inquiry-based lab act - impact on achievement and attitudes.pdf

Upload: ong-eng-tek

Post on 07-Aug-2018

214 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/21/2019 Inquiry-based lab act - impact on achievement and attitudes.pdf

    1/23

    Inquiry-Based Laboratory Activities in Electrochemistry:

    High School Students’  Achievements and Attitudes

    Burcin Acar Sesen   & Leman Tarhan

    Published online: 4 December 2011# Springer Science+Business Media B.V. 2011

    Abstract  This study aimed to investigate the effects of inquiry-based laboratory activitieson high school students’ understanding of electrochemistry and attitudes towards chemistryand laboratory work. The participants were 62 high school students (average age 17 years)in an urban public high school in Turkey. Students were assigned to experimental ( N =30)and control groups ( N =32). The experimental group was taught using inquiry-basedlaboratory activities developed by the researchers and the control group was instructed

    using traditional laboratory activities. The results of the study indicated that instruction based on inquiry-based laboratory activities caused a significantly better acquisition of scientific concepts related to electrochemistry, and produced significantly higher positiveattitudes towards chemistry and laboratory. In the light of the findings, it is suggested that inquiry-based laboratory activities should be developed and applied to promote students’understanding in chemistry subjects and to improve their positive attitudes.

    Keywords   Attitude towards chemistry laboratory. Attitude towards chemistry lesson .

    Chemistry education . Electrochemistry. Inquiry-based laboratory

    Introduction

    The laboratory setting has been recognized as a unique instructional environment in whichstudents can work cooperatively in small groups (Schwab 1962; Hurd 1969; Hofstein andLunetta 1982; DeBoer  1991; Lin 2007). Research has shown that students’ learning will bemore meaningful if they engage in laboratory activities (Domin 2007; Garnett et al. 1995;Hodson 1990; Hofstein and Lunetta 1982, 2004; Lazarowitz and Tamir  1994; Lunetta 1998;Tobin 1990). Unfortunately, as it is traditionally structured, science laboratory instruction

    Res Sci Educ (2013) 43:413 – 435DOI 10.1007/s11165-011-9275-9

    B. Acar SesenHasan Ali Yucel Education Faculty, Department of Science Education, Istanbul University, 34452Eminonu, Istanbul, Turkeye-mail: [email protected] 

    L. Tarhan (*)Science Faculty, Chemistry Department, Dokuz Eylul University, 35160 Buca, Izmir, Turkeye-mail: [email protected] 

  • 8/21/2019 Inquiry-based lab act - impact on achievement and attitudes.pdf

    2/23

    has the enduring reputation of failing to live up to this expectation (National ResearchCouncil   2006). Consequently, alternative instructional approaches should be utilized toimprove student learning. For this purpose, the inquiry-based laboratory approach has

     begun to gain more interest.

    Learning Chemistry in Laboratory: Traditional Versus Inquiry-based

    In traditional cookbook laboratory settings, students only follow step-by-step instructions tocomplete an experiment. Because they concentrate on the completion of individual steps,they often do not have a deep understanding of the experimental design, and so to manystudents, laboratory activities mean manipulating equipment but not manipulating ideas(Hofstein and Lunetta 2004). Wu and Hsieh (2006) underlined that whereas cookbook labscan teach some laboratory techniques or serve as visual aids for concepts already studied,they are largely ineffective as a tool for teaching science concepts. Therefore, cookbook 

    laboratory activities may work well as illustrations of concepts already studied andunderstood but it is unlikely they will lead to new conceptual learning. However, in manyschool science programs, laboratories have been used in a cookbook fashion to verifyscientific facts and not promote laboratory or science process skills to investigate thenatural phenomena (K ılınç 2004). Gunstone (1991) indicated that if students in the sciencelaboratory are usually involved primarily in technical activities, with few opportunities for metacognitive activities, they may not construct the knowledge.

    Meaningful learning in the laboratory will only occur if students are given ample timeand the opportunities for interaction and reflection to initiate discussion (Gunstone and

    Champagne  1990; Tobin   1990). Hofstein and Lunetta (2004) advocated more intensiveresearch on the effect of science laboratory instruction on the development of students’conceptual understanding, and they indicated that when laboratory experiences areintegrated with other metacognitive learning experiences such as   “ predict  – explain – observe”demonstrations, etc., and when they incorporate the manipulation of ideas instead of simplymaterials and procedures, they promote the learning of science. They also stated that 

    “to acquire a more valid understanding . . . science educators need to conduct moreintensive, focused research to examine the effects of specific school laboratoryexperiences and associated contexts on students’   learning. The research should

    examine the teachers’

      and students’

      perceptions of purpose, teacher and student  behaviour, and the resulting perceptions and understandings (conceptual and procedural) that the students construct ” (p. 33).

    As a result of this research, interest in using inquiry-based teaching strategies hasincreased in recent years as science teachers have become more critical about the efficacy of cookbook-type laboratory activities and indeed the purposes, practices, and learningoutcomes of laboratory. In science instruction, laboratory activities have been a popular vehicle for activity/performance-based science tasks for a long time. Thus, many scienceeducators have advocated the use of inquiry-based laboratory work (Abd-El-Khalick et al.

    2004; Hodson 1990; Lunetta 1998; National Research Council 2000).The National Science Education Standards use the term inquiry in two ways (Bybee2000; Lunetta   1998): (a) inquiry as content understanding, in which students haveopportunities to construct concepts and patterns, and to create meaning about an idea toexplain what they experience; and (b) inquiry in terms of skills and abilities. Under thecategory of abilities or skills, Bybee (2000) included identifying and posing scientificallyoriented questions, forming hypotheses, designing and conducting scientific investigations,

    414 Res Sci Educ (2013) 43:413 – 435

  • 8/21/2019 Inquiry-based lab act - impact on achievement and attitudes.pdf

    3/23

    formulating and revising scientific explanations, and communicating and defendingscientific arguments. It is suggested that many of these abilities and skills are in alignment with those that characterize inquiry-based laboratory work, an activity that puts the student in the centre of the learning process. In the inquiry-based laboratory environment, students

    may undertake the following activities: observing objects and events, posing questions,designing investigations, proposing explanations, collecting and analyzing data, comparing proposed explanations with new data.

    Hofstein et al. (2004) reported that by conducting the experiments in the context of high school chemistry curriculum, students were able to practice inquiry skills such asasking questions, hypothesizing, and suggesting a question for further investigation. Theresults of the study by Hofstein et al. (2005) also showed that laboratory experimentsincrease students’   ability to ask more questions and better questions related to their experimental observations and findings. Brown et al. (1989), Williams and Hmelo(1998), Gunstone (1991) asserted that students construct their knowledge by solving

    genuine and meaningful problems during laboratory activities. As mentioned by Tarabanet al. (2007), even when there is a shift in the direction of implementing inquiry learningin the classroom, teachers can still take away from the true nature of science by givingstudents cookbook experiments — activities through which students carefully followstep-by-step instructions and collect data without a clear understanding of the questionor concepts, and without opportunities to reason about their observations (NationalResearch Council 2005).

