + x) – 5] + c

= 2

15 (1 + x)2/3

(3x – 2) + c

2. 3 3

2 2

dyy - y

1/3 dy

u = y1/3

u3 = y 3u2du = dy

= 3∫u2du

u3 - u

= 3∫ u2du

u(u2 - 1)

= 3∫ uduu

2 - 1

= 3ln(u2 – 1)

= 32 ln(y

2/3 – 1) ]

3 3

2 2

= 32 (ln2 – ln1) =

32 ln2

3. 7

0

dx

1 + 3

x + 1

u = 3 x + 1 u3 = x + 1 3u2du = dx

= 3∫u2du

1 + u *divide u2 by 1 + u

= 3∫

u - 1 +

1u + 1 du

**change the limits. To do that, substitute x sa u = 3 x + 1

x 0 7

y 1 2

= 3

u2

2 + u + ln(u + 1) ] 1

2

= 3

1

2 + ln32

Page 5: Integral Calculus Finals Reviewer

4. ln2

0

e2x

dx

1 + ex

ex ▪ e

xdx

1 + ex

u = 1 + ex u2 = 1 + ex

ex = u2 – 1 2udu = exdx

= 2∫(u2 - 1)udu

u

= 2∫(u2 – 1)du

*change the limits. To do that, substitute x sa u = 1 + ex

x 0 ln2

u 2 3

= 2

u

3

3 - u ] 3

2

= 3

1

3 (3 3 - 2 2 ) - ( 3 - 2 ) = 2 2

3

C. Reciprocal Substitution

*use this when you see equations like this:

dx

x ax2 + bx + c

and substitute x = 1y & dx = ─

dyy

2

1. ∫ dx

x 2x - x2 *substitute x =

1y & dx = ─

dyy2

= ─∫dyy

2

1y

2y -

1y

2

= ─∫dyy

2

1y

2y - 1y

2

= ─∫dyy

2

1y

2 2y -1

= ─∫ dy

2y - 1

= ─ ∫(2y – 1)-1/2

dy

= ─ 12 ▪

21 (2y – 1)

1/2 + c

= ─ 2x - 1 + c

2. 5/3

5/4

dx

x2

x2 - 1

= ─∫dyy

2

1

y 2 1

y2 - 1

= ─∫ ydy

1 - y2 ─ ∫(1 – y

2)

-1/2ydy

**change the limits. To do that, substitute x sa x = 1y

x 5/3 5/4

u 3/5 4/5

= 12 ▪

21 (1 – y)

1/2] 3/5

4/5

= 1 - 9

25 ─ 1 - 1625 =

15

3. ∫ dx

x 2x - x2

= ─∫ dy

25y2 - 1

u = 5y a = 1 du = 5dy

─15 ∫ du

u2 - a2

= ─ 15 ln

5 + 25 - x2

x + c

D. Trigonometric Substitution

If you see this combination: Substitute these:

a2 – u

2 u =asinθ

a2 + u

2 u = atanθ

u2 – a

2 u = asecθ

2ax - x2 x = 2asin

2ax + x2 x = 2atan

x2 - 2ax x = 2asec

1. ∫ duu

2 - a

2

u = asecθ du = atanθsecθdθ

= a∫tanθsecθdθa

2sec

2θ - a

2

= aa

2 ∫tanθsecθdθsec

2θ - 1

= 1a ∫tanθsecθdθ

tan2θ

= 1a ∫secθdθ

tanθ

= 1a ∫cscθdθ

= 1a ln |cscθ – cotθ| + c

Page 6: Integral Calculus Finals Reviewer

*going back to u = asecθ…i-draw mo sa right triangle

*so diba cscθ, which is hypopp so

magiging u

u2 - a2 . and cotθ

= a

u2 - a2

= 1a ln

u

u2 - a

2 –

a

u2 - a

2 + c

= 1a ln

u - a

u2 - a

2 + c

*i-square yung fraction para mawala yung square root at may ma-cancel hihi

= 1a ln

(u - a)(u - a)(u - a)(u + a) + c

= 1a ln

u - au + a + c

2. 2

0x

24 - x

2 dx

= ∫ x2(2)

2 - (x)

2 dx

u = asinθ x = 2sinθ dx = 2cosθdθ

= ∫ (2sinθ)2 4 - (2sinθ)

