institute for computational technische universität ...fdubois/organisation/19janv2010/... · ahmed...

69
LB scheme Tutorial, Paris 18.1.2010 Manfred Krafczyk et al. Institute for Computational Modeling in Civil Engineering Technische Universität Braunschweig slide 1 LBM for coupled transport problems Manfred Krafczyk, Benjamin Ahrenholz, Sebastian Bindick, Sören Freudiger, Martin Geier, Sebastian Geller, Christian Janßen, Konstantin Kucher, Jannis Linxweiler, Martin Schönherr, Maik Stiebler, Sonja Uphoff [email protected] www.irmb.tu-bs.de

Upload: lamthuan

Post on 02-May-2018

213 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: Institute for Computational Technische Universität ...fdubois/organisation/19janv2010/... · Ahmed body (: LB schemeTutorial, Paris 18.1.2010 Manfred Krafczyk et al. Institute for

LB scheme Tutorial, Paris 18.1.2010 Manfred Krafczyk et al.

Institute for Computational Modeling in Civil Engineering

Technische UniversitätBraunschweig

slide 1

LBM for coupled transport problems

Manfred Krafczyk, Benjamin Ahrenholz, Sebastian Bindick, Sören Freudiger, Martin Geier, Sebastian

Geller, Christian Janßen, Konstantin Kucher, Jannis Linxweiler, Martin Schönherr, Maik Stiebler, Sonja

Uphoff

[email protected]

Page 2: Institute for Computational Technische Universität ...fdubois/organisation/19janv2010/... · Ahmed body (: LB schemeTutorial, Paris 18.1.2010 Manfred Krafczyk et al. Institute for

LB scheme Tutorial, Paris 18.1.2010 Manfred Krafczyk et al.

Institute for Computational Modeling in Civil Engineering

Technische UniversitätBraunschweig

slide 2

• The modeling map• BGK vs. MRT et al.• Virtual Fluids• coupled problems: the scale map concept• FSI• GPU-acceleration• turbulent LES flows on non-uniform grids• Turbulent thermal flow driven by radiation• flow acoustics• Free surface flows• Turbulent multiphase flow

• outlook

Outline

Page 3: Institute for Computational Technische Universität ...fdubois/organisation/19janv2010/... · Ahmed body (: LB schemeTutorial, Paris 18.1.2010 Manfred Krafczyk et al. Institute for

LB scheme Tutorial, Paris 18.1.2010 Manfred Krafczyk et al.

Institute for Computational Modeling in Civil Engineering

Technische UniversitätBraunschweig

slide 3

Boltzmann, Navier-Stokes + continuity eq.

)( fxf

tf

Boltzmann equation (BE)

)(1 eqffxf

tf

BGK-approximation

)(1 eqii

ii

i ffxf

tf

Discrete BE

)(1),(),( eqiiii ffxtftxttf

Lattice BE

)())(()( vpvvtv

Navier-Stokes equation

0)(

vt

continuity equation

Kn, Ma <<1

Chapman-Enskog expansion

Kn<<1

CE-expansion

FD-Discretization

Page 4: Institute for Computational Technische Universität ...fdubois/organisation/19janv2010/... · Ahmed body (: LB schemeTutorial, Paris 18.1.2010 Manfred Krafczyk et al. Institute for

LB scheme Tutorial, Paris 18.1.2010 Manfred Krafczyk et al.

Institute for Computational Modeling in Civil Engineering

Technische UniversitätBraunschweig

slide 4

Lattice Boltzmann Equation (LBE)

d2q9-Model

f Mass fractions

e Microscopic velocity of the particles

t Time

x Space

d3q13-Modeld’Humieres 01

d3q19-Model

Qian 92Qian 92d2q6-Model

Wolfram 86, Hasslacher 86

Page 5: Institute for Computational Technische Universität ...fdubois/organisation/19janv2010/... · Ahmed body (: LB schemeTutorial, Paris 18.1.2010 Manfred Krafczyk et al. Institute for

LB scheme Tutorial, Paris 18.1.2010 Manfred Krafczyk et al.

Institute for Computational Modeling in Civil Engineering

Technische UniversitätBraunschweig

slide 5

Collision operator:

d2q9-Model

transformation into moment space:

Lattice Boltzmann Equation (LBE)

Page 6: Institute for Computational Technische Universität ...fdubois/organisation/19janv2010/... · Ahmed body (: LB schemeTutorial, Paris 18.1.2010 Manfred Krafczyk et al. Institute for

LB scheme Tutorial, Paris 18.1.2010 Manfred Krafczyk et al.

Institute for Computational Modeling in Civil Engineering

Technische UniversitätBraunschweig

slide 6

CLBM: M. Geier, A. Greiner, and J. G. Korv ink, Physical Review E , v ol. 73, no. 6, p. 066705,2006.

MRT: Humieres 92, Lallemand 00

Collision operator

TRT: Ginzburg 03

LBGK: Quian 92

Page 7: Institute for Computational Technische Universität ...fdubois/organisation/19janv2010/... · Ahmed body (: LB schemeTutorial, Paris 18.1.2010 Manfred Krafczyk et al. Institute for

LB scheme Tutorial, Paris 18.1.2010 Manfred Krafczyk et al.

Institute for Computational Modeling in Civil Engineering

Technische UniversitätBraunschweig

slide 7

Interpolation Interpolation basedbased schemescheme forfor nono--slipslip BC [BC [BouzidiBouzidi, et al., 2001], et al., 2001]

Page 8: Institute for Computational Technische Universität ...fdubois/organisation/19janv2010/... · Ahmed body (: LB schemeTutorial, Paris 18.1.2010 Manfred Krafczyk et al. Institute for

LB scheme Tutorial, Paris 18.1.2010 Manfred Krafczyk et al.