    Thus, inquiry-based laboratory work is an effective mode of learning to improvestudents’  understanding (Lord and Orkwiszewski  2006), scientific process skills (Deters

    2005; Hofstein et al. 2004), attitudes toward school science (Gibson and Chase 2002; Joneset al. 2000; Lord and Orkwiszewski 2006), motivation to learn science (Tuan et al.  2005),understanding of the nature of science (Backus  2005), and communication skills (Deters2005). On the other hand, it is well known that students in a typical middle or high schoolhave few opportunities to engage in inquiry-based activities, and learning environments areneeded in which students can engage in scientific discussion to explain and defend their thinking (Leonard and Chandler  2003; Tsai 2001). As mentioned by Cheung (2006), therehas been a lack of effective inquiry materials, and he asserted that cookbook-stylelaboratory activities are by far the most common among commercial chemistry curriculaand thus teachers have difficulties finding inquiry materials. For this reason in this study,

    inquiry-based laboratory activities were developed and applied to high school students toassess their efficacies.

    Purpose and Research Questions

    In Turkey, chemistry teaching at high school level includes laboratory activities like a cook- book design, and few chemistry teachers use inquiry-based laboratory work as a teachingaid as well as the other countries in the world (Deters   2005; Hackling et al.   2001).

    Therefore, the purpose of this study was to investigate the effectiveness of inquiry-basedlaboratory activities on high school students’   understanding of electrochemistry andattitudes towards chemistry lessons and the chemistry laboratory. In order to enhance thisaim the following research questions were investigated;

    1. What is the high school students’  prerequisite knowledge about their proficiency for learning   ‘ Electrochemistry’?

    Res Sci Educ (2013) 43:413 – 435 415

  • 8/21/2019 Inquiry-based lab act - impact on achievement and attitudes.pdf

    4/23

    2. Does inquiry-based laboratory instruction contribute to better conceptual understandingof    ‘ Electrochemistry’   in high school students than traditional cook-book designlaboratory instruction?

    3. Does inquiry-based laboratory instruction contribute to the high school students’

     performance in the laboratory?4. Does inquiry-based laboratory instruction contribute to the high school students’attitudes towards chemistry laboratory activities?

    5. Does inquiry-based laboratory instruction contribute to the high school students’attitudes towards chemistry lessons?

    Method

    Participants

    The sample of this study was 62 high school students (average age 17 years) from twoscience classes in a high school in Izmir, in Turkey. Chemistry backgrounds of all thestudents were the same, and they had been instructed by the same competent chemistryteacher who has 19 years experience. Students in the classes were randomly assigned to theexperimental ( N =30) and control groups ( N =32). Students in both groups were instructedaccording to the traditional approach by the same teacher during the same instructional

     period. Additionally, while inquiry-based laboratory activities were accomplished in the

    experimental group, traditional cook-book laboratory instruction was used in the controlgroup.

    Instruments

    The Pre-Test 

    Constructivism claims that existing concepts play an important role for learning newconcepts (Bodner  1986). To learn the subject of electrochemistry, students have to know the

     prerequisite subjects of (a)  Periodic table, (b)  Electronegativity, (c)   Ionisation energy, (d)

     Electron affinity, (e)   Metals and non-metals, (f)   Chemical reactions, (g)   Chemical equilibrium, (h)  Acids and bases, (i)  Oxidation-reduction, (j)  Redox reactions, (k)  Element activity. For this reason, a pre-test consisting of thirteen multiple-choice items wasdeveloped to identify student prerequisite knowledge about their proficiency for learning‘ Electrochemistry’. The content of the test was validated by seven chemistry educators and11 high school chemistry teachers. The test was piloted with the sample of 146 high schoolstudents for the reliability. After the item analysis, the reliability coefficient (KR-20) of thetest was found to be 0.81.

    Students’   answers were classified as correct (1 points), incorrect and no answers(0 points). The maximum score for the test, in which a student can achieve, is 13.

    The Electrochemistry Achievement Test (EAT)

    In this study, the  Electrochemistry Achievement Test (EAT)  developed by Acar and Tarhan(2007) was used to determine students’   understanding of   Electrochemistry. The test involved 8 open-ended and 12 multiple-choice items, related to (a)   Reactions in

    416 Res Sci Educ (2013) 43:413 – 435

  • 8/21/2019 Inquiry-based lab act - impact on achievement and attitudes.pdf

    5/23

    electrochemical cells, (b)  Construction of electrical current , (c)  Identification of anode and cathode and their charges, (d)   Functions of salt bridge, (e)   Functions of metal rods, (f)

     Function of voltmeter , (g)  Cell potential , (h) Half-cell and standard hydrogen electrode, (i) Electrolysis. Prior to the development of the test items, the content boundaries and

    instructional objectives had been defined. Test items had been constructed according to theobjectives and by considering misconceptions identified in the literature as seen in Table 1(Garnett et al.  1990a,   b; Garnett and Treagust   1992a,   b; Sanger and Greenbowe   1997,1999). The content of the tests had been validated by six experts in chemistry education andfour high school chemistry teachers. In addition, the test had been piloted with 150 highschool students for reliability. The reliability coefficient (KR 20) of the test was 0.86.

    For the statistical analysis of EAT, multiple choice items were scored as correct (1 point)and incorrect (0 point) and blank (0 point). In addition to this, open-ended items werecategorized as correct (2), partially correct (1); incorrect (0) and no-response (0). Thecorrect answers category involved completely correct explanations and the response reflects

    the learning objectives in a detailed and clear manner. The incorrect answers categoryincluded incorrect ideas and alternative conceptions on the related topics. On the other hand, both correct answers with inadequate explanations were placed into the partiallycorrect answers category. Due to the fact that each correct multiple-choice item and open-ended item were graded with one point and two points respectively, the maximum scorewhich can be obtained from the test was 32.

     Attitudes Toward Chemistry Lesson (ATCS) and Laboratory Scales (ATCLS)

    To determine students’

      attitudes toward the chemistry lesson before and after theinstruction, a 5-point Likert type Attitude toward Chemistry Lesson Scale (ATCS) with25 items was used (Acar  2008). Before development of the items, literature related to theattitudes towards science and chemistry had been reviewed (Berberoğlu and Çalıkoğlu1992; Freedman 1997; Hofstein and Lunetta 1982; Koballa 1988; Koballa et al. 1990; Saltaand Tzougraki   2004). The items were constructed by considering the attitude scaledeveloped by Salta and Tzougraki (2004). For the validity, the scale was reviewed by seveneducators in the different universities. After the corrections, the scale was applied to 168high school students for the reliability. Cronbach’s alpha reliability coefficient was found to

     be 0.81. The ATCS has four dimensions:

    (1) Interest in chemistry lesson (items: 1, 3, 8, 18, 20, 22)(2) Understanding and learning chemistry (items: 2, 5, 7, 12, 13, 14, 15, 17, 21, 23)(3) The importance of chemistry in real life (items:4, 6, 11, 19, 25)(4) Chemistry and occupational choice (items: 9, 10, 16, 24)

    Students’  attitudes toward the chemistry laboratory before and after the instruction weredetermined by using a 5-point Likert type Attitude toward Chemistry Laboratory Scale(ATCLS) developed by Tarhan (2008). Before development of the items, literature reviewswere done (Carlo and Bodner  2004; Freedman 1997). For the validity, the scale was reviewed

     by seven educators in the different universities. It was applied on 191 high school students,and Cronbach’s alpha reliability coefficient was to be 0.87. The ATCLS has four dimensions:

    (1) Laboratory environment and using equipment (items: 1, 6, 9, 13)(2) Experimental process in the laboratory (items: 2, 3, 4, 5, 7, 8, 10, 12, 23, 25)(3) Assessment in the laboratory (items: 11, 15, 16, 17, 18, 19, 20, 21, 26)(4) Cooperative learning in the laboratory (items: 14, 22, 24, 27).

