insights on the statistical variability of experimental ...wildfire/2010/pdfs/doug mcrae.pdf ·...

54
Insights on the Insights on the statistical variability statistical variability of experimental fire of experimental fire behavior data using behavior data using airborne airborne - - infrared infrared Douglas J. McRae, Susan G. Douglas J. McRae, Susan G. Conard Conard , , Ji Ji - - zhong zhong Jin, Anatoly I. Jin, Anatoly I. Sukhinin Sukhinin , , Tom W. Blake, and Galina A. Tom W. Blake, and Galina A. Ivanova Ivanova Natural Resources Canada Canadian Forest Service Wildland Fire Canada 2010, 6 October 2010, Kitchener, ON.

Upload: others

Post on 25-Jan-2021

0 views

Category:

Documents


0 download

TRANSCRIPT

  • Insights on the Insights on the statistical variability statistical variability of experimental fire of experimental fire behavior data using behavior data using airborneairborne--infraredinfrared

    Douglas J. McRae, Susan G. Douglas J. McRae, Susan G. ConardConard, , JiJi--zhongzhong Jin, Anatoly I. Jin, Anatoly I. SukhininSukhinin, , Tom W. Blake, and Galina A. Tom W. Blake, and Galina A. IvanovaIvanova

    Natural Resources Canada

    Canadian Forest Service

    Wildland Fire Canada 2010, 6 October 2010, Kitchener, ON.

  • Adapted from: Stocks, B.J. 1987. Fire behavior in immature jack pine.

    Can. J. For. Res. 17: 80–86.

    The problemThe problem

    TABLE 4. Fire impact on forest fuels and fire behavior characteristics of the SharpsandCreek experimental fires in immature jack pine.

    2910.663.011.470.000.730.7418

    2599027.304.643.361.111.310.9414

    1713620.164.633.001.041.300.6612

    4090349.443.842.921.400.970.5511b

    5992.101.910.950.000.420.537

    1078514.643.742.601.270.940.395

    471710.742.011.550.890.440.222

    Total fuel

    Crown fuels

    Ground fuels

    Total surface

    Frontal fire

    intensity (kW/m)

    Rateof

    spread (m/min)

    Depth ofburn (cm)

    Fuel consumed (kg/m2)

    Fire No.

  • The problemThe problem

    Assumption:

    Values for fire behavior databases are given as though they are a ‘magical’constant for a particular fuel type and burning condition rather than an average with statistical ranges associated with it.

    1. How accurate are these averages?

    2. What is the standard deviation/standard error level of each average?

    3. What is the absolute range in these values?

    Obvious questions:

  • The problemThe problem

    Reason for questions:

    1. Suppression activities – Concerns regarding rate of spread/intensity values: is it safe to send fire crews to work on a firefront?

    Rate of spread average of 6.5 m/min

    5.0 - 8.0 versus 5.0 – 15.0 m/min

  • • The lack of adequate sampling due to field expenses and expense of

    monitoring equipment.• Equipment failures.• Reliance on visual observations based on fixed-point measurements.• Research personnel safety concerns.• Mother nature never cooperates (e.g., wind lulls and gusts, wind direction

    changes, etc.).

    Fire behavior is difficult to quantify in the past because of:

    The problemThe problem

  • FIRE BEAR ProjectFIRE BEAR Project(Fire Effects in the Boreal Eurasia Region)(Fire Effects in the Boreal Eurasia Region)

    • To better understand fire in central Siberia, the FIRE BEAR Project was created as a forest fire research study to provide answers to basic questions on fire management.

    • Replicated 200 x 200-m experimental burn plots on Scots pine (Pinus sylvestris) / lichen (Cladonia sp.) / feather moss (Pleurozeum schreberi) forest sites.

    • Fuel and fire behavior on these fires was quantified.