2 ▪ 2cosθdθ

= 2▪4 ∫ sin2θ 4 - 4sin

2θ cosθdθ

= 8 ∫ sin2θ ▪ 2 1 - sin

2θ cosθdθ

= 16 ∫ sin2θ cos

2θ cosθdθ

= 16 ∫ sin2θcos

2θdθ

*change the limits. To do that, substitute x sa x = 2sinθ

x 0 2

u 0 π

2

= 16 π/2

0 sin

2θcos

2θdθ

*use Wallis’ Formula

= 16 ▪ (1)(1)(4)(2) ▪

π2 = π

3. 2a

0x

22ax - x

2 dx

x = 2asin2θ dx = 4asinθcosθdθ

= ∫ (2asin2θ)

2 2a(2asin

2θ) - (2asin

2θ)

2 ▪

4asinθcosθdθ

= 4a▪4a2 ∫ sin

4θ 4a

2sin

2θ - 4a

2sin

4θ sinθcosθdθ

= 16a3 ∫ sin

4θ 4a

2sin

2θ(1 - sin

2θ) sinθcosθdθ

= 16a3 ∫ sin

4θ ▪ 2asinθ cos

2θ sinθcosθdθ

= 32a4 ∫ sin

6θcos

2θdθ

*change the limits. To do that, substitute x sa x =

2asin2θ

= 32a4

π/2

0 sin

6θcos

2θdθ *use wallis’

= 32a

4 (5 x 3 x 1)(1)

8 x 6 x 4 x 2 ▪ π2 =

5πa4

8

E. Half-Angle Substitution

*use this when you see trigo functions

z = tan12 (nx) dx =

1n ▪

2dz1 + z

2

tan(nx) = 2z

1 - z2 sin(nx) =

2z1 + z

2

cos(nx) = 1 - z

2

1 + z2

1. ∫ dx1 + sinx + cosx n = 1

=

2dz1 + z2

1 +2z

1 + z2 + 1 - z2

1 + z2

= ∫

2dz1 + z2

1 + z2 + 2z + 1 - z2

1 + z2

= ∫ 2dz2 + 2z = ∫ dz

1 + z

= ln (1 + z) + c

= ln (1 + tan12 x) + c

2. π/2

0

dx3 + cos2x n = 2

=∫

12 ▪

2dz1 + z2

3 + 1 - z2

1 + z2

= 12 ∫ 2dz

3 + 3z2 + 1 - z

2

= 12 ∫ 2dz

4 + 2z2 =

12 ∫

dz2 + z

2 du

a2 + u

2

= 1

2 2 Tan

-1 z

2 ]

π/2

0

= 1

2 2 Tan

-1tan

12 (nx)

2 ]

π/2

0

= 1

2 2 Tan

-1tanx

2 ]

π/2

0

= 1

2 2

Tan-1

tanπ2

2 - Tan

-1tan0

2 =

π

4 2

3. π/2

0

dx12 + 13cosx

=∫

2dz1 + z2

12 + 13▪ 1 - z2

1 + z2

= ∫ 2z12 + 12z

2 + 13 - 13z

2

= 2∫ dz25 - z

2 = 2∫ dx(5)

2 - (z)

2 z = 5sinθ, dz = 5cosθdθ

Page 7: Integral Calculus Finals Reviewer

= 2∫ 5cosθdθ25 - 25sin

= 2∫ 5cosθdθ25(1 - sin

2θ)

= 25 ∫cosθdθ

cos2θ =

25 ∫ dθ

cosθ = 25 ∫ secθdθ

= 25 ln (secθ + tanθ)

= 25 ln

1

cosθ + sinθcosθ =

25 ln

1 + sinθ

cosθ

*going back to z = 5sinθ…i-draw mo sa right triangle

*so diba sinθ, which is hypopp so

magigingz5 . and cosθ

= 25 - z2

5

= 25 ln

1 +

z5

25 - z2

5

= 25 ln

5 + z

25 - z2

*square and get the square root of the fraction. Squinare and kinuha yung sqrt para parang walang damage na nangyari. It was as if you raised the fraction to the first power. Pero diba pag may exponent yung base ng ln, pwede mo siyang i-lagay and imultiply

with 25 .