    Res Sci Educ (2013) 43:413 – 435 417

  • 8/21/2019 Inquiry-based lab act - impact on achievement and attitudes.pdf

    6/23

    For statistical analysis, positive items in both the scales were assigned a numeric valueranging across choices of (5) strongly agree, (4) agree, (3) undecided, (2) disagree, (1)strongly disagree, and negative items were assigned their reverse. The maximum scoreswhich a student can obtain from the ATCS and ATCLS were 125 and 135 respectively.

    Table 1   Students’ misconceptions determined in the literature

    Student misconceptions

    Electrical current 

    Electrons enter the electrolyte at the cathode, move through the electrolyte and emerge at the anode tocomplete the circuit 

    Protons and electrons flow in the opposite directions to constitute an electric current 

    Electrons can flow through aqueous solutions without assistance from the ions

    Only negatively charged ions constitute a flow of current in the electrolyte and the salt bridge

    Identify cathode and anode and their function

    The anode is negatively charged and because of this it attracts cations. The cathode is positively changedand because of this it attracts anions

    Anodes, like anions, are always negatively charged; cathodes, like cations, are always positively charged

    The anode is positively charged because it has lost electrons

    The cathode is negatively charged because it has gained electrons

    The identity of the anode and cathode depends on the physical placement of the half-cells

    In electrochemical cells oxidation occurs at the anode and reduction occurs at the cathode while inelectrolytic cells oxidation occurs at the cathode and reduction occurs at the anode

    Function of metal rods

    Metal rods only act as an electron carrier during redox reactions and so there will be no change on theelectrode’s physical structure

     No reaction will occur if inert electrodes are used

    Inert electrodes can be oxidized or reduced

    Function of salt bridgeThe salt bridge supplies electrons to complete the circuit 

    The salt bridge assists the flow of current (electrons) because positive ions in the bridge attract electronsfrom one half-cell to the other cell

    Potential differences and cell potential

    In electrochemical cells, as the attractive forces between anions and cations affects the ion’s velocity towardselectrodes, different potentials are read when different solutions are used in the cells

    Protons and electrons flowing in opposite directions cause a potential difference between the two ends of thewire

    Half-cell

    A standard half-cell is not necessaryElectrolysis

    In electrolytic cells the polarity of the terminals of the applied voltage has no effect on the site of the anodeand cathode

    Water does not react during the electrolysis of aqueous solution

    The same products are produced in both aqueous and molten substances of salt electrolysis

    There is no association between the calculated e.m.f. of an electrolytic cell and the magnitude of the applied voltage

    In electrolytic cells with identical electrodes connected to the battery, the same reactions will occur at each electrode

    It is not important which sides of the battery are connected to the electrodes, as the same reactions occur at the electrodes

    418 Res Sci Educ (2013) 43:413 – 435

  • 8/21/2019 Inquiry-based lab act - impact on achievement and attitudes.pdf

    7/23

     Laboratory Assessment Form (LAF)

    To evaluate students’   performance for each experiment, Laboratory Assessment Form(LAF) was developed by considering the literature review (Reynolds et al.  1995; Tamir et 

    al.   1982; Lunetta et al.   1981; Doran et al.   2002). LAF includes three sub-scales as - Readiness for laboratory experiment , - Behaviour in the laboratory, and   -Evaluating the findings and report writing   (Table   2). To determine the validity of the form, it wasexamined by ten chemistry educators and 11 competent chemistry teachers. After thecorrection, ten chemistry teachers were required to observe and assess three students in their class while they perform the experiment by using the LAF. The intraclass correlation, whichis found as 0.89, indicated that the internal consistency and reliability of the LAF is high.Laboratory Assessment Form was used for all the students in the experimental group after each experiment and then evaluated by the teacher and two observer teachers. For theassessment of the students’ performance, the items were scored as (1) fail, (2) satisfactory,

    (3) good and (4) excellent. The maximum score which can be obtained from LAF was 56.

    Procedure

    The Turkish high school chemistry curriculum contains the subject of electrochemistry under the unit of   ‘Oxidation and Reduction Reactions’. Before the subject of   ‘ Electrochemistry’,students are taught the subjects of   Oxidation and Reduction; Oxidant and Reductant;

    Table 2   The sub-scales in the Laboratory Assessment Form (LAF)

    Assessment criteria Very good Good Average Poor  

    Readiness for laboratory

    Understanding of theoretical knowledge and concepts relatedto experimental subjects

    Assimilate the aim of the experiment 

    Investigate the pre-experiment questions in the worksheet 

    Behaviour in the laboratory

    Knowledge about how to carry out the experiment 

    Use laboratory equipment and materials in a good manner Record experimental observations and results in a meaningfuland accurate manner 

    Share, discuss, aid and stick together with friends during thelaboratory process

    Make an effort to solve the problems encountered duringthe laboratory process

    Adhere to the laboratory rules

    Evaluating the findings and writing laboratory report 

    Present results and conclusion clearly

    Analyze experimental data accurately using the most appropriate representation

    Associate the findings with their theoretical knowledge

    Associate the answers of the post-experiment questions andexperimental results with theoretical knowledge

    Analyze experimental error sources

    Res Sci Educ (2013) 43:413 – 435 419

  • 8/21/2019 Inquiry-based lab act - impact on achievement and attitudes.pdf

    8/23

    Oxidizing and Reducing Agent; Redox Reactions; Half Reactions; Electron Taking and 

    Giving; Elements’ Activities; Oxidation States, Determining Oxidation States, and Balancing 

     Redox Equations. In the context of   ‘ Electrochemistry’, they learn   Electrode potentials, Electrochemical cells, Cell potentials, Standard hydrogen electrode, and  Electrolysis.

    In this study, the aim was to investigate whether inquiry-based laboratory activities aremore effective in understanding the subject of   “ Electrochemistry’”   than a traditionallaboratory instruction. For this reason, pre- and post-tests with a control group design wasused. Before the instruction, the pre-test was applied to both control and experimentalgroups to identify student prerequisite knowledge about their proficiency for learning‘ Electrochemistry’. In addition, ATCS and ATCLS were applied to identify their pre-attitudes. The independent   t -test was conducted to compare the scores of groups with nosignificant differences with respect to students’ mean scores of pre-test, ATCS and ATCLS.Students in both group were taught the subject of   ‘ Electrochemistry’  by the same teacher during the 3 week period including 4 h per week. Throughout the lesson, the teacher 

     presented the subject by using the blackboard, asked some questions related to the subject and students solved the problems. The students were instructed with the regular chemistrytextbook. They listened to the teacher carefully, took notes and solved algorithmic

     problems. In addition to this treatment, the experimental group were engaged in inquiry- based laboratory activities and the control group students studied regular chemistryexperiments. Before the instruction, a chemistry teacher of 19 years experience was trainedin how to implement the instruction based on an inquiry-based laboratory. Inquiry-basedlearning requires students to work together rather than receiving direct instructions on what to do from the teacher. The teacher ’s job in this setting is therefore not to provide

    knowledge, but instead to help students along the process of discovering knowledge for themselves. For this reason, the teacher was required to act as a facilitator, visit and monitor the groups, explain using laboratory equipment, warn about the possible laboratory hazardsand ask leading questions to encourage students to think, discuss and research. Before theinstruction, the teacher gave information about the laboratory process, using laboratoryequipment and materials, rules of working in the laboratory, how to conduct data evaluationand report writing techniques, and laboratory safety. The teacher explained what should bedone if laboratory accidents occurred explaining emergency equipment and procedures.Students were also required to wear a laboratory coat, glasses and gloves, and follow theexperimental stages indicated in the hand-outs. Students were informed that they would be

    assessed according to their performances and the group report for each laboratory work. Inthe group report, students were required to write the aim of the experiment, experimental

     procedure, results, evaluation and discussion and conclusion.