Institute for Computational Modeling in Civil Engineering

Technische UniversitätBraunschweig

slide 8

Virtual FluidsVirtual Fluids

60

used

mem

ory

[%]

time [min]

> 50%

100

20

40

80

0

build metis-input-graph

metis*

partitioning initialize node

grid

segmentation for a huge number of nodes preprocess costs a lot of time and memory

arbitrary shapes of refined areas many possible ghost node configurations

switch to block grid structure

* [http://glaros.dtc.umn.edu/gkhome/views/metis/ ]

apply ghost node rules to segments

collision ghost node non collision ghost

node

disadvantages of node grids in respect of distributed (, adaptive) disadvantages of node grids in respect of distributed (, adaptive) computations:computations:

Page 9: Institute for Computational Technische Universität ...fdubois/organisation/19janv2010/... · Ahmed body (: LB schemeTutorial, Paris 18.1.2010 Manfred Krafczyk et al. Institute for

LB scheme Tutorial, Paris 18.1.2010 Manfred Krafczyk et al.

Institute for Computational Modeling in Civil Engineering

Technische UniversitätBraunschweig

slide 9

VirtualFluidsVirtualFluids reloaded: block grid reloaded: block grid

basic strategies of block grid

zoning of a flow field by blocks of various sizes to adapt the mesh size to local flow characteristic lengthuniform Cartesian mesh in each block for efficient computationssame grid size in all blocks to simplify connectivity

Block2DBlock2D

int x1,x2,level

BlockGridBlockGrid

BlockGridBlockGrid

BlockDescriptorBlockDescriptor

matrix2d<double> fmatrix2d<BC> bc

Block3DBlock3D

int x1,x2,x3,level

BlockDescriptorBlockDescriptor

matrix3d<double> fmatrix3d<BC> bc

Page 10: Institute for Computational Technische Universität ...fdubois/organisation/19janv2010/... · Ahmed body (: LB schemeTutorial, Paris 18.1.2010 Manfred Krafczyk et al. Institute for

LB scheme Tutorial, Paris 18.1.2010 Manfred Krafczyk et al.

Institute for Computational Modeling in Civil Engineering

Technische UniversitätBraunschweig

slide 10

Coupled problems: the scale separation mapAlfons Hoekstra, Eric Lorenz, Jean-Luc Falcone and Bastien ChopardTowards a Complex Automata Framework for Multi-scale Modeling: Formalism and the Scale Separation Map, Lecture Notes in Computer Science Springer Berlin, pp. 922-930, 2007

t

x

M2

M1 t

x

M2M1

t

x

M2

M1 t

x

M2

M1

t

x

M2M1

t

x

M1M2

Page 11: Institute for Computational Technische Universität ...fdubois/organisation/19janv2010/... · Ahmed body (: LB schemeTutorial, Paris 18.1.2010 Manfred Krafczyk et al. Institute for

LB scheme Tutorial, Paris 18.1.2010 Manfred Krafczyk et al.

Institute for Computational Modeling in Civil Engineering

Technische UniversitätBraunschweig

slide 11

How far can you get with simple LES-LB turbulence modeling ?

T 0

strain rate tensor is local quantity !

Smagorinsky:

}2.0,05.0{sC

M. Krafczyk, J. Tölke, and L.-S. Luo, Int. J. of M. Phys. B 17(1/2):33-39 (2003)

Page 12: Institute for Computational Technische Universität ...fdubois/organisation/19janv2010/... · Ahmed body (: LB schemeTutorial, Paris 18.1.2010 Manfred Krafczyk et al. Institute for

LB scheme Tutorial, Paris 18.1.2010 Manfred Krafczyk et al.

Institute for Computational Modeling in Civil Engineering

Technische UniversitätBraunschweig

slide 12

Page 13: Institute for Computational Technische Universität ...fdubois/organisation/19janv2010/... · Ahmed body (: LB schemeTutorial, Paris 18.1.2010 Manfred Krafczyk et al. Institute for

LB scheme Tutorial, Paris 18.1.2010 Manfred Krafczyk et al.

Institute for Computational Modeling in Civil Engineering

Technische UniversitätBraunschweig

slide 13

Transitional flow around a sphere:Re=10^3-10^4Ma=0.02Cs=0.186 grid levels2x10^7 grid nodes70 procs, 80% par. efficiency

Page 14: Institute for Computational Technische Universität ...fdubois/organisation/19janv2010/... · Ahmed body (: LB schemeTutorial, Paris 18.1.2010 Manfred Krafczyk et al. Institute for

LB scheme Tutorial, Paris 18.1.2010 Manfred Krafczyk et al.

Institute for Computational Modeling in Civil Engineering

Technische UniversitätBraunschweig

slide 14

Results I:

Page 15: Institute for Computational Technische Universität ...fdubois/organisation/19janv2010/... · Ahmed body (: LB schemeTutorial, Paris 18.1.2010 Manfred Krafczyk et al. Institute for

LB scheme Tutorial, Paris 18.1.2010 Manfred Krafczyk et al.

Institute for Computational Modeling in Civil Engineering

Technische UniversitätBraunschweig

slide 15

(laminar) boundary layer separation:Achenbach: 82.5° Re=10^4, Bakic : 80° – 83° at Re=5*10^4

This simulation: 84°

Results II:

Page 16: Institute for Computational Technische Universität ...fdubois/organisation/19janv2010/... · Ahmed body (: LB schemeTutorial, Paris 18.1.2010 Manfred Krafczyk et al. Institute for

LB scheme Tutorial, Paris 18.1.2010 Manfred Krafczyk et al.

Institute for Computational Modeling in Civil Engineering

Technische UniversitätBraunschweig

slide 16

Page 17: Institute for Computational Technische Universität ...fdubois/organisation/19janv2010/... · Ahmed body (: LB schemeTutorial, Paris 18.1.2010 Manfred Krafczyk et al. Institute for

LB scheme Tutorial, Paris 18.1.2010 Manfred Krafczyk et al.

Institute for Computational Modeling in Civil Engineering

Technische UniversitätBraunschweig

slide 17

Ahmed body (http://www.cfd-online.com/Wiki/Ahmed_body):

Page 18: Institute for Computational Technische Universität ...fdubois/organisation/19janv2010/... · Ahmed body (: LB schemeTutorial, Paris 18.1.2010 Manfred Krafczyk et al. Institute for

LB scheme Tutorial, Paris 18.1.2010 Manfred Krafczyk et al.