= 25 ln

5 + z

25 - z2 ^

2 ▪ 12 *yung

12 i-move mo sa harap

= 25 ▪

12 ln

(5 + z)(5 + z)(5 + z)(5 - z)

*change the limits. To do that, substitute x sa z = tan12 x

= 15 ln

5 + z5 - z ]

1

0

= 15 ln

32

III. Partial Fractions

A. Linear, Distinct Factors

1. ∫(2x + 11)dxx

2 + x - 6 = ∫ (2x + 11)dx

(x + 3)(x - 2)

= ∫

A

x + 3 + B

x - 2 dx *multiply the whole equation

with the denominator of the original fraction

∫ (2x + 11)dx = ∫ ( )A(x - 2) + B(x + 3) dx

= ∫ A(x - 2)dx + ∫B(x + 3)dx

= Aln(x – 2) + Bln(x + 3) + lnc *”lnc” yung ginamit para lang maging mas pretty/simplified yung kalabasang equation later hihi

when x = 2: when x = -3: 2(2) + 11 = A(0) + B(2 + 3) 2(-3) + 11 = A(-3 – 2) + B(0) 15 = 5B 5 = -5A B = 3 A = -1

= ─ln(x + 3) + 3ln(x – 2)+ lnc = lnc(x - 2)

3

(x + 3)

*remember yung exponent pwede itanspose transpose. We’ll do it sa 3ln(x – 2) to magiging ln(x – 2)3

2. ∫ 3x2 + 8x - 12

x3 + 7x

2 + 12x = ∫ 3x

2 + 8x - 12

x(x + 4)(x + 3) dx

= ∫

A

x + B

x + 4 + C

x + 3 dx

= Alnx + Bln(x + 4) + Cln(x + 3) Equating Coefficients: 3x2 + 8x – 12 = A(x + 4)(x + 3) + Bx(x + 3) + Cx(x + 4) 3x2 + 8x – 12 = A(x2 + 7x + 12) + B(x2 + 3x) + C(x2 + 4x)

x2: 3 = A + B + C x: 8 = 7A + 3B + 4C c: -12 = 12A A = -1 *using system of equations: (3 = -1 + B + C) – 3 -12 = -3B – 3C 8 = -7 + 3B + 4C 15 = 3B + 4C 3 = C 3 = A + B + C B = 3 – (-1) – 3 B = 1

= -lnx + ln(x + 4) + 3ln(x + 3) + lnc = lnc(x + 4)(x + 3)

3

x

B. Linear, Repeated Factors

1. ∫ (x - 2)dxx

2(x + 3)

2 = ∫

A

x + Bx

2 + C

x + 3 + D

(x + 3)2 dx

= Alnx + Bx + Cln(x + 3) +

Dx + 3 + E

Equating Coefficients: x – 2 = Ax(x + 3)2 + B(x + 3)2 + Cx2(x + 3) + Dx2 x – 2 = A(x3 + 6x2 + 9x) + B(x2 + 6x + 9) + C(x3 + 3x2) + Dx2

x3: 0 = A + C x2: 0 = 6A + B + 3C + D x: 1 = 9A + 6B c: -2 = 9B

A = 7

27 , B = ─ 29 , C = ─

727 , D = ─

59

= 7

27 lnx ─ 29 x ─

727 ln(x + 3) ─

59(x + 3) + c

C. Quadratic, Distinct Factors

1. ∫ x + 2x

2 + 4x + 5 dx = ∫A(2x + 4) + B

x2 + 4x + 5 dx

*(2x + 4) came from the derivative of x2 + 4x + 5

= A∫ 2x + 4x

2 + 4x + 5 dx + B∫ dx

x2 + 4x + 5

*dun sa A, duu .