    Conducting the Inquiry-based Laboratory Activities

    Five inquiry-based laboratory activities related to   ‘ Electrochemistry’ were developed basedon constructivism by considering students’   misconceptions and learning difficultiesdetermined in the literature (see Table 1). Inquiry-based laboratory activities were carefully

    constructed to integrate the learning sequences with conceptual networks. The headings of (a)   Aims of the experiments, (b)   Equipment and chemicals, (c)   The warnings, (d) Experimental procedures   were clearly indicated in the laboratory hand-outs for all thelaboratory activities. The leading questions were especially constructed to requireconstruction of knowledge by encouraging students to research, discuss, and share their knowledge in their small groups. The laboratory activities were examined by sevenchemistry educators and 11 high school chemistry teachers. The activities were piloted with

    420 Res Sci Educ (2013) 43:413 – 435

  • 8/21/2019 Inquiry-based lab act - impact on achievement and attitudes.pdf

    9/23

    the sample of 23 high school students attending a different high school and revision wasmade according to their feedback.

    The main application of inquiry-based laboratory activities was accomplished withthe participation of 30 high school students who were randomly assigned into their 

    cooperative groups based on their scores obtained from the pre-test, ATCS and ATCLS.There were six groups with five students. All the laboratory activities were performedin these small cooperative groups under the guidance of the teacher. Each laboratoryactivity began with a problem related to the laboratory activities. Then the studentswere asked to define or describe the problem. During this process, the teacher askedsome leading questions to arouse their interest. After the brainstorming, students beganto conduct activities. Students asked relevant questions of each other and discussedtheir observations in their groups, and finally, analyzed the findings. During theinquiry-based laboratory process, it was required students construct the knowledge step

     by step by using existing ideas.

    Laboratory Activity-1 The first laboratory activity began with a problem related toGalvani’s observations on a trembling frog’s leg connected toZn and Cu metals, and group discussion began around this

     problem. Students were then required to conduct the laboratoryactivity named   ‘ Potential differences of different metal rods indifferent fruits’   to solve the problem. They designed their experiments and observed the potential differences between thecopper rod and some metal rods such as Zn, Sn, Mg, or Ni

    immersed into a fruit like lemon, apple, and orange using asimple voltmeter, and then noted the values into a Table. Studentswere required to inquire about the reasons for changes in the

     potential differences according to the type of the metal pairs andfruits. During this period, they activated their prior knowledgesuch as  Redox Reaction, Oxidation and Reduction, and Element 

     Activities.Laboratory Activity-2 After the first laboratory work, students learned that potential

    difference is dependent on the concentration of a solutionwhere metal rods are immersed. Students were asked how to

    construct a standard cell system for international validity.After the brain storming, a simulation was presented relatedto the cell system where Zn and Cu rods were immersed in1 M HCl solution, and it required students to discuss thereason for the lighting of the lamp by considering thechemical reactions occurring in the cell, and the oxidationtendency of the metals. After constructing a system includingone cell, laboratory activity-2 was conducted by the students,titled   ‘ If Zn and Cu rods were immersed into two different cells,does the lamp light up?’ . Before this activity, students activatedtheir previous knowledge as   Anion, Cation, Electrolyte, Oxida-tion, Reduction, Redox reactions and Element activities . In thefirst step of the experiment, students made a system byimmersing the Cu rod into a beaker include 1 M CuSO4   andthe Zn rod into the other beaker including 1 M ZnSO4 solutions,and the rods and the lamp were connected via a conductive wire

    Res Sci Educ (2013) 43:413 – 435 421

  • 8/21/2019 Inquiry-based lab act - impact on achievement and attitudes.pdf

    10/23

    to complete the circuit. Students were required to inquire whythe lamp did not light up and interpret their observations withtheir previous knowledge. In the second step, the teacher gaveout to all the groups a U shaped glass tube filled with a saturated

    electrolyte (potassium chloride) and closed with a cotton wool.Students were encouraged to connect the beaker to each other using the salt bridge and then to comment on their observations.Students defined the reactions that occurred in the beakers,electron and ion flow, salt bridge’s function and energytransformation in the system. As a result of this experiment,the aim was for students to learn the terms   Electrode, Anode,Cathode, Half-cell and Salt-bridge  and understand the working

     principle of the electrochemical cells.Laboratory Activity-3 After completion of the second laboratory activity, a sample

    from daily life that showed water flowing spontaneously over a waterfall from high potential energy to low potential energywas given to students as a simulation for electron flow fromanode to cathode demonstrating electromotor forces (cell

     potential). They began to express their opinions about theaffective parameters of the cell potential. After the brainstorm-ing, laboratory activity-3 named   ‘ Effective Factors on Cell 

     Potential ’ was conducted by students to understand the change of cell potential depending on concentration and temperature. In this

    activity, students made four different electrochemical cells byusing Cu and Zn electrodes and CuSO4  and ZnSO4  solutions inthe different concentration as 0.05 M and 2 M with the samevolume and salt bridge filled with saturated Na2SO4. The cell

     potentials for four electrochemical cells were measured via avoltmeter. Students inquired about the effect of concentration oncell potential. Then, students designed another electrochemicalcell composed of Cu and Zn electrodes; 2 M CuSO4   and 2 MZnSO4 solutions in two conditions of ice water and boiling water,and they measured the potential differences. Students were

    encouraged to inquire about the effect of temperature on cell potential.

    Laboratory Activity-4 To arouse students’   interest, they were asked whether electricalenergy could be transferred to chemical energy. After brainstorm-ing, they performed a laboratory activity-4 named   ‘Water 

     Electrolysis’. Students secured two test tubes filled with water inthe beaker in a way that test tubes were upside down over the

     beaker, mounted the cupper and carbon electrodes and thenconnected the 12 V battery. The events occurring in the system

    were observed and noted by students. Then, 2 – 

    3 mL of 1 M Na2SO4  was added to the water and observations were recorded.After completion of the experiment, pH of water was measured.While students interpreted the results of the experiment, they wereencouraged to inquire which gases were released in the anode andcathode by writing the half reactions, the change of pH of thewater and the reason for adding Na2SO4.

    422 Res Sci Educ (2013) 43:413 – 435

  • 8/21/2019 Inquiry-based lab act - impact on achievement and attitudes.pdf

    11/23

    Laboratory Activity-5 The last activity was related to electroplating. Firstly, students wereasked, how to make jewellery or watch plating with silver or gold.After the brainstorming, students formulated their hypothesis, and

     began to design their experiments. During this activity, students

    made an electrolysis system and plated a spoon with copper. Theywere required to inquire about the examples of electrochemistryfrom daily life.

    Conducting the Traditional Laboratory Activities

    The same laboratory activities were conducted in the control group based on traditionalcookbook settings. Students were given laboratory hand-outs with the description of thelaboratory for performing the experiment. Students read the hand-out and then followed

    step-by-step directions to conduct the experiments. They were not required to ask questionsand discuss the reason for the findings.