Institute for Computational Modeling in Civil Engineering

Technische UniversitätBraunschweig

slide 18

Re=10^6Ma=0.02Cs=0.185 grid levels1.7x10^7 grid nodes64 procs, 80% par. efficiency

Page 19: Institute for Computational Technische Universität ...fdubois/organisation/19janv2010/... · Ahmed body (: LB schemeTutorial, Paris 18.1.2010 Manfred Krafczyk et al. Institute for

LB scheme Tutorial, Paris 18.1.2010 Manfred Krafczyk et al.

Institute for Computational Modeling in Civil Engineering

Technische UniversitätBraunschweig

slide 19

Pressure distribution for rear slant angle 25° : left: exp (Lienhart et al.), mid: E. Fares (Powerflow,EXA), right: VirtualFluids

Page 20: Institute for Computational Technische Universität ...fdubois/organisation/19janv2010/... · Ahmed body (: LB schemeTutorial, Paris 18.1.2010 Manfred Krafczyk et al. Institute for

LB scheme Tutorial, Paris 18.1.2010 Manfred Krafczyk et al.

Institute for Computational Modeling in Civil Engineering

Technische UniversitätBraunschweig

slide 20

Page 21: Institute for Computational Technische Universität ...fdubois/organisation/19janv2010/... · Ahmed body (: LB schemeTutorial, Paris 18.1.2010 Manfred Krafczyk et al. Institute for

LB scheme Tutorial, Paris 18.1.2010 Manfred Krafczyk et al.

Institute for Computational Modeling in Civil Engineering

Technische UniversitätBraunschweig

slide 21

Velocity profiles for rear slant angle 25° : dots: exp (Lienhart et al.), grey lines: E. Fares (Powerflow,EXA), black lines: VirtualFluids

Page 22: Institute for Computational Technische Universität ...fdubois/organisation/19janv2010/... · Ahmed body (: LB schemeTutorial, Paris 18.1.2010 Manfred Krafczyk et al. Institute for

LB scheme Tutorial, Paris 18.1.2010 Manfred Krafczyk et al.

Institute for Computational Modeling in Civil Engineering

Technische UniversitätBraunschweig

slide 22

Hardware:• GeForce• Tesla• QuadroSoftware:• Compute Unified Device Architecture

(CUDA 2.0, Compiler+SDK)

nVIDIA - G80/G92/GT200: the parallel stream processorGTX 280: 1.4 billion transistorsMontecito: 1.7 (1.5 are L3

cache)

Page 23: Institute for Computational Technische Universität ...fdubois/organisation/19janv2010/... · Ahmed body (: LB schemeTutorial, Paris 18.1.2010 Manfred Krafczyk et al. Institute for

LB scheme Tutorial, Paris 18.1.2010 Manfred Krafczyk et al.

Institute for Computational Modeling in Civil Engineering

Technische UniversitätBraunschweig

slide 23

Comparison CPU-GPU

Platform Memory [MB] Peak [GFLOPS] BW [GB/s] price [Euro]

Intel Core 2 Duo (3.0 GHz) 4 000 48 7.0 1000

NEC SX-8R A (8 CPUs) 128 000 281 563 expensive

nVIDIA GTX280 1 024 624 142 500

Page 24: Institute for Computational Technische Universität ...fdubois/organisation/19janv2010/... · Ahmed body (: LB schemeTutorial, Paris 18.1.2010 Manfred Krafczyk et al. Institute for

LB scheme Tutorial, Paris 18.1.2010 Manfred Krafczyk et al.

Institute for Computational Modeling in Civil Engineering

Technische UniversitätBraunschweig

slide 24

Multi-GPU: Supercomputer on the Desktop -Teraflop Computing Hardware cost:• 5000 $

Communication between GPUs:• 4 PCI Express slots• Bandwidth Host↔Device

200-3000 MB/sec• Latency like Front Side Bus (266

MHz)• PThreads• CUDA

Bandwidth [MB/s] Latency [ns]

PCI-E/FSB 300-3000 10

Infiniband 312-7500 5 000

G-Ethernet 125 80 000→512 Cores!

Mainboard:P6N Diamond MSI

Page 25: Institute for Computational Technische Universität ...fdubois/organisation/19janv2010/... · Ahmed body (: LB schemeTutorial, Paris 18.1.2010 Manfred Krafczyk et al. Institute for

LB scheme Tutorial, Paris 18.1.2010 Manfred Krafczyk et al.

Institute for Computational Modeling in Civil Engineering

Technische UniversitätBraunschweig

slide 25

Example: moving sphere in a pipe

Re=200 Re=400

Page 26: Institute for Computational Technische Universität ...fdubois/organisation/19janv2010/... · Ahmed body (: LB schemeTutorial, Paris 18.1.2010 Manfred Krafczyk et al. Institute for

LB scheme Tutorial, Paris 18.1.2010 Manfred Krafczyk et al.

Institute for Computational Modeling in Civil Engineering

Technische UniversitätBraunschweig

slide 26

Moving Sphere in a pipe: Results (1 GPU)

(2nx,ny,nz) = 128x128x512

R. Clift, J. R. Grace, M. E. Weber: Bubbles, Drops and Particles, Academic Press, 1978

Page 27: Institute for Computational Technische Universität ...fdubois/organisation/19janv2010/... · Ahmed body (: LB schemeTutorial, Paris 18.1.2010 Manfred Krafczyk et al. Institute for

LB scheme Tutorial, Paris 18.1.2010 Manfred Krafczyk et al.

Institute for Computational Modeling in Civil Engineering

Technische UniversitätBraunschweig

slide 27

Results for grid 64(128)x128x512 (single prec.)• 690 MLUPS• 72 % Throughput (!) (83 % pure MemCpy)• 43 % peak perf.