  • FIRE BEAR ProjectFIRE BEAR Project(Fire Effects in the Boreal Eurasia Region)(Fire Effects in the Boreal Eurasia Region)

    Rate of spread: 2.5 m/minFireline intensity: 620 kW/m Rate of spread: 4.9 m/min

    Fireline intensity: 2259 kW/m

    Rate of spread: 5.6 m/minFireline intensity: 5220 kW/m

  • Boguchany, Russian, June 18, 2002

    Plot 1 3:29:11 PM

    1000

    900

    800

    700

    600

    500

    400

    300

    200

    100

    4 Geo-referencing fires

  • Boguchany, Russian, June 18, 2002

    Plot 1 3:29:11 PM

    1000

    900

    800

    700

    600

    500

    400

    300

    200

    100

    4 Geo-referencing fires

  • Boguchany, Russian, June 18, 2002

    Plot 1 3:31:43 PM

    1000

    900

    800

    700

    600

    500

    400

    300

    200

    100

    Ignition line

    Wind

  • Boguchany, Russian, June 18, 2002

    Plot 1 3:34:42 PM

    1000

    900

    800

    700

    600

    500

    400

    300

    200

    100

  • Boguchany, Russian, June 18, 2002

    Plot 1 3:37:15 PM

    1000

    900

    800

    700

    600

    500

    400

    300

    200

    100

  • Boguchany, Russian, June 18, 2002

    Plot 1 3:39:28 PM

    1000

    900

    800

    700

    600

    500

    400

    300

    200

    100

  • Boguchany, Russian, June 18, 2002

    Plot 1 3:39:32 PM

    1000

    900

    800

    700

    600

    500

    400

    300

    200

    100

  • Boguchany, Russian, June 18, 2002

    Plot 1 3:39:35 PM

    1000

    900

    800

    700

    600

    500

    400

    300

    200

    100

  • Boguchany, Russian, June 18, 2002

    Plot 1 3:39:35 PM

    1000

    900

    800

    700

    600

    500

    400

    300

    200

    100

  • Boguchany, Russian, June 18, 2002

    Plot 1 3:41:56 PM

    1000

    900

    800

    700

    600

    500

    400

    300

    200

    100

  • Boguchany, Russian, June 18, 2002

    Plot 1 3:44:07 PM

    1000

    900

    800

    700

    600

    500

    400

    300

    200

    100

  • Boguchany, Russian, June 18, 2002

    Plot 1 3:46:39 PM

    1000

    900

    800

    700

    600

    500

    400

    300

    200

    100

  • Boguchany, Russian, June 18, 2002

    Plot 1 3:49:14 PM

    1000

    900

    800

    700

    600

    500

    400

    300

    200

    100

  • Boguchany, Russian, June 18, 2002

    Plot 1 3:51:27 PM

    1000

    900

    800

    700

    600

    500

    400

    300

    200

    100

  • Boguchany, Russian, June 18, 2002

    Plot 1 3:53:45 PM

    1000

    900

    800

    700

    600

    500

    400

    300

    200

    100

  • Boguchany, Russian, June 18, 2002

    Plot 1 3:56:12 PM

    1000

    900

    800

    700

    600

    500

    400

    300

    200

    100

  • Boguchany, Russian, June 18, 2002

    Plot 1 3:58:34 PM

    1000

    900

    800

    700

    600

    500

    400

    300

    200

    100

  • Boguchany, Russian, June 18, 2002

    Plot 1 4:00:52 PM

    1000

    900

    800

    700

    600

    500

    400

    300

    200

    100

  • Boguchany, Russian, June 18, 2002

    Plot 1 4:03:27 PM

    1000

    900

    800

    700

    600

    500

    400

    300

    200

    100

  • Boguchany, Russian, June 18, 2002

    Plot 1 4:05:59 PM

    1000

    900

    800

    700

    600

    500

    400

    300

    200

    100

  • Boguchany, Russian, June 18, 2002

    Plot 1 4:06:05 PM

    1000

    900

    800

    700

    600

    500

    400

    300

    200

    100

  • Boguchany, Russian, June 18, 2002

    Plot 1 4:08:39 PM

    1000

    900

    800

    700

    600

    500

    400

    300

    200

    100

  • Isolines showing firefront locations

    (seconds)