    Results

    Results of the Pre-Test 

    In order to identify students’   prior knowledge of   ‘ Electrochemistry’, the pre-test wasadministered to both control and experimental groups. An independent sample   t -test was

    conducted to compare the mean scores of experimental and control groups. As seen inTable  3, the analysis results expressed that there was no statistically significant differenceamong the control and experimental groups in terms of pre-test mean scores (t=0.16, p >.05).

    Results of the Electrochemistry Achievement Test 

    In order to identify students’  understanding of   ‘ Electrochemistry’, the ElectrochemistryAchievement Test (EAT) was applied after the implementation. The mean scores of bothcontrol and experimental groups were compared by conducting an independent sample   t -

    test, and the results showed there was a statistically significant difference between groups (t =12.07,  p

  • 8/21/2019 Inquiry-based lab act - impact on achievement and attitudes.pdf

    12/23

    Results of Attitudes towards Chemistry Lesson Scale

    In order to measure students’  pre- and post-attitudes towards chemistry, The Attitudestowards Chemistry Lesson Scale (ATCS) was used. The independent sample   t -test wasused to compare the mean scores of the experimental and control groups. Statisticalresults showed that while there were no significant differences among experimental andcontrol groups with respect to pre-attitude towards chemistry lessons (t=0.07,   p>.05;Table 3), significant differences were found between groups after the instruction (t=6.58,

     p0.05), the mean score of theexperimental group increased significantly after the instructions (t=6.37,  p

  • 8/21/2019 Inquiry-based lab act - impact on achievement and attitudes.pdf

    13/23

          T    a      b      l    e      6

        T    h   e   p   e   r   c   e   n   t   a   g   e   s   o    f   s   t   u    d   e   n   t   s

                           ’

       a   n   s   w   e   r   t   o   t    h   e    A    T

        C    S    b   e    f   o   r   e   a   n    d   a    f   t   e   r   t    h   e    i   n   s   t   r   u   c   t    i   o   n

        D    i   m   e   n   s    i   o   n

        I   t   e   m   s    i   n   t    h   e

       a   t   t    i   t   u    d   e   s   t   o   w   a   r    d   s   c    h   e   m    i   s   t   r   y    l   e   s   s   o   n   s   c   a    l   e

        P   e   r   c   e   n   t   a   g   e   s   o    f   s   t   u    d   e   n   t   s

                           ’

       a   n   s   w

       e   r   s

        P   r   e  -   a   t   t    i   t   u    d   e

        P   o   s   t  -   a   t   t    i   t   u    d   e

        E   x   p .

        C   o   n   t .

        E   x   p .

        C   o   n   t .

        I   n   t   e   r   e   s   t    i   n   c    h   e   m    i   s   t   r   y    l   e   s   s   o   n

        1 .    I    l    i    k   e   c    h   e

       m    i   s   t   r   y    l   e   s   s   o   n   s

        3    3 .    3    3

        2    8 .    1    3

        6    3 .    3    3

        3    1 .    2    5

        3 .    I   w   o   u    l    d    l    i    k   e   t    h   e   t   e   a   c    h    i   n   g   p   e   r    i   o    d   o    f   t    h   e   c    h   e   m    i   s   t   r   y    l   e   s   s   o   n   m   o   r   e   o    f   t   e   n

        2    6 .    6    7

        2    5 .    0    0

        6    0 .    0    0

        2    5 .    0    0

        8 .    I   t    h    i   n    k   c    h   e   m    i   s   t   r   y    l   e   s   s   o   n   s   a   r   e   u   n   n   e   c   e   s   s   a   r   y

        3    6 .    6    7

        3    7 .    5    0

        1    6 .    6    7

        3    4 .    3    8

        1    8 .    I    h   a   t   e   c    h   e   m    i   s   t   r   y    l   e   s   s   o   n   s

        2    0 .    0    0

        2    1 .    8    8

        1    0 .    0    0

        2    1 .    8    8

        2    0 .    I   w   o   u    l    d

        l    i    k   e   t   o    h   a   v   e    f   e   w   e   r   c    h   e   m    i   s   t   r   y   t   o   p    i   c   s    i   n   t    h   e    l   e   s   s   o   n   s

        5    0 .    0    0

        5    0 .    0    0

        1    6 .    6    7

        4    6 .    8    8

        2    2 .    I    f    i   n    d   c    h   e   m    i   s   t   r   y    l   e   s   s   o   n   s    i   n   t   e   r   e   s   t    i   n   g

        3    6 .    6    7

        3    4 .    3    8

        6    6 .    6    7

        3    1 .    2    5

        U   n    d   e   r   s   t   a   n    d    i   n   g   a   n    d    l   e   a   r   n    i   n   g   c    h   e   m    i   s   t   r   y

        2 .    C    h   e   m    i   c   a    l   s   y   m    b   o    l   s   a   r   e   u   n    i   n   t   e    l    l    i   g    i    b    l   e   a   s   a    f   o

       r   e    i   g   n    l   a   n   g   u   a   g   e   t    h   a   t    I    d   o   n   o   t    k   n   o   w

        3    6 .    6    7

        3    4 .    3    8

        1    6 .    6    7

        3    7 .    5    0

        5 .    I   c   a   n   s   o    l   v   e   c    h   e   m    i   s   t   r   y   p   r   o    b    l   e   m   s   e   a   s    i    l   y

        1    3 .    3    3

        1    8 .    7    5

        6    0 .    0    0

        2    5 .    0    0

        7 .    I   t    h    i   n    k ,    l   e   a   r   n    i   n   g   t    h   e    b   a   s    i   c   c   o   n   c   e   p   t   s   a   r   e    i   m   p

       o   r   t   a   n   t    f   o   r   u   n    d   e   r   s   t   a   n    d    i   n   g   c    h   e   m    i   s   t   r   y

        3    3 .    3    3

        3    4 .    3    8

        7    6 .    6    7

        3    1 .    2    5

        1    2 .    M   o   s   t   o    f

       t    h   e   c   o   n   c   e   p   t   s    i   n   c    h   e   m    i   s   t   r   y   a   r   e   n   o   t

       c   o   n   c   r   e   t   e

        6    0 .    0    0

        5    6 .    2    5

        3    0 .    0    0

        5    9 .    3    8

        1    3 .    C    h   e   m    i   s   t   r   y    i   s   a   s   o   p    h    i   s   t    i   c   a   t   e    d   a   n    d    i   m   p   a    l   p   a    b

        l   e    l   e   s   s   o   n

        5    6 .    6    7

        5    6 .    2    5

        3    3 .    3    3

        5    3 .    1    3

        1    4 .    I   m   a    k   e   m   a   n   y   e    f    f   o   r   t   s   t   o   u   n    d   e   r   s   t   a   n    d   c    h   e   m    i   s

       t   r   y

        6    3 .    3    3

        6    5 .    6    3

        4    0 .    0    0

        6    2 .    5    0

        1    5 .    I    f    i   n    d   u   s    i   n   g   c    h   e   m    i   c   a    l   s   y   m    b   o    l   s   t   o    b   e   e   a   s   y

        1    3 .    3    3

        1    5 .    6    3

        6    0 .    0    0

        1    5 .    6    3

        1    7 .    I    b   e    l    i   e   v   e   t    h   a   t   s   o   m   e    k   n   o   w    l   e    d   g   e    i   n   c    h   e   m    i   s   t   r   y    h   e    l   p   s   u   s   u   n    d   e   r   s   t   a   n    d   t    h   e   o   t    h   e   r

       s   c    i   e   n   c   e    l   e   s   s   o   n   s   m   o   r   e   e   a   s    i    l   y