Tesla test sample (GT200)• 192 cores (1.1GHz)• 101 GB/s throughput• supports double precision

Moving Sphere in a pipe: Performance Single GPU

Page 28: Institute for Computational Technische Universität ...fdubois/organisation/19janv2010/... · Ahmed body (: LB schemeTutorial, Paris 18.1.2010 Manfred Krafczyk et al. Institute for

LB scheme Tutorial, Paris 18.1.2010 Manfred Krafczyk et al.

Institute for Computational Modeling in Civil Engineering

Technische UniversitätBraunschweig

slide 28

[Körner2005]

Extensions for free surface flows

• fluid     , interface      and inactive gas      nodes

• pressure boundary condition at the interface

• initialization of new interface nodes needed

Page 29: Institute for Computational Technische Universität ...fdubois/organisation/19janv2010/... · Ahmed body (: LB schemeTutorial, Paris 18.1.2010 Manfred Krafczyk et al. Institute for

LB scheme Tutorial, Paris 18.1.2010 Manfred Krafczyk et al.

Institute for Computational Modeling in Civil Engineering

Technische UniversitätBraunschweig

slide 29

Extensions for free surface flows

• fluid     , interface      and inactive gas      nodes

• pressure boundary condition at the interface

• initialization of new interface nodes needed

• VOF approach to capture the interface

– introduce fill level

– flux calculation in terms of LB distribution functions

– calculate new fill level

fluid

cell

VV

( , ) ( , )i i ii Im f x e t t f x t A

I: inverse direction to iA: wet area between two cells

gas: 0.0interface: ] 0.0 – 1.0 [fluid: 1.0

[Körner2005][Thürey2008]

[Körner2005]

1t

Page 30: Institute for Computational Technische Universität ...fdubois/organisation/19janv2010/... · Ahmed body (: LB schemeTutorial, Paris 18.1.2010 Manfred Krafczyk et al. Institute for

LB scheme Tutorial, Paris 18.1.2010 Manfred Krafczyk et al.

Institute for Computational Modeling in Civil Engineering

Technische UniversitätBraunschweig

slide 30

Basic  free  surface  algorithm

• Compute the flow field– Collision (local)– Add body force (local)– Propagation (non‐local)– Apply boundary conditions (local)

• Free surface part on interface nodes– Apply pressure boundary condition (non‐local)

– Evaluate mass fluxes and new fill levels (non‐local)– Detect cell changes (local)– Assure closed interface cell layer (non‐local)– Initialize new fluid nodes (non‐local)

( , ) ( , ) ( , ) ( , )eq eqi inv i invf f ft t f x x v v

[Körner2005, Thürey2008]

( ) ( )i ii

w x x e ( ) ( )i ii

w v x v x e

Page 31: Institute for Computational Technische Universität ...fdubois/organisation/19janv2010/... · Ahmed body (: LB schemeTutorial, Paris 18.1.2010 Manfred Krafczyk et al. Institute for

LB scheme Tutorial, Paris 18.1.2010 Manfred Krafczyk et al.

Institute for Computational Modeling in Civil Engineering

Technische UniversitätBraunschweig

slide 31

• Nvidia GTX 275– 1024MB device memory, which corresponds to a maximum of 6 million nodes– 240 cores with 1.4 GHz each

• Resulting performance in MNUPS

• Maximum performance:– 372 MNUPS, 1 million nodes 372 time steps per second

Performance  of D3Q19 model:  Poiseuille  flow

ny x nz 32 64 128 256

32x32 318 352 289 287

64x64 295 357 306 284

128x128 353 372 295 --

256x256 317 357 -- --

Threads (nx, flow dir.)

NUPS = node updates per second

Page 32: Institute for Computational Technische Universität ...fdubois/organisation/19janv2010/... · Ahmed body (: LB schemeTutorial, Paris 18.1.2010 Manfred Krafczyk et al. Institute for

LB scheme Tutorial, Paris 18.1.2010 Manfred Krafczyk et al.

Institute for Computational Modeling in Civil Engineering

Technische UniversitätBraunschweig

slide 32

Dam break   test case

• Observe collapsing water column– position of the surge front– height of the water column

• Re 100 000, Fr 2.4• D3Q19, MRT collision operator

[Martin1952]

Page 33: Institute for Computational Technische Universität ...fdubois/organisation/19janv2010/... · Ahmed body (: LB schemeTutorial, Paris 18.1.2010 Manfred Krafczyk et al. Institute for

LB scheme Tutorial, Paris 18.1.2010 Manfred Krafczyk et al.

Institute for Computational Modeling in Civil Engineering

Technische UniversitätBraunschweig

slide 33

• Observe collapsing water column– position of the surge front– height of the water column

• Re 100 000, Fr 2.4• D3Q19, MRT collision operator

Dam break   test case

33

Height of water column

Position of surge front[Martin1952]

Page 34: Institute for Computational Technische Universität ...fdubois/organisation/19janv2010/... · Ahmed body (: LB schemeTutorial, Paris 18.1.2010 Manfred Krafczyk et al. Institute for

LB scheme Tutorial, Paris 18.1.2010 Manfred Krafczyk et al.

Institute for Computational Modeling in Civil Engineering

Technische UniversitätBraunschweig

slide 34

Dam break   test case ‐ Performance

• Average performance of 75 MNUPS– 20% of the maximum performance of a singlephase kernel

• Goodagreement between experimental and numerical results

• See „Free surface flow simulations on GPUs“, C. Janßen, M. Krafczyk, 2010

nx,ny,nz Nodes Time steps Comp. time

128x30x30 115200 4000 6s

256x60x60 921600 8000 102s

Time seriesSimulation details

Page 35: Institute for Computational Technische Universität ...fdubois/organisation/19janv2010/... · Ahmed body (: LB schemeTutorial, Paris 18.1.2010 Manfred Krafczyk et al. Institute for

LB scheme Tutorial, Paris 18.1.2010 Manfred Krafczyk et al.

