instituto de biotecnología universidad nacional autónoma de méxico

32
A T C G T A G C A T C G A G C T C G T A A T 1 0 0 0 1 0 1 1 0 0 1 0 1 1 1 1 1 1 0 1 1 0 1 1 0 1 0 1 0 0 1 0 Instituto de Biotecnología Universidad Nacional Autónoma de México A network perspective on the evolution of metabolism by gene duplication J. Javier Díaz-Mejía, Ernesto Pérez-Rueda & Lorenzo Segovia NetSci 2007 NY, USA

Upload: britanney-guzman

Post on 30-Dec-2015

33 views

Category:

Documents


2 download

DESCRIPTION

A. T. T. A. G. C. C. G. A. T. C. G. T. A. G. C. G. C. T. A. A. T. 0. 1. 0. 1. 0. 1. 0. 0. 1. 1. 0. 1. 1. 1. 1. 1. 1. 0. 0. 1. 1. 0. 1. 1. 0. 1. 0. 1. 0. 0. 1. 0. 1. 1. 1. 1. Instituto de Biotecnología - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Instituto de Biotecnología Universidad Nacional Autónoma de México

ATC

G

TA

GCAT

CG

AGC

TC

GTA

AT

10

0010

11

0010

11

1111

01

10

1 1

010

10010

1

Instituto de BiotecnologíaUniversidad Nacional Autónoma de México

A network perspective on the evolution of metabolism by gene duplication

J. Javier Díaz-Mejía, Ernesto Pérez-Rueda & Lorenzo Segovia

NetSci 2007 NY, USA

Page 2: Instituto de Biotecnología Universidad Nacional Autónoma de México

How metabolic networks have been originated and evolve?

http://genomebiology.com/2007/8/2/R26

Page 3: Instituto de Biotecnología Universidad Nacional Autónoma de México

Gene duplication is recognized as a main source of biological variation and innovation

duplication

Malate dehydrogenase (MDH)

Enzyme Commission reactions classification1 .- Oxidoreductases 2 .- Transferases3 .- Hydrolases 4 .- Lyases5 .- Isomerases 6 .- Ligases

Lactate dehydrogenase (LDH)

EC: 1.1.1.28 EC: 1.1.1.37

NAD+ NADH NAD+ NADH

http://genomebiology.com/2007/8/2/R26

Page 4: Instituto de Biotecnología Universidad Nacional Autónoma de México

a b c dMetabolic pathway 1

“stepwise” (Horowitz, 1945)

Two pioneer models linking gene duplication and evolution of metabolism

2.3.4.5 1.2.2.1

6.3.1.1

“patchwork” (Jensen, 1976)

Metabolic pathway 2 e2.3.7.8

f4.5.6.

7

g

stepwise patchwork

distance consecutive distantly

chemistry dissimilar similar

http://genomebiology.com/2007/8/2/R26

Page 5: Instituto de Biotecnología Universidad Nacional Autónoma de México

The peptidoglycan biosynthesis, stepwise or patchwork?

UDP-N-acetylmuramoyl-L-alanyl-D-glutamate

UDP-N-acetylmuramoyl-L-alanyl-D-glutamyl-meso-2,6-diaminoheptanedioate

6.3.2.8

6.3.2.9

6.3.2.13

6.3.2.15

UDP-N-acetylmuramate

UDP-N-acetylmuramoyl-L-alanine

UDP-N-acetylmuramoyl-L-alanyl-D-glutamyl-meso-2,6-diaminoheptanedioate- D-alanyl-D-alanine

D-alanyl-D-alanine + ATP

L-alanine + ATP

D-glutamate + ATP

meso-diaminopimelate+ ATP

stepwise patchwork

distance consecutive

distantly

chemistry

dissimilar similar

The biosynthesis of peptidoglycan stepwise or patchwork?