        2    6 .    6    7

        2    8 .    1    3

        4    6 .    6    7

        3    1 .    2    5

        2    1 .    I   c   a   n   u   n

        d   e   r   s   t   a   n    d   c    h   e   m    i   s   t   r   y   c   o   n   c   e   p   t   s   e   a   s    i    l   y

        1    3 .    3    3

        1    5 .    6    3

        5    3 .    3    3

        1    5 .    6    3

        2    3 .    I    h   a   v   e    d

        i    f    f    i   c   u    l   t    i   e   s   w    h    i    l   e   u   s    i   n   g   m   y    k   n   o   w    l   e    d   g   e    i   n   s   o    l   v    i   n   g   c    h   e   m    i   s   t   r   y   p   r   o    b    l   e   m   s

        6    3 .    3    3

        5    9 .    3    8

        3    0 .    0    0

        5    9 .    3    8

        T    h   e    i   m   p   o   r   t   a   n   c   e   o    f   c    h

       e   m    i   s   t   r   y    i   n   r   e   a    l  -    l    i    f   e

        4 .    I    b   e    l    i   e   v   e

       t    h   a   t   c    h   e   m    i   c   a    l    k   n   o   w    l   e    d   g   e    h   e    l   p   s   u   s

       t   o    i   n   t   e   r   p   r   e   t   s   e   r    i   o   u   s    l   y

       e   v   e   n   t   s    i   n   o   u   r    d   a    i    l   y    l    i    f   e

        3    0 .    0    0

        2    8 .    1    3

        5    3 .    3    3

        3    1 .    2    5

        6 .    I   t    h    i   n    k    d   e   v   e    l   o   p   m   e   n   t   s    i   n   c    h   e   m    i   s   t   r   y    i   m   p   r   o   v   e

       t    h   e   q   u   a    l    i   t   y   o    f   o   u   r    l    i   v   e   s

        2    3 .    3    3

        2    1 .    8    8

        5    6 .    6    7

        2    5 .    0    0

        1    1 .    I   t    h    i   n    k   t    h   e    l   e   v   e    l   o    f   c    h   e   m    i   s   t   r   y   t   e   c    h   n   o    l   o   g   y    i   n   a   c   o   u   n   t   r   y    i   s   a   n    i   m   p   o   r   t   a   n   t

        i   n    d    i   c   a   t   o   r    f   o   r    d   e   v   e    l   o   p   m   e   n   t   o    f   t    h   e   c   o   u   n   t   r   y

        4    0 .    0    0

        3    7 .    5    0

        6    0 .    0    0

        3    4 .    3    8

        1    9 .    I   t    h    i   n    k   c    h   e   m    i   s   t   r   y    h   a   s   a   g   r   e   a   t   r   o    l   e    i   n   m   o    d   e

       r   n    l    i    f   e

        3    3 .    3    3

        3    7 .    5    0

        6    0 .    0    0

        4    0 .    6    3

        2    5 .    I   t    h    i   n    k   c    h   e   m    i   s   t   r   y    h   a   s   a   g   r   e   a   t   r   o    l   e    i   n   s   o    l   v    i   n   g   e   n   v    i   r   o   n   m   e   n   t   a    l   p   r   o    b    l   e   m   s

        3    0 .    0    0

        3    4 .    3    8

        7    6 .    6    7

        3    7 .    5    0

    Res Sci Educ (2013) 43:413 – 435 425

  • 8/21/2019 Inquiry-based lab act - impact on achievement and attitudes.pdf

    14/23

          T    a      b      l    e      6

        (   c   o   n   t    i   n   u   e    d    )

        D    i   m   e   n   s    i   o   n

        I   t   e   m   s    i   n   t    h   e

       a   t   t    i   t   u    d   e   s   t   o   w   a   r    d   s   c    h   e   m    i   s   t   r   y    l   e   s   s   o   n   s   c   a    l   e

        P   e   r   c   e   n   t   a   g   e   s   o    f   s   t   u    d   e   n   t   s

                           ’

       a   n   s   w

       e   r   s

        P   r   e  -   a   t   t    i   t   u    d   e

        P   o   s   t  -   a   t   t    i   t   u    d   e

        E   x   p .

        C   o   n   t .

        E   x   p .

        C   o   n   t .

        C    h   e   m    i   s   t   r   y   a   n    d   o   c   c   u   p   a   t    i   o   n   a    l   c    h   o    i   c   e

        9 .    I    d   o   n   o   t    b   e    l    i   e   v   e   t    h   a   t   c    h   e   m    i   s   t   r   y    k   n   o   w    l   e    d   g   e   w    i    l    l    b   e   u   s   e    l   e   s   s   a    f   t   e   r   m   y   g   r   a    d   u   a   t    i   o   n

        5    6 .    6    7

        5    6 .    2    5

        2    3 .    3    3

        5    9 .    3    8

        1    0 .    I    b   e    l    i   e   v   e   t    h   a   t    I    d   o   n   o   t   n   e   e    d   c    h   e   m    i   s   t   r   y    k   n   o

       w    l   e    d   g   e    f   o   r   m   y   t   a   r   g   e   t   c   a   r   e   e   r

        5    3 .    3    3

        4    3 .    7    5

        2    6 .    6    7

        4    3 .    7    5

        1    6 .    I    d   o   n   o   t    f    i   n    d   t    h   e    j   o    b   s   r   e    l   a   t   e    d   t   o   c    h   e   m    i   s   t   r   y

       a   s   a   t   t   r   a   c   t    i   v   e

        4    6 .    6    7

        4    6 .    8    8

        2    0 .    0    0

        4    3 .    7    5

        2    4 .    M   y   t   a   r   g

       e   t   c   a   r   e   e   r    i   s   c    h   e   m    i   s   t    /   c    h   e   m    i   s   t   r   y   t   e   a   c

        h   e   r    /   c    h   e   m    i   c   a    l   e   n   g    i   n   e   e   r

        1    6 .    6    7

        1    5 .    6    3

        2    0 .    0    0

        1    8 .    7    5

    426 Res Sci Educ (2013) 43:413 – 435

  • 8/21/2019 Inquiry-based lab act - impact on achievement and attitudes.pdf

    15/23

    chemistry helped them to understand the other science lessons more easily, increasedsignificantly from 26.67 to 46.67. It was also found that students began to find chemicalsymbols intelligible and concepts as concrete (Table  6).

    According to the students’ answers to the third dimension related to attitudes towards the

    importance of chemistry in real-life, it was found that the experimental group of students began to believe that chemical knowledge helped to interpret events in daily life in the percentage of 53.33%, and chemistry has a great role in the modern life in the percentage of 60.00%. The percentage of students who think that the level of chemistry technology is animportant indicator for development of the country and chemistry has a great role in solvingenvironmental problems, also increased significantly.

    The lowest significant increase was found for the fourth dimension which related tochemistry and occupational choice. The highest increase in students’ attitudes was found inthe items such as believing chemistry knowledge will be useless after graduation andneeding chemistry knowledge for their target career. While the percentage of experimental

    group students who thought the jobs related to chemistry as unattractive decreased from46.67 to 20.00, their thoughts about choices of jobs related to chemistry were not changedsignificantly.

    Results of Attitudes Towards Chemistry Laboratory Scale

    In order to measure students’   pre- and post-attitudes towards chemistry laboratory, theAttitudes towards Chemistry Laboratory Scale (ATCLS) was used. The independent samplet -test was used to compare the mean scores of the experimental and control groups.