Institute for Computational Modeling in Civil Engineering

Technische UniversitätBraunschweig

slide 35

Wave  impact on  lean structures [Wienke2001]

Wave tank

Wave impact on a pileExperimental setup

Page 36: Institute for Computational Technische Universität ...fdubois/organisation/19janv2010/... · Ahmed body (: LB schemeTutorial, Paris 18.1.2010 Manfred Krafczyk et al. Institute for

LB scheme Tutorial, Paris 18.1.2010 Manfred Krafczyk et al.

Institute for Computational Modeling in Civil Engineering

Technische UniversitätBraunschweig

slide 36

Wave  impact on  lean structures – Force evaluation

• Grid resolution 256x64x64 (1 million nodes)• Re 1 000 000, Fr 1.0• D3Q19, MRT collision operator, Smagorinsky LES• Momentum exchange method for force evaluation

36

[Wienke2001]Force in flow direction

65 MNUPS (GTX 275)10 000 time steps160 seconds computational time(corresponds to 16 seconds real time)

Page 37: Institute for Computational Technische Universität ...fdubois/organisation/19janv2010/... · Ahmed body (: LB schemeTutorial, Paris 18.1.2010 Manfred Krafczyk et al. Institute for

LB scheme Tutorial, Paris 18.1.2010 Manfred Krafczyk et al.

Institute for Computational Modeling in Civil Engineering

Technische UniversitätBraunschweig

slide 37

Multiphase LB-simulations on non-uniform grids

•two sets of distributions and •Collision operator for each phase has two contributions

airif water

if

)2()1(

21

2 2

2)2(

F

FeF

A ik

With a ‚phase‘ gradient

iwateri

air

ii exexexF

Starting from the classical Gunstensen model: Gunstensen, A. K., Rothman, D. H., Zaleski, S., and G. Zanetti, "Lattice Boltzmann model of immiscible fluids", Phys. Rev. A 43(8) (1991):4320-4327.

Page 38: Institute for Computational Technische Universität ...fdubois/organisation/19janv2010/... · Ahmed body (: LB schemeTutorial, Paris 18.1.2010 Manfred Krafczyk et al. Institute for

LB scheme Tutorial, Paris 18.1.2010 Manfred Krafczyk et al.

Institute for Computational Modeling in Civil Engineering

Technische UniversitätBraunschweig

slide 38

implementation of a new extension of the Rothmannimplementation of a new extension of the Rothmann--Keller modelKeller model

phase interface

-1

1

gradient of phase field

vector normal to phase field

• one set of distributions• phase parameter

[Kehrwald, Numerical Analysis if Immiscible Lattice BGK, PhD, Kaiserlautern, 2004][Tölke et. al., An adaptive scheme using hierarchical grids for lattice Boltzmannmulti-phase flow simulations, Computers and Fluids, 35:820-830, 2005]

• surface tension

Page 39: Institute for Computational Technische Universität ...fdubois/organisation/19janv2010/... · Ahmed body (: LB schemeTutorial, Paris 18.1.2010 Manfred Krafczyk et al. Institute for

LB scheme Tutorial, Paris 18.1.2010 Manfred Krafczyk et al.

Institute for Computational Modeling in Civil Engineering

Technische UniversitätBraunschweig

slide 39

x

zLuf t

Wasser

8

133

30

1

90 217315

(Ellipse)

180

Luf t

15

Test case car roof L-ledge

15.4072.03

013.081.9100023

2 22

RW HgBo.00280072.0

55.144.11 EUCa L

11440058.118.044.11Re

ELUL

R

5558.1

31

EE

L

W

Page 40: Institute for Computational Technische Universität ...fdubois/organisation/19janv2010/... · Ahmed body (: LB schemeTutorial, Paris 18.1.2010 Manfred Krafczyk et al. Institute for

LB scheme Tutorial, Paris 18.1.2010 Manfred Krafczyk et al.

Institute for Computational Modeling in Civil Engineering

Technische UniversitätBraunschweig

slide 40

Page 41: Institute for Computational Technische Universität ...fdubois/organisation/19janv2010/... · Ahmed body (: LB schemeTutorial, Paris 18.1.2010 Manfred Krafczyk et al. Institute for

LB scheme Tutorial, Paris 18.1.2010 Manfred Krafczyk et al.

Institute for Computational Modeling in Civil Engineering

Technische UniversitätBraunschweig

slide 41

Fluid-Structure-Interaction

Ferrybridge, England 1965

512 cores, 2x10^9 DOF LES simulation

Page 42: Institute for Computational Technische Universität ...fdubois/organisation/19janv2010/... · Ahmed body (: LB schemeTutorial, Paris 18.1.2010 Manfred Krafczyk et al. Institute for

LB scheme Tutorial, Paris 18.1.2010 Manfred Krafczyk et al.

Institute for Computational Modeling in Civil Engineering

Technische UniversitätBraunschweig

slide 42

Step 0 Step 0

Step 1

Step n Step 1

Internal step 2^level

Internal step 1

Internal step 2^level

Internal step 1

forces f(t)

interpolatedsurface geometry

interpolatedsurface geometry

displacements u(t+1)

new surface geometry

structure

LBM solver structural FEM solver

Page 43: Institute for Computational Technische Universität ...fdubois/organisation/19janv2010/... · Ahmed body (: LB schemeTutorial, Paris 18.1.2010 Manfred Krafczyk et al. Institute for

LB scheme Tutorial, Paris 18.1.2010 Manfred Krafczyk et al.

Institute for Computational Modeling in Civil Engineering

Technische UniversitätBraunschweig

slide 43

Experimental Benchmark

Re=140 Re=190

EXPERIMENTAL STUDY ON A FLUID-STRUCTURE INTERACTION REFERENCE TEST CASEJorge P. Gomes and Hermann LienhartFluid-Structure Interaction: Modeling, Simulation, OptimisationLecture Notes in Computational Science and Engineering , Vol. 53, pages 356 - 370

Page 44: Institute for Computational Technische Universität ...fdubois/organisation/19janv2010/... · Ahmed body (: LB schemeTutorial, Paris 18.1.2010 Manfred Krafczyk et al. Institute for

LB scheme Tutorial, Paris 18.1.2010 Manfred Krafczyk et al.