= Aln(x2 + 4x + 5) + B∫ dx

x2 + 4x + 4 + (5 - 4)

= Aln(x2 + 4x + 5) + B∫ dx

(x + 2)2 + (1)

2 du

u2 + a2

= Aln(x2 + 4x + 5) + B Tan

-1(x + 2) + c

Equating Coefficients: x + 2 = A(2x + 4) + B

x: 1 = 2A A = 12

c: 2 =4(12 ) + B B = 0

= 12 ln(x

2 + 4x + 5) + c

Page 8: Integral Calculus Finals Reviewer

C. Quadratic, Distinct Factors

1. ∫ (x - 3)dxx

2(x

2 + 4x + 5)

2

= ∫

A

x + Bx

2 + C(2x + 4) + D

x2 + 4x + 5 +

E(2x + 4) + F(x

2 + 4x + 5)

2 dx

= A∫dxx + B∫x

-2dx + C∫ (2x + 4)dx

x2 + 4x + 5 + D∫ dx

x2 + 4x + 4 + (5 - 4) +

E∫ (2x + 4)dx(x

2 + 4x + 5)

2 + F∫ dx(x

2 + 4x + 5)

2

= Alnx + Bx + Cln(x

2 + 4x + 5) + DTan

-1(x + 2) +

Ex

2 + 4x + 5 + F∫ dx

[(x2 + 4x + 4) + (5 - 4)]

2

*Now let’s focus on F∫ dx[(x + 2)2 + (1)]2 .

u = x + 2 a = 1 u = asinθ x + 2 = tanθ dx = sec

2θdθ

tanθ = x + 2

1 *draw this

Bianca

= F∫ sec2θdθ

(tan2θ + 1)

2 = F∫sec2θdθ

(sec2θ)

2 = F∫sec2θdθ

sec4θ

= F∫ dθsec

2θ = F∫ cos

2θdθ =

F2 ∫ (1 + cos2θ)dθ

= F2 *θ +

12 sin2θ]

*recall that 12 sin2θ = sinθcosθ. According to the drawing of the

triangle, sinθ = x + 2

x2 + 4x + 5 and cos θ =

1

x2 + 4x + 5 . So

multiply them to get x + 2

x2 + 4x + 5 . So yun yung value ng 12 sin2θ.

*as for θ, recall that x + 2 = tanθ. So θ = Tan-1(x + 2). *so the final equation is:

= Alnx + Bx + Cln(x

2 + 4x + 5) + DTan

-1(x + 2) +

Ex

2 + 4x + 5 +

F2

Tan

-1(x + 2) +

x + 2x

2 + 4x + 5 + G

*just solve for the values of A, B, C, D, E and F and you’ll get the final answer

AREAS & CENTROIDS OF PLANE AREAS

A. Vertical Element

A = ∫ (ya – yb)dx

Ax‾ = ∫ x(ya – yb)dx

Ay‾ = ∫ (ya2 – yb

2)dx

B. Horizontal Element

A = ∫ (xR – xL)dy

Ay‾ = ∫ y(xR – xL)dy

Ax‾ = ∫ (xR2 – xL

2)dy

ANALYSIS OF POLAR CURVES

I. Symmetry

ox: F(r,θ) = F(r , -θ)

F(-r, π - θ)

oxy: F(r,θ) = F(r , π - θ)

F(-r , - θ)

ox: F(r,θ) = F(-r , θ)

F(r, π + θ)

II. Intersection w/ the pole

set r = 0 and solve for θi

III. Intersection with axes

IV. Critical Points

set drdθ = 0 and solve for θC

V. Divisions

use θi & θC

VI. Additional Points

SOME COMMON POLAR POLES

A. Limacons : r = a ± bsinθ or r = a ± bcosθ

0 < | ab | < 1 with a loop

0 < | ab | = 1 cardioid

1 < | ab | < 2 with a dent

| ab | ≥ 2 convex

B. Rose Curves

r = asin(nθ) r = acos(nθ)

θ 0° 90° 180° 270° 360°

r

Page 9: Integral Calculus Finals Reviewer

1. r = 2 – 2sinθ (cardioid) Intersection with the pole:

r = 2 – 2sinθ 0 = 2 – 2sinθ 2sinθ = 2 θ = sin

-1(1)

θ = π2

Intersection with the axes:

Critical Points:

drdθ = -2cosθ

0 = -2cosθ

θ = cos-1

(0)

θ = π2 ,

3π2

Plot the points on the graph and draw the heart:

1. r = 2 when the angle’s nasa 0°. So plot the first point sa (2,0)

2. r = 0 at 90°. As you plot it, gawa ka na ng curve

3. r = 2 at 180°. Ilagay mo yung point 2 units TOWARDS 180°. Kumbaga sa side ng 180° yung “2”.

4. r = 4 at 270°. Like 180°, plot “4” sa side ng 270.

