institute of solid state physics founded 1972 18 laboratories and theoretical department

Download INSTITUTE of SOLID STATE PHYSICS Founded 1972 18 Laboratories and Theoretical Department

If you can't read please download the document

Upload: dextra

Post on 09-Jan-2016

29 views

Category:

Documents


0 download

DESCRIPTION

INSTITUTE of SOLID STATE PHYSICS Founded 1972 18 Laboratories and Theoretical Department Staff - 180, Scientific staff - 100 In the field of atomic and plasma physics 1.Optics and Spectroscopy 2. Atomic Spectroscopy 3. Metal Vapour Lasers. Laboratory Atomic Spectroscopy - PowerPoint PPT Presentation

TRANSCRIPT

  • INSTITUTE of SOLID STATE PHYSICSFounded 197218 Laboratories and Theoretical DepartmentStaff - 180, Scientific staff - 100In the field of atomic and plasma physics 1.Optics and Spectroscopy2. Atomic Spectroscopy3. Metal Vapour Lasers

  • Laboratory Atomic Spectroscopy

    1. Employment of HCD for analytical investigations analyses of layer-by-layer surface of the complex material.- Dr. V. Mihailov

    2. Investigation of plasma electron spectroscopy and applications Dr. P. Pramatarov, Dr. M. Stefanova3. Atomic constants, atomic spectroscopy and application Prof. K. Blagoev4. Quantum optics Dr. E. Dimova

  • Atomic structure, atomic constants G. Malcheva K. Blagoev

  • Experimental methods for lifetimes and transition probabilities determinationRadiative lifetimes - time evolution of the population* Beam foil/laser* time resolved method with: ++ electron excitation ++ laser excitation ( LIF)width of the excited states + Hanle methodTransition probabilities branching fractions I = 1/AikAik = (1/i)(Ii/Ij)

  • Radiative lifetimes of excited states - time evolution of the population* Beam foil/laser* time resolved method with: ++ electron excitation ++ laser excitation ( LIF)width of the excited states + Hanle method

  • MotivationObtaining new information about atomic structure and radiative properties;New or more precise data for radiative lifetimes and transition probabilities in application for:laser physics, plasma physics and especially for astrophysicsVerification of theoretical methods

  • List of the investigated atomic spectraRadiative lifetimes of high lying excited states of NeII,ArII,KrII,XeII delayed coincidence method with pulsed electron excitation- Radiative lifetimes and transition probabilities of atoms and ions of IIB, IIA groupHg I - LIF and DC methods and HF calculations,Hg II - Delayed coincidence method with electron excitation,Hg III Delayed coincidence method,Cd I, II - LIF method, HF calculation, branching ratio,Cd III - Delayed coincidence method with electron excitation,Zn I, I LIF method and HF calculations,AgII, CuII transition probabilities, branching ratio

    Radiative lifetimes of some transition elementsZr I, Zr II, III LIF method and HF calculation Hf I, Hf III LIF method and HF calculation Nb I LIF, calculationsYI, Y III LIF, calculationsTb I , LIF in progress

  • Experimental method and experimental set-up

  • Table 2. Radiative Lifetimes of n3P states of HgI(ns)K. Blagoev et al Proc SPIE,v5226, 164(2002), Proc. EGAS34,186(2002)E. Alipieva et al Opt. Sprctr. 43,529(1977);3. W. J. Alford et al Phys. Rev A36, 641(1987);4. P. Hafner et al J. Phys. B 11, 2975(1978)

    ExperimentTheoryState[1] DC 2002[2] Hanle, 1975[3] , =1/Aik1987[4]8p3P02482138p3P116761421778p3P2156951459p3P03399p3P1135791249p3P24110p3P237544

  • 1. K. Blagoev et al proc. SPIE, v. 5256,164(2002); 2. G. C. King et al J. Phys. B B8, 365(1975); 3. W. J. Alford et al Phys. Rev A36, 641(1987); 4. E. H. Pinnington et al Canadian J of Physics, 66, 960(1988); 5. T. Anderson et al JQSRT 13,369(1973); 6. P. Hafner et al J. Phys. B 11, 2975(1978)

    Table 1. Radiative Lifetimes of np1P states of HgI(ns).