Institute for Computational Modeling in Civil Engineering

Technische UniversitätBraunschweig

slide 44

3D FSIRe=2500

Page 45: Institute for Computational Technische Universität ...fdubois/organisation/19janv2010/... · Ahmed body (: LB schemeTutorial, Paris 18.1.2010 Manfred Krafczyk et al. Institute for

LB scheme Tutorial, Paris 18.1.2010 Manfred Krafczyk et al.

Institute for Computational Modeling in Civil Engineering

Technische UniversitätBraunschweig

slide 45

Oscillating Membrane in flow field

• Re=6000• lattice size: 128x128x512• 3 GPUs• > 1E9 LUPS• 250 time steps in 1 sec • LES• Compt. Steering• 500 000 time steps• 2000 sec total time• dt_s=10 dt_f• Membrane: Eigenmodes

Page 46: Institute for Computational Technische Universität ...fdubois/organisation/19janv2010/... · Ahmed body (: LB schemeTutorial, Paris 18.1.2010 Manfred Krafczyk et al. Institute for

LB scheme Tutorial, Paris 18.1.2010 Manfred Krafczyk et al.

Institute for Computational Modeling in Civil Engineering

Technische UniversitätBraunschweig

slide 46

Grid refinement on GPU

Page 47: Institute for Computational Technische Universität ...fdubois/organisation/19janv2010/... · Ahmed body (: LB schemeTutorial, Paris 18.1.2010 Manfred Krafczyk et al. Institute for

LB scheme Tutorial, Paris 18.1.2010 Manfred Krafczyk et al.

Institute for Computational Modeling in Civil Engineering

Technische UniversitätBraunschweig

slide 47

2D-benchmark

Page 48: Institute for Computational Technische Universität ...fdubois/organisation/19janv2010/... · Ahmed body (: LB schemeTutorial, Paris 18.1.2010 Manfred Krafczyk et al. Institute for

LB scheme Tutorial, Paris 18.1.2010 Manfred Krafczyk et al.

Institute for Computational Modeling in Civil Engineering

Technische UniversitätBraunschweig

slide 48

Computational Efficiency

Page 49: Institute for Computational Technische Universität ...fdubois/organisation/19janv2010/... · Ahmed body (: LB schemeTutorial, Paris 18.1.2010 Manfred Krafczyk et al. Institute for

LB scheme Tutorial, Paris 18.1.2010 Manfred Krafczyk et al.

Institute for Computational Modeling in Civil Engineering

Technische UniversitätBraunschweig

slide 49

, , , , ( ) ( ), , , , , , , , , ,

( ) ( )( ) ( ) ( )

FDi j k i j k h h

i j k i j k i j k i j k i j kFD

T t t T tj t T t T t

t

the temperature equation is discretized by a finite difference (FD) scheme:

Mezrhab A, Bouzidi M, Lallemand P. Hybrid lattice-Boltzmann finite-difference simulation of convective flows. Comput. Fluids, 2004;33:623–41.

van Treeck, C., Rank, E., Krafczyk, M., Tölke, J., and Nachtwey, B. Extension of a hybrid thermal LBE scheme for Large-Eddy simulations of turbulent convective flows. Computers & Fluids 35, 8–9 (2006), 863–871.

J. Tölke: A thermal model based on the lattice Boltzmann method for low Mach number compressible flows, Journal of Computational and Theoretical Nanoscience, 3(4): 579–587 (2006).

Thermal flows

Page 50: Institute for Computational Technische Universität ...fdubois/organisation/19janv2010/... · Ahmed body (: LB schemeTutorial, Paris 18.1.2010 Manfred Krafczyk et al. Institute for

LB scheme Tutorial, Paris 18.1.2010 Manfred Krafczyk et al.

Institute for Computational Modeling in Civil Engineering

Technische UniversitätBraunschweig

slide 50

12

21 3 10 ( 0) (1) (2) (3)23 23 23r

T T r T T Tr

12

8 1( 0) 2 (1) (2)3 3bc bcr

T T T r T T T

•Same lattice for MRT and FD scheme•Dirichlet condition: quadratic polynomial extrapolation•Neumann condition: cubic polynomial extrapolation

Boundary Conditions

Page 51: Institute for Computational Technische Universität ...fdubois/organisation/19janv2010/... · Ahmed body (: LB schemeTutorial, Paris 18.1.2010 Manfred Krafczyk et al. Institute for

LB scheme Tutorial, Paris 18.1.2010 Manfred Krafczyk et al.

Institute for Computational Modeling in Civil Engineering

Technische UniversitätBraunschweig

slide 51

2 2 21 0((3 1) ( ))eq

x y zm T u u u

2 0(1 18 )eqm T

T = T(t,i,j,k)

The coupling of the temperature field to the energy mode of the LB model is done by inserting the temperature into the equilibrium moments:HTLBE HTLBE –– Hybrid thermal lattice Boltzmann equationHybrid thermal lattice Boltzmann equation

Coupling of LBE and Thermal Model

P. Lallemand, L. Luo,Phys. Rev. E 68, 036706 (2003)

Page 52: Institute for Computational Technische Universität ...fdubois/organisation/19janv2010/... · Ahmed body (: LB schemeTutorial, Paris 18.1.2010 Manfred Krafczyk et al. Institute for

LB scheme Tutorial, Paris 18.1.2010 Manfred Krafczyk et al.

Institute for Computational Modeling in Civil Engineering

Technische UniversitätBraunschweig

slide 52

Characteristic Quantities

3

2

( )z sTPrg LRa T

/Pr

Rayleigh, Rayleigh, PrandtlPrandtl and and NusseltNusselt NumbersNumbers

0( ) /

( ) /s y

s

T T yhLNuk T T L

LL = characteristic length= characteristic lengthkkff = thermal conductivity of the fluid= thermal conductivity of the fluidhh = convective heat transfer coefficient= convective heat transfer coefficientTTss= surface temperature= surface temperatureαα = thermal diffusivity= thermal diffusivityββ = thermal expansion coefficient= thermal expansion coefficient

Page 53: Institute for Computational Technische Universität ...fdubois/organisation/19janv2010/... · Ahmed body (: LB schemeTutorial, Paris 18.1.2010 Manfred Krafczyk et al. Institute for

LB scheme Tutorial, Paris 18.1.2010 Manfred Krafczyk et al.