http://genomebiology.com/2007/8/2/R26

Page 6: Instituto de Biotecnología Universidad Nacional Autónoma de México

Z-score (Zi) = (Nreali - <Nrandi>)/std(Nrandi)

Re

ac

tio

n t

yp

e 1

(E

C:a

.b.-

.-)

Reaction type 2 (EC:w.x.-.-)

The origin of several preferentially coupled reactions could be explained by both stepwise and patchwork

http://genomebiology.com/2007/8/2/R26

Page 7: Instituto de Biotecnología Universidad Nacional Autónoma de México

Question:

Whether both the distance and the chemical similarity between reactions influence the retention of duplicates?...

... forget the names of models

http://genomebiology.com/2007/8/2/R26

Page 8: Instituto de Biotecnología Universidad Nacional Autónoma de México

Methodology

E8E6

E2 a E1E1 b E4E6 c E1E1 c E6E4 d E3E7 ...

E2

E3

E1 E4

E7

Detection of duplicates comparingenzyme sequences

1880EC numbers 4500

sequences

EC:1.1.1.35

EC:1.1.1.100

EC:4.2.1.17

E2

E3

E1E4

E7E8

E6

Pair MPL

Determining theMinimal Path Length

a 1

a 2

a 4E2

E3

E4E6

E6

E8

http://genomebiology.com/2007/8/2/R26

Page 9: Instituto de Biotecnología Universidad Nacional Autónoma de México

The preferential coupling of reactions partially explains the increased retention of duplicates between closer reactions

Re

ac

tio

n t

yp

e 1

(E

C:a

.b.-

.-)

Reaction type 2 (EC:w.x.-.-)

Real NetworkNull model

(functionally similar)

Rewiring

0

5

10

15

20

25

30

35

40

AL

L

CD

R

CS

R

AL

L

CD

R

CS

R

AL

L

CD

R

CS

R

AL

L

CD

R

CS

R

AL

L

CD

R

CS

R

AL

L

CD

R

CS

R

AL

L

CD

R

CS

R

AL

L

CD

R

CS

R

AL

L

CD

R

CS

R

1 2 3 4 5 6 7 8 Alldistances

0

5

10

15

20

25

30

35

40

Real networkNull models

Distance between nodes (enzymes)

ALL: all-against-all reactionsCDR: chemically dissimilar readtionsCSR: chemically ssimilar readtions

Distance between nodes (enzymes)

Ret

ent

ion

of d

upl

icat

es

(%)

0

5

10

15

20

25

30

35

40

AL

L

CD

R

CS

R

AL

L

CD

R

CS

R

AL

L

CD

R

CS

R

AL

L

CD

R

CS

R

AL

L

CD

R

CS

R

AL

L

CD

R

CS

R

AL

L

CD

R

CS

R

AL

L

CD

R

CS

R

AL

L

CD

R

CS

R

1 2 3 4 5 6 7 8 Alldistances

0

5

10

15

20

25

30

35

40

Real networkNull models

40

30

20

10

0

Real networkNull model

(Maslov-Sneppen )

Rewiring

http://genomebiology.com/2007/8/2/R26

Page 10: Instituto de Biotecnología Universidad Nacional Autónoma de México

The increased retention of duplicates between closer reactions is reflected in lower evolutionary distances within modules

1.- Detection of functional modules

3.- Significance of (ED) values

Z-score

> 3 2 1 0

-1 -2< -3

Protein domain content random shuffling

2.- A greater retention of duplicates between pathways implies a lower evolutionary distance (ED)

1.000.670.330.00

(ED)

http://genomebiology.com/2007/8/2/R26

Page 11: Instituto de Biotecnología Universidad Nacional Autónoma de México

Summary

http://genomebiology.com/2007/8/2/R26

• In metabolic networks the closer two reactions are, the greater the probability (~2-3 folds) that their enzymes are duplicates

This can be partially explained by the preferential biochemical coupling of reactions