5. r = 2 at 360° or back to 0° ulit Then TA-DAAA!

Compute for the Area:

A = 12 ∫ r

2dθ

*isang half lang yung area na kukunin mo. Eh since sobrang carbon copy yung other half of the heart, multiply the Area by 2.

A = 12 ▪ 2

π/2

-π/2 (2 – 2sinθ)

2dθ

A = ∫ (4 + 8sinθ + 4sin2θ)dθ

A = 4∫ (1+ 2sinθ + sin2θ)dθ

A = 4

θ ─ 2cosθ +

12

θ -

12 sin2θ

A = 4

3

2 θ - 2cosθ - 14 sin2θ ]

π/2

-π/2

= 6π

2. r = 3sin2θ Intersection with the pole:

r = 3sin2θ 0 = 3sin2θ 0 = sin2θ 2θ = sin

-1(0)

2θ = 0, π, 2π, 3π, etc.

θ = 0, π2 , π,

3π2 , etc.

Critical Points: drdθ = 6sin2θ = 0

0 = sin2θ 2θ = sin

-1(0)

2θ = π2 ,

3π2 ,

5π2 ,

7π2

θ = π4 ,

3π4 ,

5π4 ,

7π4

Intersection with axes & Critical Points: θ 0° 45° 90° 135° 180° 225° 270° 315° 360°

r 0 3 0 -3 0 3 0 -3 0

θ 0° 90° 180° 270° 360°

r 2 0 2 4 2

Page 10: Integral Calculus Finals Reviewer

VOLUMES & CENTROIDS OF PLANE AREAS

A. Method of Circular Disk

V = π b

ar

2dh

Vx‾ = ∫ XCdv

Vy‾ = ∫ YCdv

CONDITIONS:

1. element must be parallel to the axis

2. r must be parallel to the axis

3. the axis should be a boundary

1. Find V, x‾ , y‾ of the solid generated by rendering the region bounded by y = 1 – x

3, ox and oy about ox.

V = π∫ r2dx

V = π∫ (ya – yb)2 dx

V = π∫ (1 – x3

– 0)2 dx

V = π 0

1(1 ─ 2x

3 + x

6)d

V = π (x - x

2

2 + x

7

7 ) ] 1

0

= 9π14

B. Method of Circular Ring

V = π b

a(R

2 – r

2)dh

1. Find V if the axes bounded by y

2 = x

3 and y = 2x is

revolved about ox.

*substitute y = 2x sa y2 = x3 to get the points of intersection

(2x)2 = x

3 4x

2 – x

3 = 0

x2(4 – x) = 0

x2 = 0 4 – x = 0

x = 0, then y = 0 x = 4, then y = 8

V = π 4

0(R

2 – r

2)dh

V = π∫ [(2x)2 – (x

3/2)

2]dx

V = π∫ (4x2 – x

3)dx

V = π

4x

3

3 - x

4

4 ] 4

0

= 64π

3

2. Find the volume of y = x2 and y

2 = x about x + 1 = 0.

Points of Intersection:

(x2)2 = x

x4 = x

x4 – x = 0

x(x3 – 1) = 0

x = 0, y = 0 and x = 1, y = 1

XRIGHT: y = x2 x = y XLEFT: y

2 = x x = y

2

R = y + 1 (kasi about x = -1) r = y2 + 1

V = π 1

0(R

2 – r

2)dh

V = π∫ ( )( y + 1)2 – (y

2 + 1)

2 dx

V = π∫ (y + 2y1/2

+ 1 – y4 – 2y

2 – 1)dx

V = π

y

2

2 + 4y

3/2

3 - y

5

5 - 2y

3

3 - y ] 1

0

= 29π30

C. Method of Cylindrical Shell

V = 2π b

axydx

(when using a vertical element)

V = 2π b

axydy

(when using a horizontal element)

1. Find V if the area bounded by y = 1 – x3, ox and oy is

revolved about ox.

y = 1 – x3 x

3 = 1 – y x =

31 - y

V = 2π 1

0xydy V = 2π∫ (xL – xR)ydy

V = 2π∫ (1 - y)1/3

ydy

*use algebraic substitution & change limits

u = (1 – y)1/3 y = 1 – u3

u3 = 1 – y dy = 3u2du

*change the limits. To do that, substitute y sa u = (1 – y)1/3

V = 2π 0

1 u(1 – u

3)