    Infrared data analysis

    10,000 sample points/ha

    (1-m resolution)

  • Rate of spread(m/min)

    Infrared data analysis

  • All data

    Rate of spreadRate of spread

    0

    500

    1000

    1500

    2000

    2500

    3000

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

    Rate-of-spread classes (m/min)

    Nu

    mb

    er

    of

    ob

    serv

    ati

    on

    s

    ≥31

    All data (n = 21434)

  • All data

    Rate of spreadRate of spread

    0

    500

    1000

    1500

    2000

    2500

    3000

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

    Rate-of-spread classes (m/min)

    Nu

    mb

    er

    of

    ob

    serv

    ati

    on

    s

    8.9 m/min(SE=0.08)

    All data (n = 21434)

    Sample size = 507

    Maximum value = 912 m/min

    ≥31

  • Rate of spreadRate of spread

    Variability in rates of spread can be caused by:

    • Differences in fuel structure.• Differences in soil (ground fuel) moisture.• Gusts and lulls in wind speed.• Changes in wind direction.• Channeling and acceleration effect on wind.• Junction zone effects.• Edge effect of experimental plot.• Impact of tree density on solar radiation and fuel dryness.• Spotting.• Analysis problems.

  • Data minus outer 10-m perimeter edge effect and erroneous high

    rates of spread (± 2 standard deviations of mean)

    >31`

    Rate of spreadRate of spread

    0

    500

    1000

    1500

    2000

    2500

    3000

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

    Rate-of-spread classes (m/min)

    Nu

    mb

    er

    of

    ob

    serv

    ati

    on

    s

    Data minus outer 10-m perimeter edge effect

    9.0 m/min(SE=0.11)

    ≥31

  • Data minus outer 10-m perimeter edge effect and erroneous high

    rates of spread (± 2 standard deviations of mean)

    >31`

    Rate of spreadRate of spread

    0

    500

    1000

    1500

    2000

    2500

    3000

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

    Rate-of-spread classes (m/min)

    Nu

    mb

    er

    of

    ob

    serv

    ati

    on

    s

    Data minus outer 10-m perimeter edge effect and rates of

    spread greater than ± 2 standard deviations

    7.9 m/min(SE=0.04)

    ≥31

  • 0

    500

    1000

    1500

    2000

    2500

    3000

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

    Rate-of-spread classes (m/min)

    Nu

    mb

    er

    of

    ob

    serv

    ati

    on

    s

    Rate of spreadRate of spread

    63% 27%

    7.9 m/min(SE=0.04)

  • ISI

    0 2 4 6 8 10

    Rate

    of

    sp

    rea

    d (

    m/m

    in)

    0

    1

    2

    3

    4

    5

    6

    7

    8

    9

    10

    Application to ModelsApplication to Models

    RoS = 1.008 + (0.741 * ISI)R2=0.87; SE=0.90

    95%

    Error bars indicate one standard error from the mean

  • ISI

    0 2 4 6 8 10

    Ra

    te o

    f s

    pre

    ad

    (m

    /min

    )

    0

    5

    10

    15

    20

    25

    Application to ModelsApplication to Models

    Data range for each fire

    X

    X

    X

    X

    X

    X

    X

    X

    X

    X

    X

    XX XX

    X

    XXX

  • 0

    10

    20

    30

    40

    50

    60

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

    Depth-of-burn classes (cm)

    Nu

    mb

    er

    of

    ob

    serv

    ati

    on

    s

    0 21 3 1554 9876 13 14121110

    Depth of burnDepth of burn

    DMC= 19DC = 189

    3.3 cm(SE=0.09)