This is reflected (or caused) in (by) a high retention of duplicates within modules

• Retention of duplicates between chemically similar reactions is greater (~7 folds) than between chemically dissimilar ones. In both cases the observed frequencies are, however, significantly greater than expected

• These two properties are additive. Hence, the retention of duplicates catalyzing consecutive, chemically similar reactions is ~ 35 %

• In metabolic networks the closer two reactions are, the greater the probability (~2-3 folds) that their enzymes are duplicates

This can be partially explained by the preferential biochemical coupling of reactions

This is reflected (or caused) in (by) a high retention of duplicates within modules

• Retention of duplicates between chemically similar reactions is greater (~7 folds) than between chemically dissimilar ones. In both cases the observed frequencies are, however, significantly greater than expected

• These two properties are additive. Hence, the retention of duplicates catalyzing consecutive, chemically similar reactions is ~ 35 %

A.B.c.d A.B.e.f A.B.g.h

• In metabolic networks the closer two reactions are, the greater the probability (~2-3 folds) that their enzymes are duplicates

This can be partially explained by the preferential biochemical coupling of reactions

This is reflected (or caused) in (by) a high retention of duplicates within modules

• Retention of duplicates between chemically similar reactions is greater (~7 folds) than between chemically dissimilar ones. In both cases the observed frequencies are, however, significantly greater than expected

• These two properties are additive. Hence, the retention of duplicates catalyzing consecutive, chemically similar reactions is ~ 35 % ?

Page 12: Instituto de Biotecnología Universidad Nacional Autónoma de México

• In silico modeling of the origin and evolution of metabolism is improved by the inclusion of specific functional constraints, such as the preferential biochemical coupling of reactions

• We suggest that the stepwise and patchwork models are not independent of each other: in fact, the network perspective enables us to reconcile and combine these models

Conclusions

http://genomebiology.com/2007/8/2/R26

Page 13: Instituto de Biotecnología Universidad Nacional Autónoma de México

ATC

G

TA

GCAT

CG

AGC

TC

GTA

AT

10

0010

11

0010

11

1111

01

10

1 1

010

10010

1

Acknowledgments

Lic. Gerardo May (Univ. Aut. Yucatán, México)Dr. L. Segovia’s lab (UNAM, México)Dr. Sergio Encarnación (UNAM, México)Dr. A-L Barabási’s lab (Univ. Notre Dame)Dr. Virginia Walbot (Univ. of Stanford)

Sponsors

National Science and Technology Council (México)UNAM Graduate Student Office

More detailshttp://genomebiology.com/2007/8/2/[email protected]

Page 14: Instituto de Biotecnología Universidad Nacional Autónoma de México
Page 15: Instituto de Biotecnología Universidad Nacional Autónoma de México

Shen-Orr SS et al. (2002) Nat Genet

Ret

enti

on

of

du

plic

ates

(%

)This phenomenon is characteristic of enzymatic networks

Distance between proteins(transcription factor regulated gene)

AL

LE

C-E

CP

-PA

LL

EC

-EC

P-P

AL

LE

C-E

CP

-PA

LL

EC

-EC

P-P

AL

LE

C-E

CP

-PA

LL

EC

-EC

P-P

AL

LE

C-E

CP

-PA

LL

EC

-EC

P-P

AL

LE

C-E

CP

-P

1 2 3 4 5 6 7 8 All

1 2 3 4 5 6 7 8 All

6

4

2

0

Gene transcriptional regulatory network from E. coli

Ret

enti

on

of

du

plic

ates

(%

)

Distance between proteins

10

5

0

Protein-protein interactions network from E. coli

Butland G et al. (2005) Nature

ALL: all interactionsEC-EC: enzyme-enzyme interactionsP-P: non-enzymimatic interactions

Page 16: Instituto de Biotecnología Universidad Nacional Autónoma de México

• Nodes and Edges• Minimal Path Length• ModularityMexico city’s subway network

Some basic network topological properties

Page 17: Instituto de Biotecnología Universidad Nacional Autónoma de México

murEmurFmraYftsWmurDmurGmurCddlBddlA

E. coli K12

folC

The peptidoglycan biosynthesis, stepwise or patchwork?