Institute for Computational Modeling in Civil Engineering

Technische UniversitätBraunschweig

slide 53

Validation study: Validation study:

RayleighRayleigh--BenardBenard convection in a closed cavityconvection in a closed cavityfor Rayleigh numbers > 1e9 LES is appliedfor Rayleigh numbers > 1e9 LES is applied

x

z

1/4Ra 0.54Nu2e7 Ra1e5

1/3Ra 0.14Nu3e10 Ra 2e7 2

1/6

8/279/16

0.387 RaRa 1e13 Nu 0.8251 (0.492/Pr)

1/4

4/99/16Ra 0.6700.68

1 (0. 1e9 N

492u

/ )

Ra

Pr

y

g

Page 54: Institute for Computational Technische Universität ...fdubois/organisation/19janv2010/... · Ahmed body (: LB schemeTutorial, Paris 18.1.2010 Manfred Krafczyk et al. Institute for

LB scheme Tutorial, Paris 18.1.2010 Manfred Krafczyk et al.

Institute for Computational Modeling in Civil Engineering

Technische UniversitätBraunschweig

slide 54

RayleighRayleigh--BenardBenard instability instability Ra=2x10^10Ra=2x10^10400x150x150 grid nodes 400x150x150 grid nodes

Page 55: Institute for Computational Technische Universität ...fdubois/organisation/19janv2010/... · Ahmed body (: LB schemeTutorial, Paris 18.1.2010 Manfred Krafczyk et al. Institute for

LB scheme Tutorial, Paris 18.1.2010 Manfred Krafczyk et al.

Institute for Computational Modeling in Civil Engineering

Technische UniversitätBraunschweig

slide 55

Comparison of theoretical prediction, benchmark data Comparison of theoretical prediction, benchmark data and numerical results:and numerical results:

1,00E+00

1,00E+01

1,00E+02

1,00E+03

1,00E+04 1,00E+06 1,00E+08 1,00E+10 1,00E+12

Nus

selt

Num

ber

Rayleigh Number

Ra < 10e9

Nubenchma

Nunum

Page 56: Institute for Computational Technische Universität ...fdubois/organisation/19janv2010/... · Ahmed body (: LB schemeTutorial, Paris 18.1.2010 Manfred Krafczyk et al. Institute for

LB scheme Tutorial, Paris 18.1.2010 Manfred Krafczyk et al.

Institute for Computational Modeling in Civil Engineering

Technische UniversitätBraunschweig

slide 56

Bi = Ei+ρd∑j=1

n

B j Fij

surface mesh

radiation exchange

shooting

The Radiosity equation for radiative heat transfer (Goral 1984)

heat flux equilibrium

Page 57: Institute for Computational Technische Universität ...fdubois/organisation/19janv2010/... · Ahmed body (: LB schemeTutorial, Paris 18.1.2010 Manfred Krafczyk et al. Institute for

LB scheme Tutorial, Paris 18.1.2010 Manfred Krafczyk et al.

Institute for Computational Modeling in Civil Engineering

Technische UniversitätBraunschweig

slide 57

Formfactor

Efficient hierarchical visibility test

octreerecursive subdivision into octants

Page 58: Institute for Computational Technische Universität ...fdubois/organisation/19janv2010/... · Ahmed body (: LB schemeTutorial, Paris 18.1.2010 Manfred Krafczyk et al. Institute for

LB scheme Tutorial, Paris 18.1.2010 Manfred Krafczyk et al.

Institute for Computational Modeling in Civil Engineering

Technische UniversitätBraunschweig

slide 58

Mesh generation

adaptive mesh refinementa-priori mesh refinement

office with adaptivelyrefined mesh

Page 59: Institute for Computational Technische Universität ...fdubois/organisation/19janv2010/... · Ahmed body (: LB schemeTutorial, Paris 18.1.2010 Manfred Krafczyk et al. Institute for

LB scheme Tutorial, Paris 18.1.2010 Manfred Krafczyk et al.

Institute for Computational Modeling in Civil Engineering

Technische UniversitätBraunschweig

slide 59

ExamplesSurface temperature induced by solar radiation (Campus TU Braunschweig)

7:00 10:00

16:00 19:30

Page 60: Institute for Computational Technische Universität ...fdubois/organisation/19janv2010/... · Ahmed body (: LB schemeTutorial, Paris 18.1.2010 Manfred Krafczyk et al. Institute for

LB scheme Tutorial, Paris 18.1.2010 Manfred Krafczyk et al.

Institute for Computational Modeling in Civil Engineering

Technische UniversitätBraunschweig

slide 60

Coupling radiative heat transfer and heat conduction

72.0

20.0

54.0

37.0rel. error < 1.0%

heat equation for non-stationary temperature fields with heat sources

concrete plate

heat equation for stationary temperature fields in isotropic bodies

qrad

qenv

qsolar

ϑ0

ϑ1

grid discretization

x0 x1 xi-1 xi xi+1

y0

yi-1

yi

yi+1ϑi,j

ϑi,j+

ϑi,j -1

ϑi+1,j

ϑi,j+1

ϑi-1,j

Page 61: Institute for Computational Technische Universität ...fdubois/organisation/19janv2010/... · Ahmed body (: LB schemeTutorial, Paris 18.1.2010 Manfred Krafczyk et al. Institute for

LB scheme Tutorial, Paris 18.1.2010 Manfred Krafczyk et al.

Institute for Computational Modeling in Civil Engineering

Technische UniversitätBraunschweig

slide 61

Heat flux in double skin facade

outlet

intlet

Page 62: Institute for Computational Technische Universität ...fdubois/organisation/19janv2010/... · Ahmed body (: LB schemeTutorial, Paris 18.1.2010 Manfred Krafczyk et al. Institute for

LB scheme Tutorial, Paris 18.1.2010 Manfred Krafczyk et al.