  • 0

    10

    20

    30

    40

    50

    60

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

    Depth-of-burn classes (cm)

    Nu

    mb

    er

    of

    ob

    serv

    ati

    on

    s

    0 21 3 1554 9876 13 14121110

    6.3 cm(SE=0.15)

    Depth of burnDepth of burn

    DMC= 19DC = 189

    DMC= 35DC = 399

    3.3 cm(SE=0.09)

  • 0

    5

    10

    15

    20

    25

    30

    1 2 3 4 5 6 7 8 9 10 11 12 13

    Fuel consumption class (kg/m 2)

    Nu

    mb

    er

    of

    ob

    se

    rva

    tio

    ns

    1.0 kg/m2

    (SE=0.04)

    Total fuel consumptionTotal fuel consumption

    2.0 kg/m2

    (SE=0.22)

    0 21 3 54 9876 121110

  • 0

    5

    10

    15

    20

    25

    30

    1 2 3 4 5 6 7 8 9 10 11 12 13

    Fuel consumption class (kg/m 2)

    Nu

    mb

    er

    of

    ob

    se

    rva

    tio

    ns

    3.2 kg/m2

    (SE=0.23)

    DMC= 51DC = 393

    Total fuel consumptionTotal fuel consumption

    1.0 kg/m2

    (SE=0.04)

    2.0 kg/m2

    (SE=0.22)

    0 21 3 54 9876 121110

  • ConclusionsConclusions

    Fire behavior

    • Fire behavior is a highly variable phenomena at the microsite level (e.g., 1- m pixel).

    • Due to the lack of statistical data in the past, most current models do not indicate the actual ranges of fire behavior.

    • Remote sensing using infrared cameras allows for multiple sampling to take place, which allows for adequate sample numbers to allow for statistical analysis.

    • For fire crew safety, realize that there is a range of possible values around any average!

    • Other applications for infrared monitoring (e.g., fuel consumption, carbon emission).

  • Thank you!

    Wildland Fire Canada 2010, 6 October 2010, Kitchener, ON.

  • 0

    10

    20

    30

    40

    50

    60

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

    Depth-of-burn classes (cm)

    Nu

    mb

    er

    of

    ob

    serv

    ati

    on

    s

    0 21 3 1554 9876 13 14121110

    6.3 cm

    (SE=0.15)

    Depth of burnDepth of burn

    DMC= 19DC = 189

    DMC= 51

    DC = 393

  • 0

    10

    20

    30

    40

    50

    60

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

    Depth-of-burn classes (cm)

    Nu

    mb

    er

    of

    ob

    serv

    ati

    on

    s

    0 21 3 1554 9876 13 14121110

    6.3 cm

    (SE=0.15)

    Depth of burnDepth of burn

    DMC= 19DC = 189

    DMC= 51

    DC = 393

  • 0

    10

    20

    30

    40

    50

    60

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

    Depth-of-burn classes (cm)

    Nu

    mb

    er

    of

    ob

    serv

    ati

    on

    s

    0 21 3 1554 9876 13 14121110

    Depth of burnDepth of burn

    Low Moderate Severe

    3% 76% 21%

    DMC= 51

    DC = 393

    6.3 cm

    (SE=0.15)

  • 71 22.5 90 52 52

    50 23.5 70 44 44

    52 24.5 55 35 35

    44 25.5 44 27 27

    35 26.5 50 35 35

    27 27.5 41 30 30

    35 28.5 42 32 32

    30 29.5 45 32 32

    32 30.5 507 377 46

    32 Total 21434 14015 13684

    46

    0

    2

    4

    6

    8

    10

    12

    14

    16

    18

    1 2 3 4 5 6 7 8 9 10 11 12 13

    Series1

    Series2

    Series3

    2.0 kg/m2

    (SE=0.22)

    Fuel consumptionFuel consumption

  • 0

    500

    1000

    1500

    2000

    2500

    3000

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

    Series1

    Series2

    Series3

    1.0 kg/m2

    (SE=0.04)