    Statistical results showed that while there were no significant differences amongexperimental and control groups with respect to pre-attitudes towards chemistry lessons(t=0.72,   p>.05; Table   3), significant differences were found between groups after theinstruction (t=3.64,  p

  • 8/21/2019 Inquiry-based lab act - impact on achievement and attitudes.pdf

    16/23

          T    a      b      l    e      8

        T    h   e    P   e   r   c   e   n   t   a   g   e   s   o    f   s   t   u    d   e   n   t   s

                           ’

       a   n   s   w   e   r   t   o   t    h   e    A    T

        C    L    S    b   e    f   o   r   e   a   n    d   a    f   t   e   r   t    h   e    i   n   s   t   r   u   c   t    i   o   n

        D    i   m   e   n   s    i   o   n

        I   t   e   m   s    i   n   t    h   e   a   t   t    i   t   u    d   e   s   t   o   w   a   r    d   s   c    h   e   m    i   s   t   r   y    l   a    b   o   r   a   t   o   r   y   s   c   a

        l   e

        P   e   r   c   e   n   t   a   g   e   s   o    f    S   t   u    d   e   n   t   s                       ’

        A   n   s   w   e   r   s

        P   r   e  -   a   t   t    i   t   u    d   e

        P   o   s   t  -   a   t   t    i   t   u    d   e

        E   x   p .

        C   o   n

       t .    E   x   p .

        C   o   n   t .

        L   a    b   o   r   a   t   o   r   y   e   n   v    i   r   o   n   m   e   n   t   a   n    d

       u   s    i   n   g   e   q   u    i   p   m   e   n   t

        1 .    I   w   o   u    l    d    l    i    k   e   t   o    b   e

        i   n    f   o   r   m   e    d   a    b   o   u   t   t    h   e   u   s   e   o    f    l   a    b   o   r   a   t   o   r   y   e   q   u    i   p   m   e   n   t

        3    6 .    6    7    4    0 .    6

        3    6    6 .    6    7    4    3 .    7    5

        6 .    L   a    b   o   r   a   t   o   r   y   e   n   v    i   r   o

       n   m   e   n   t   s    h   o   u    l    d    b   e   s   a    f   e    f   o   r   t    h   e   e   x   p   e

       r    i   m   e   n   t   s   w    h    i   c    h   w    i    l    l    b   e   p   e   r    f   o   r   m   e    d

        4    6 .    6    7    4    3 .    7

        5    9    6 .    6    7    4    3 .    7    5

        9 .    F   e   a   r   o    f    d   a   m   a   g    i   n   g

       a   p   p   a   r   a   t   u   s    i   n   t    h   e    l   a    b   o   r   a   t   o   r   y    d   e   c   r   e   a   s   e   s   m   y    d   e   s    i   r   e   t   o   p   e   r    f   o   r   m   e   x   p   e   r    i   m

       e   n   t   s

        6    0 .    0    0    5    3 .    1

        3    3    0 .    0    0    5    6 .    2    5

        1    3 .    B   e   c   a   u   s   e    I   a   m   a    f   r   a    i    d   t   o   c   r   a   s    h   t    h   e   g    l   a   s   s   a   p   p   a   r   a   t   u   s ,    I

        d   o   n   o   t    l    i    k   e   t   o   p   e   r    f   o   r   m   e   x   p   e   r    i   m   e   n

       t   s

        6    3 .    3    3    4    0 .    6

        3    3    6 .    6    7    4    0 .    6    3

        E   x   p   e   r    i   m   e   n   t   a    l   p   r   o   c   e   s   s

        i   n   t    h   e

        l   a    b   o   r   a   t   o   r   y

        2 .    W    h    i    l   e    I   p   e   r    f   o   r   m   e   x   p   e   r    i   m   e   n   t   s ,    I    f   e   e    l    l    i    k   e   a   s   c    i   e   n   t    i   s   t

        2    0 .    0    0    2    5 .    0

        0    5    0 .    0    0    2    8 .    1    3

        3 .    I    b   e    l    i   e   v   e   t    h   a   t   c   o   n    d   u   c   t    i   n   g   e   x   p   e   r    i   m   e   n   t   s    i   n   t    h   e    l   a    b   o   r   a   t   o   r   y    i   n   c   r   e   a   s   e   s   m   y   a   c    h    i   e   v   e   m   e   n   t    b   y

       s   t   r   e   n   g   t    h   e   n    i   n   g   t    h   e

       t    h   e   o   r   e   t    i   c   a    l    k   n   o   w    l   e    d   g   e    I    l   e   a   r   n   t    i   n   t    h   e    l   e   s   s   o   n

        2    0 .    0    0    1    8 .    7

        5    4    6 .    6    7    2    1 .    8    8

        4 .    I    d   o   n   o   t    b   e    l    i   e   v   e    i   n   t    h   e    i   m   p   o   r   t   a   n   c   e   o    f    l   a    b   o   r   a   t   o   r   y   r   u    l   e   s

        1    3 .    3    3    1    5 .    6

        3    1    0 .    0    0    1    8 .    7    5

        5 .    I    b   e    l    i   e   v   e   t    h   a   t    i    f    I

       a   m    i   n    f   o   r   m   e    d   a    b   o   u   t   t    h   e    i   s   s   u   e   s   t    h   a   t

        I   m   u   s   t    b   e   c   a   r   e    f   u    l ,   m   y   s   e    l    f   c   o   n    f    i    d   e   n   c   e    i   s    i   n   c   r   e   a   s   e    d

        3    3 .    3    3    3    7 .    5

        0    5    0 .    0    0    4    0 .    6    3

        7 .    I    d   o   n   o   t    b   e    l    i   e   v   e   t    h   a   t    f   a   u    l   t   s   o   c   c   u   r   r    i   n   g    d   u   r    i   n   g   t    h   e   e   x   p

       e   r    i   m   e   n   t   a    l   p   r   o   c   e    d   u   r   e   r   e    d   u   c   e   m   y   m

       o   t    i   v   a   t    i   o   n

        2    0 .    0    0    1    2 .    5

        0    4    3 .    3    3    1    5 .    6    3

        8 .    I    f   p   u   r   p   o   s   e   o    f   t    h   e   e   x   p   e   r    i   m   e   n   t    i   s   n   o   t   c    l   e   a   r    l   y    i   n    d    i   c   a   t   e    d

     ,   m   y    i   n   t   e   r   e   s   t    i   n   t    h   e   e   x   p   e   r    i   m   e   n   t    i   s

       r   e    d   u   c   e    d

        3    6 .    6    7    3    1 .    2

        5    2    6 .    6    7    3    1 .    2    5

        1    0 .    I   p   r   e    f   e   r   t    h   e   o   r   e   t    i   c

       a    l    l   e   s   s   o   n   s   t    h   a   n   p   e   r    f   o   r   m    i   n   g   e   x   p   e   r    i   m   e   n   t   s    i   n   t    h   e    l   a    b   o   r   a   t   o   r   y