Institute for Computational Modeling in Civil Engineering

Technische UniversitätBraunschweig

slide 62

Thermal Fluid Simulation – Boundary ConditionsDouble skinfacade:

b: 0,5 m

Outside airtemperature: 35 °C

Fins:

Surface temperature : T: 55 [°]

ρ: 2710 [kg/m³]

c: 0,90 [kJ/(kg K)]

α: 0,40 [-]

ρRAD: 0,60 [-]Outside glazing:

Surface temperature: T: 40 [°]

ρ: 2550 [kg/m³]

c: 0,70 [kJ/(kg K)]

g: 0,86 [-]

Wind:

0,0 m/s

Inside glazing:

Surface temperature: T: 30 [°]

ρ: 2550 [kg/m³]

c: 0,7 [kJ/(kg K)]

g: 0,59 [-]

SimulationGrid nodes ~15,0 Mio. -> 1cmtime: 5 minRa: 4·1011 [-]Large-Eddy model

Pressure:

P0 = 0,0 [hPa]

Solar Radiation:

Diffuse Radiation: 200 [W/m²]

Direct Radiation: 571 [W/m²]

Page 63: Institute for Computational Technische Universität ...fdubois/organisation/19janv2010/... · Ahmed body (: LB schemeTutorial, Paris 18.1.2010 Manfred Krafczyk et al. Institute for

LB scheme Tutorial, Paris 18.1.2010 Manfred Krafczyk et al.

Institute for Computational Modeling in Civil Engineering

Technische UniversitätBraunschweig

slide 63

Variant d) 0.25 m outlet

Cut C-D Cut A-B

topview

outside inside

C D

A

B

Flux 0.74 [m3/s]TEG 42.57 [°C]TOG1 45.19 [°C]TEOG2 46.63 [°C]TOG3 47.36 [°C]TOG4 47.61 [°C]

Page 64: Institute for Computational Technische Universität ...fdubois/organisation/19janv2010/... · Ahmed body (: LB schemeTutorial, Paris 18.1.2010 Manfred Krafczyk et al. Institute for

LB scheme Tutorial, Paris 18.1.2010 Manfred Krafczyk et al.

Institute for Computational Modeling in Civil Engineering

Technische UniversitätBraunschweig

slide 64Schnitt C-D

Schnitt A-B

flux 1.05 [m3/s]TEG 42.18 [°C]TOG1 44.86 [°C]TEOG2 46.64 [°C]TOG3 47.50 [°C]TOG4 47.76 [°C]

Variant d) 0.5 m outlet

topview

outside inside

C D

A

B

Page 65: Institute for Computational Technische Universität ...fdubois/organisation/19janv2010/... · Ahmed body (: LB schemeTutorial, Paris 18.1.2010 Manfred Krafczyk et al. Institute for

LB scheme Tutorial, Paris 18.1.2010 Manfred Krafczyk et al.

Institute for Computational Modeling in Civil Engineering

Technische UniversitätBraunschweig

slide 65Schnitt C-D

Schnitt A-B

flux 1.13 [m3/s]TEG 41.87 [°C]TOG1 44.74 [°C]TEOG2 46.55 [°C]TOG3 47.43 [°C]TOG4 47.70 [°C]

topview

outside inside

C D

A

B

Variant d) 0.75 m outlet

Page 66: Institute for Computational Technische Universität ...fdubois/organisation/19janv2010/... · Ahmed body (: LB schemeTutorial, Paris 18.1.2010 Manfred Krafczyk et al. Institute for

LB scheme Tutorial, Paris 18.1.2010 Manfred Krafczyk et al.

Institute for Computational Modeling in Civil Engineering

Technische UniversitätBraunschweig

slide 66

flux 1.21 [m3/s]TEG 41.51 [°C]TOG1 44.48 [°C]TEOG2 46.52 [°C]TOG3 47.51 [°C]TOG4 47.78 [°C]

Variant d) 1.0 m outlet

Page 67: Institute for Computational Technische Universität ...fdubois/organisation/19janv2010/... · Ahmed body (: LB schemeTutorial, Paris 18.1.2010 Manfred Krafczyk et al. Institute for

LB scheme Tutorial, Paris 18.1.2010 Manfred Krafczyk et al.

Institute for Computational Modeling in Civil Engineering

Technische UniversitätBraunschweig

slide 67

Flow acoustics

LB-solution of the wave equation

Flute: Re=6000, air, f0=415 HzSimulation: 8x10^6 grid nodes, 10^6 dt, 6 h on single GPU: f0=413 Hz

pressure

vorticitymagnitude

LODI BCns for LB: Izquierdo & Fueyo, Phys. Rev. E 78, 046707 (2008)

Page 68: Institute for Computational Technische Universität ...fdubois/organisation/19janv2010/... · Ahmed body (: LB schemeTutorial, Paris 18.1.2010 Manfred Krafczyk et al. Institute for

LB scheme Tutorial, Paris 18.1.2010 Manfred Krafczyk et al.

Institute for Computational Modeling in Civil Engineering

Technische UniversitätBraunschweig

slide 68

Conclusions

• Coupled problems: feasible with LBM• Required: MRT, 2nd order BCns, grid refinement, HPC• GPU

Outlook• Improved turbulence models (WALE), wall functions• 3D-grid refinement (also for GPU)• local BCns in 3D• Multi-level parallelization CPU/GPU, fault tolerance, postprocessing• Improved multiphase models• further validation studies for coupled problems

… and the best news is …

Page 69: Institute for Computational Technische Universität ...fdubois/organisation/19janv2010/... · Ahmed body (: LB schemeTutorial, Paris 18.1.2010 Manfred Krafczyk et al. Institute for

LB scheme Tutorial, Paris 18.1.2010 Manfred Krafczyk et al.

Institute for Computational Modeling in Civil Engineering

Technische UniversitätBraunschweig

slide 69

… some work is still left to do !