    Fuel consumptionFuel consumption

  • 0

    5

    10

    15

    20

    25

    30

    1 2 3 4 5 6 7 8 9 10 11 12

    Fuel consumption class (kg/m2)

    Nu

    mb

    er

    of

    ob

    se

    rva

    tio

    ns

    3.2 kg/m2

    (SE=0.23)

    Fuel consumptionFuel consumption

  • ResultsResults

    Values in parentheses show the range in consumption values

    Table 2. Fuel consumption values (plot averages with standard error) observed for each experimental Siberian Scots pine fire

    1.50±0.15

    (0.53-7.79)

    1.16±0.05

    (0.12-3.65)

    0.11±0.01

    (0.01-0.27)

    0.30±0.15

    (0.01-7.33)

    0.02±0.02

    (0.00-0.13)

    20

    3.03±0.23

    (1.17-9.79)

    2.45±0.12

    (0.09-10.36)

    0.25±0.25

    (0.07-0.51)

    0.44±0.18

    (0.00-7.55)

    0.07±0.01

    (0.00-0.13)

    14

    2.03±0.22

    (0.26-10.47)

    1.50±0.08

    (0.02-5.53)

    0.30±0.06

    (0.02-1.50)

    0.41±0.17

    (0.00-7.43)

    0.07±0.01

    (0.00-0.16)

    13

    0.93±0.04

    (0.49-12.43)

    0.74±0.04

    (0.00-2.00)

    0.18±0.04

    (0.07-0.37)

    0.04±0.01

    (0.00-0.30)

    0.00±0.04

    (0.00-0.12)

    3

    1.68±0.12

    (0.32-4.32)

    1.36±0.06

    (00.0-4.90)

    0.11±0.02

    (0.00-0.28)

    0.18±0.06

    (0.00-2.28)

    0.03±0.01

    (0-0.12)

    2

    1.80±0.16

    (0.34-5.23)

    1.45±0.08

    (0.03-4.63)

    0.16±0.03

    (0.03-0.55)

    0.28±0.10

    (0.02-3.28)

    0.03±0.01

    (0-0.09)

    1

    Total

    Forest

    FloorLitterDead & DownVegetation

    Consumption (dry weight) by category (kg/m2)

    Fire

    No.

  • ResultsResults

    Equilibrium (steady-state) fire behavior characteristics (plot averages with standard error) observed for each Siberian experimental Scots pine fire

    25 757 ± 3145

    (6629-157376)

    2790 ± 341

    (718-17049)

    6.5±0.05

    (2.4-16.5)

    4.2±0.10

    (1.7-8.3)20

    55 938 ± 4646

    (19344-196851)

    5220 ± 434

    (805-18372)

    5.6 ± 0.07

    (3.6-14.8)

    6.3 ± 0.15

    (1.2-15.0)14

    36 450 ± 4474

    (1564-209443)

    1214 ± 149

    (52-6981)

    2.0 ± 0.34

    (0.8-5.7)

    4.6 ± 0.15

    (0.9-10.5)13

    14 878 ± 828

    (6230-24920)

    620 ± 34

    (260-1038)

    2.5 ± 0.25

    (1.1-9.4)

    3.3 ± 0.09

    (1.1-5.9)3

    27 662 ± 2316

    (25235-83261)

    2259 ± 189

    (207-6800)

    4.9 ± 0.35

    (1.2-9.9)

    4.4 ± 0.13

    (1.1-9.8)2

    27 662 ± 2316

    (25235-83261)

    2259 ± 189

    (207-6800)7.9 ± 0.04

    (1.3-17.9)

    5.6 ± 0.20

    (0.5-9.4)1

    Total fire intensity

    (kJ/m2)

    Firelineintensity

    (kW/m)

    Rate of spread

    (m/min)

    Depth of burn

    (cm)

    Fire

    No.

    Values in parentheses show the range in values