UDP-N-acetylmuramoyl-L-alanyl-D-glutamate

UDP-N-acetylmuramoyl-L-alanyl-D-glutamyl-meso-2,6-diaminoheptanedioate

6.3.2.8

6.3.2.9

6.3.2.13

6.3.2.15

UDP-N-acetylmuramate

UDP-N-acetylmuramoyl-L-alanine

UDP-N-acetylmuramoyl-L-alanyl-D-glutamyl-meso-2,6-diaminoheptanedioate- D-alanyl-D-alanine

D-alanyl-D-alanine + ATP

L-alanine + ATP

D-glutamate + ATP

meso-diaminopimelate+ ATP

Page 18: Instituto de Biotecnología Universidad Nacional Autónoma de México

From a network perspective traditional models stepwise Vs patchwork are conceptually flawed

EC:2.4.2.14PurF

EC:2.7.6.1PrsA

ATPAMP

5-phosphoribosylamine

L-glutamate

EC:2.4.2.22Gpt

xanthosine-5-phosphate

Pi

L-glutamine

Pi

D-ribose-5-phosphate

5-phosphoribosyl 1-pyrophosphate

H2Oxanthine

salvage pathways of guanine, xanthine, and their nucleosides5-phosphoribosyl 1-pyrophosphate biosynthesis Ipurine nucleotides de novo biosynthesis I

Page 19: Instituto de Biotecnología Universidad Nacional Autónoma de México

R |CH2

|CH2

|C=O |O-

R |CH2

|CH2

|C=O |SCoA

R | CH

||HC | C=O | SCoA

R | CHOH

| CH2

| C=O | SCoA

R | C=O

| CH2

| C=O | SCoA

CoA FAD FADH H2O NAD NADH

R (n-2)

|CH2

|CH2

|C=O |SCoA

R (n+2)

|CH2

|CH2

|C=O |S[ACP]

R | CH

||HC | C=O | S[ACP]

R | CHOH

| CH2

| C=O | S[ACP]

R | C=O

| CH2

| C=O | S[ACP]

FAD FADH H2O NADP NADPH R |CH2

|CH2

|C=O |S[ACP]

R |CH2

|CH2

|C=O |SCoA

Phospholipidsbiosynthesis

ATP synthesis

DEGRADATION

BIOSYNTHESIS

1.1.1.35

1.1.1.1004.2.1.61

4.2.1.171.3.99.3

1.3.1.9

2.3.1.166.2.1.3

6.2.1.20

CoA ACP

Acetil-CoA

Retention of duplicates as groups and single entities

Fatty acids metabolism

2.3.1.41 2.3.1.41

Page 20: Instituto de Biotecnología Universidad Nacional Autónoma de México

Both groups and single duplicates are significantly retained

E1

{

{E6

I

II

III

IV

V

}

}

}

Gene duplication No gene duplication

Re

ten

tion

of

du

plic

ate

s (%

)

Eco

Cyc

Eco

Ke

gg

Me

taC

yc

Re

fKe

gg

Eco

Cyc

Eco

Ke

gg

Me

taC

yc

Re

fKe

gg

Eco

Cyc

Eco

Ke

gg

Me

taC

yc

Re

fKe

gg

Eco

Cyc

Eco

Ke

gg

Me

taC

yc

Re

fKe

gg

Eco

Cyc

Eco

Ke

gg

Me

taC

yc

Re

fKe

gg

100

80

60

40

20

0

(I) (II) (III) (IV) (V)

E4'

E5'E5

E2 E2'

E3'E3

E4'E4

Page 21: Instituto de Biotecnología Universidad Nacional Autónoma de México

Null models generation (Maslov-Sneppen)