▪ 3u

2du

*you may interchange the limits by turning the equation to negative

V = ─6π 1

0 u

3(1 – u

3)

du

V = ─6π∫ (u3 – u

6)

du

V = ─6π

u

4

4 – u

7

7 ]

1

0

= 9π14

Page 11: Integral Calculus Finals Reviewer

LENGTH OF ARC

S = ∫ 1 + ( )dydx

2 y in terms of x

S = ∫ 1 + ( )dxdy

2 x in terms of y

S = ∫ ( )dxdt

2 + ( )dy

dt 2 parametric

S = ∫ r2 + ( )dr

dθ 2 r in terms of θ

1. Find the length of the curve y = lncosx from x = 0 to x = π4 .

y = lncosx

dydx = ─

sinxcosx

S = ∫ 1 + ( )─sinxcosx

2 dx = ∫ 1 +tan

2x dx

S = ∫ sec2x dx = = ∫ secxdx

S = ln(secx + tanx) ] π/4

0

= ln(1 + 2 )

2. Find the length of the curve x = 2(2t + 3)3/2

, y = 3(t + 1)2

from t = 0 to t = 1.

dxdt = 2

3

2 (2t + 3)1/2

(2) = 6 2t + 3

dydt = 6(t + 1)

S = ∫ (6 2t + 3 )2 + (6(t + 1))

2 dt

S = ∫ 36(2t + 3) + 36(t + 1)2 dt

S = 6∫ 2t + 3 + t2 + 2t + 1 dt

S = 6∫ (t + 1)2 dt

S = 6∫ (t + 1)dt

S = 3(t + 1)2 ]

1

0

= 15

3. Find the total arc length of the cardioid r = a(1 + cosθ).

drdθ = a(─sinθ)

S = 2 ∫ (a(1 + cosθ))2 + (─asinθ)

2

*minultply sa 2 kasi 2 parts yung cardioid

S =2 ∫ a2(1 + cosθ)

2 + a

2sin

S = 2a ∫ 1 + 2cosθ + cos2θ + sin

2θ dθ

*recall cos2θ + sin

2θ = 1

S = 2a∫ 2 + 2cosθ dθ

S = 2 2 a∫ 1 + cosθ dθ

*let’s focus on 1 + cosθ. Recall that:

cos2θ =

12 (1 + cos2θ)

2cos2θ = 1 + cos2θ

2cos2θ2 = 1 + cosθ

S = 2 2 a∫ 2cos2θ2 dθ

S = 2 2 ▪ 2 a∫cosθ2 dθ

S = 4a(2)sinθ2 ]

π

0

= 8aError! Bookmark not defined.

AREA OF A SURFACE OF REVOLUTION

SA = 2π∫ydS about ox

SA = 2π∫xdS about oy

1. Find the area of the surface of revolution generated by revolving y = x

3 between x = 0 and x = a about ox.

SA = 2π∫ydS

SA = 2π∫x3

1 + ( )dydx

2 dx

SA = 2π∫x3

1 + 9x4 dx u

ndu

u = 1 + 9x4 du = 36x

3du

SA = 2π ▪ 1

36 ▪ 23 (1 + 9x

4)

3/2] a

0

SA = π27 [ (1 + 9x)

3/2 + 1]

Page 12: Integral Calculus Finals Reviewer

SECOND THEOREM OF PAPPUS V = 2πAd

where: A = area d = perpendicular distance of the centroid from the axis of revolution

1. Find the volume if area bounded by y2 = x and y = x

2 is

revolved about x = -1.

A = ∫(ya – yb)dx

A = ∫(x1/2

– x2)dx

A = 23 x

3/2 ─

x3

3 ] 1

0

= 13

Ax‾ = ∫ x(ya – yb)dx

Ax‾ = ∫ x(x1/2

– x2)dx

Ax‾ = ∫ (x3/2

– x3)dx

Ax‾ = 25 x

5/2 –

x4

4 ] 1

0

13 x‾ =

320

x‾ = 9

20

V = 2πAd = 2π

1

3

9

20 + 1 = 29π30

* may + 1 kasi yung yung axis nasa x = -1.