    ExperimentTheoryState[1]LIF[2] e-ph[3] =1/Aik[4] BF[5]BF[6]6p1P1.31.351.271.27p1P26128p1P72389p1P101010p1P55.65141

  • Table 1a. Radiative Lifetimes of np P states of HgI(ns).

    K.Blagoev et al Proc. SPIE, v4397, p. 256

    ExperimentTheoryState[1]DC[2]e-ph[3] =1/Aik[4]BF[5]BF[6]6p1P11.31.351.271.27p1P126128p1P172389p1P110105d96s26p 1P15.310p1P155.65141

  • Time Resolved Laser Induced Fluorescence Equipment in Lund Laser Centre

  • Generation of necessary frequencies using second, third harmonic and Stokes and anti-Stokes Raman components.

  • List of the investigated atomic spectraRadiative lifetimes of high lying excited states of NeII,ArII,KrII,XeII delayed coincidence method with pulsed electron excitation- Radiative lifetimes and transition probabilities of atoms and ions of IIB, IIA groupHg I - LIF and DC methods and HF calculations,Hg II - Delayed coincidence method with electron excitation,Hg III Delayed coincidence method,Cd I, II - LIF method, HF calculation, branching ratio,Cd III - Delayed coincidence method with electron excitation,Zn I, I LIF method and HF calculations,AgII, CuII transition probabilities, branching ratio

    Radiative lifetimes of some transition elementsZr I, Zr II, III LIF method and HF calculation Hf I, Hf III LIF method and HF calculation Nb I - LIF, calculationsYI, Y III - LIF, calculationsTb I - LIF in progress

  • Table2. Excitation schemes

    Table 1. Radiative Lifetimes of Zr III excited levels (data in ns).R. Mayo, J. Campos, M. Ortiz, H. Xu, S. Svanberg , G. Malcheva and K. BlagoevEur. Phys. J: D40,169,2006.

    LevelE, cm-1Starting levelStarting level, cm-1exc(nm)airobs(nm)air4d5p z1D2o53647.214d2 1D25741.5208.68286.934d5p z3D1o55614.424d2 3P08062.0210.23268.634d5p z3D2o56435.654d2 3P18325.6207.79265.634d5p z3D3o57346.834d2 3P28838.2206.08264.434d5p z3F2o55555.634d2 3P18325.6211.66269.03

    LevelEnergy,ExperimentTheory.cm-1This workThis work[7][3]4d5p z1D2o 53647.211.70(20)1.521.531.484d5p z3D1o 55614.421.10(15)0.950.960.914d5p z3D2o56435.651.15(10)0.920.940.894d5p z3D3o57346.831.05(15)0.920.930.894d5p z3F2o 55555.631.90(20)1.551.551.51

  • A typical experimental time-resolved signal from the 53647.21 cm1 level in Zr III.

  • Experimental methods for lifetimes and transition probabilities determinationRadiative lifetimes - time evolution of the population* Beam foil/laser* time resolved method with: ++ electron excitation ++ laser excitation ( LIF)width of the excited states + Hanle methodTransition probabilities branching fractions I = 1/Aik, Aik = (1/i)(Ii/Ij)

  • - (LIBS)

  • Laser parameters: 1064 nm, 20 Hz, t = 7 ns, E = 240 mJ.Transition probabilities - LIBS

  • Time dependence of Au I and Au II spectra

  • LIBS in archaeology

  • Nd:YAG laser (Quanta Ray GC3), = 1064 nmE = 700-800 mJT 10 ns; 10 Hz Eschelle spectrometer (Mechelle 5000)Sample

  • Spectrum from silver sample obtained by Meshele 5000

  • LIBS in Art

  • LIBS

  • J. Campos, M. Ortiz,R. Mayo - Universidad Complutense de Madrid, Spain;

    H. L. Xu, S. Svanberg, L. Engstrom, H. Lundberg - Lund Institute of Technology, Lund, Sweden

    - H. Nilsson - Lund Observatory, Lund, Sweden

    E. Bimont, P. Quinet, V. Fivet - Universit de Lige, Lige 1, Belgium

    P. Palmeri - Astrophysique et Spectroscopie, - Universite de Mons UMONS, Mons, Belgium

    AcknowledgementsLaser lab in Europe Bulgarian National Science Foundation

  • Thank you