Real network Maslov-Sneppen model

Rewiring

Page 22: Instituto de Biotecnología Universidad Nacional Autónoma de México

New null models now include the preferential biochemical coupling of reactions

Rewiring

Real network Null model

EC:1.1.1.5

EC:1.1.4.7

EC:1.1.1.5

EC:2.1.1.1

EC:2.1.4.3

EC:3.5.4.1

EC:1.1.1.5

EC:1.1.4.7

EC:1.1.1.5

EC:2.1.1.1

EC:2.1.4.3

EC:3.5.4.1

Page 23: Instituto de Biotecnología Universidad Nacional Autónoma de México

Hub influence on gene duplicationE

nzy

me

recr

uit

men

t ra

te (

%)

Distance between nodes (enzymes)

EcoKegg EcoCyc

MetaCycRefKegg

En

zym

e re

cru

itm

ent

rate

(%

)

Distance between nodes (enzymes)

En

zym

e re

cru

itm

ent

rate

(%

)

Distance between nodes (enzymes)

En

zym

e re

cru

itm

ent

rate

(%

)

Distance between nodes (enzymes)

Page 24: Instituto de Biotecnología Universidad Nacional Autónoma de México

Metabolic networks can be represented by diverse graph types

G6P NADPH

NADP+ 6PGL

H2O

GPGR5PX5P

zwf pgl

gndrpe

compound centric enzyme centric bipartite

G6P NADPH

NADP+

6PGL H2O

GPGX5P

zwf

pglgnd

rpe R5P

Page 25: Instituto de Biotecnología Universidad Nacional Autónoma de México

Barabási y Oltvai (2004) Nat Rev Genet

• Duplication inheritance

divergence

• By this way scale free

networks have been

generated, but the potential

functionality of such networks

is not assessed Pastor-Satorras et

al, (2003) J Theor Biol

In silico models have successfully simulated the grow of networks by gene duplication

Page 26: Instituto de Biotecnología Universidad Nacional Autónoma de México

Pfeiffer, Soyer y Bonhoeffer (2005) Plos Biol

• Duplication inheritance

Divergence• Multifunctional enzymes and

transporters• Potential biomass production

• Reaction coupling better fits

connectivity properties of real

networks (existence of hubs)

In silico models have successfully simulated the grow of networks by gene duplication

Page 27: Instituto de Biotecnología Universidad Nacional Autónoma de México

Becker, Price y Palsson (2006) BMC Bioinformatics

• There are biases in the coupling of

specific metabolites

• These biases follow a power law

distribution

Metabolite coupling is significant in metabolic networks

Page 28: Instituto de Biotecnología Universidad Nacional Autónoma de México

Barabási y Oltvai (2004) Nat Rev Genet

• scale free• clustering• hierarchical

Some network emerging topological properties

Page 29: Instituto de Biotecnología Universidad Nacional Autónoma de México

Papp et al (2004) Nature

Lemke et al (2004) Bioinformatics

Essentiality and damage in metabolic networks

Page 30: Instituto de Biotecnología Universidad Nacional Autónoma de México

Clustering (C) =

Watts y Strogatz (1998) Nature

• Short distance between nodes• High clustering coefficient

The small world into large networks

random

small-world

2ni

ki(ki - 1)ni : direct edges between i neighborski : number of i neighbors

C

C = = 1

C = = 0.05

205(4)

15(4)

Page 31: Instituto de Biotecnología Universidad Nacional Autónoma de México

The analysis of biological systems from a network perspective have had a great increase in last years

Page 32: Instituto de Biotecnología Universidad Nacional Autónoma de México

Scale free Modularity

Jeong et al (2000) Nature

Ravasz et al (2002) Science

Some topological properties of metabolic networks

• small world• universality• scale free• hub elimination• modularity

+ -

- +

+ +

e

a b

c d