        4    6 .    6    7    5    0 .    0

        0    2    0 .    0    0    5    3 .    1    3

        1    2 .    I   t    h    i   n    k   c   a   r   r   y    i   n   g   o   u   t   a   n   e   x   p   e   r    i   m   e   n   t    i   s   a   s   t   r   e   s   s    f   u    l   a   n

        d   u   n   n   e   c   e   s   s   a   r   y   p   r   o   c   e   s   s

        4    6 .    6    7    4    6 .    8

        8    1    6 .    6    7    5    0 .    0    0

        2    3 .    I    b   e    l    i   e   v   e   t    h   a   t   a    d   v   a   n   c    i   n   g   a   n   o   p    i   n    i   o   n    d   u   r    i   n   g   t    h   e   e   x   p

       e   r    i   m   e   n   t   a    l   p   r   o   c   e   s   s    i   n   c   r   e   a   s   e   s   m   y   m   o   t    i   v   a   t    i   o   n

        4    3 .    3    3    3    7 .    5

        0    5    6 .    6    7    4    0 .    6    3

        2    5 .    L   a    b   o   r   a   t   o   r   y   e   x   p   e   r    i   m   e   n   t   s   c   o   n   t   r    i    b   u   t   e   t   o    d   e   v   e    l   o   p    i   n   g   m

       y    h   a   n    d   s  -   o   n   s    k    i    l    l   s

        3    0 .    0    0    2    8 .    1

        3    5    0 .    0    0    2    8 .    1    3

        A   s   s   e   s   s   m   e   n   t    i   n   t    h   e    l   a    b

       o   r   a   t   o   r   y

        1    1 .    O    b   t   a    i   n    i   n   g   c   o   r   r   e   c

       t   e   x   p   e   r    i   m   e   n   t   a    l    f    i   n    d    i   n   g   s    i   n   c   r   e   a   s   e   s   m   y    i   n   t   e   r   e   s   t    i   n   e   x   p   e   r    i   m   e   n   t   s

        4    3 .    3    3    4    0 .    6

        3    6    6 .    6    7    4    3 .    7    5

        1    5 .    P   r   o   v    i   n   g   a   s   c    i   e   n   t    i    f    i   c    l   a   w    i   n   t    h   e    l   a    b   o   r   a   t   o   r   y   e   x   p   e   r    i   m   e   n   t    i   n   c   r   e   a   s   e   s   m   y   c   o   n    f    i    d   e   n   c   e

        3    6 .    6    7    3    4 .    3

        8    7    0 .    0    0    3    1 .    2    5

        1    6 .    I   a   m   a   p   p   r   e    h   e   n   s    i   v   e   o    f   m   y   t   e   a   c    h   e   r                       ’   s    k   n   o   w    l   e    d   g   e   a    b   o

       u   t   m   y   e   x   p   e   r    i   m   e   n   t   a    l    f    i   n    d    i   n   g   s

        5    0 .    0    0    5    3 .    1

        3    3    3 .    3    3    5    6 .    2    5

        1    7 .    R   e   s   e   a   r   c    h    i   n   g   t    h   e

       r   e   a   s   o   n    f   o   r   e   x   p   e   r    i   m   e   n   t   a    l   e   r   r   o   r   s   a   r   o

       u   s   e   s   m   y    i   n   t   e   r   e   s   t

        4    3 .    3    3    5    0 .    0

        0    2    6 .    6    7    5    0 .    0    0

        1    8 .    C   o   m   p   r   e    h   e   n    d    i   n   g

       t    h   e   e   x   p   e   r    i   m   e   n   t   a    l   r   e   s   u    l   t   s    i   n   c   r   e   a   s   e   s

       m   y   a   n   a    l   y   t    i   c   a    l   t    h    i   n    k    i   n   g   c   a   p   a   c    i   t   y

        2    3 .    3    3    2    1 .    8

        8    5    6 .    6    7    2    5 .    0    0

        1    9 .    I   w   o   r   r   y   a    b   o   u   t   m    i   s    i   n   t   e   r   p   r   e   t    i   n   g   t    h   e   e   x   p   e   r    i   m   e   n   t   a    l    f    i   n    d    i   n   g   s

        4    3 .    3    3    5    0 .    0

        0    2    0 .    0    0    5    0 .    0    0

        2    0 .    I   n   v   e   s   t    i   g   a   t    i   o   n   o    f   t    h   e   r   e   a   s   o   n   s    f   o   r   e   x   p   e   r    i   m   e   n   t   a    l   e   r   r   o   r   s   a   r   o   u   s   e   s   m   y    i   n   t   e   r   e   s   t

        3    6 .    6    7    2    5 .    0

        0    6    3 .    3    3    2    8 .    1    3

    428 Res Sci Educ (2013) 43:413 – 435

  • 8/21/2019 Inquiry-based lab act - impact on achievement and attitudes.pdf

    17/23

          T    a      b      l    e      8

        (   c   o   n   t    i   n   u   e    d    )

        D    i   m   e   n   s    i   o   n

        I   t   e   m   s    i   n   t    h   e   a   t   t    i   t   u    d   e   s   t   o   w   a   r    d   s   c    h   e   m    i   s   t   r   y    l   a    b   o   r   a   t   o   r   y   s   c   a

        l   e

        P   e   r   c   e   n   t   a   g   e   s   o    f    S   t   u    d   e   n   t   s                       ’

        A   n   s   w   e   r   s

        P   r   e  -   a   t   t    i   t   u    d   e

        P   o   s   t  -   a   t   t    i   t   u    d   e

        E   x   p .

        C   o   n

       t .    E   x   p .

        C   o   n   t .

        2    1 .    I    b   e    l    i   e   v   e   t    h   a   t   t   e   a

       c    h   e   r   s                       ’   e   m   p    h   a   s    i   z    i   n   g   m   y   e   r   r   o   r   s    i   n    l   a    b   o   r   a   t   o   r   y   r   e   p   o   r   t   s   c   o   n   t   r    i    b   u   t   e   s   t   o   m

       y    i   m   p   r   o   v   e   m   e   n   t

        i   n    l   e   a   r   n    i   n   g

        3    3 .    3    3    3    1 .    2

        5    5    3 .    3    3    3    4 .    3    8

        2    6 .    T    h   e   c   o   n   s    i   s   t   e   n   c   y

        b   e   t   w   e   e   n   t    h   e   o   r   e   t    i   c   a    l    k   n   o   w    l   e    d   g   e   a   n

        d   e   x   p   e   r    i   m   e   n   t   a    l   r   e   s   u    l   t   s    i   n   c   r   e   a   s   e   s   m

       y   m   o   t    i   v   a   t    i   o   n

        3    6 .    6    7    3    7 .    5

        0    7    0 .    0    0    3    7 .    5    0

        C   o   o   p   e   r   a   t    i   v   e    l   e   a   r   n    i   n   g

        i   n   t    h   e

        l   a    b   o   r   a   t   o   r   y

        1    4 .    I   t    h    i   n    k   t    h   a   t   t   e   a   c    h    i   n   g   s   o   m   e   t    h    i   n   g   r   e    l   a   t   e    d   t   o   t    h   e   e   x   p   e

       r    i   m   e   n   t   t   o   m   y   g   r   o   u   p   m   a   t   e   s    i   s   a   w   a

       s   t   e   o    f   t    i   m   e

        6    0 .    0    0    4    0 .    6

        3    3    0 .    0    0    3    7 .    5    0

        2    2 .    I    f    i   n    d   g   r   o   u   p   w   o   r    k    i   n   t    h   e    l   a    b   o   r   a   t   o   r   y   e   n    j   o   y   a    b    l   e

        4    3 .    3    3    4    3 .    7

        5    7    0 .    0    0    4    3 .    7    5

        2    4 .    G   r   o   u   p   s   o    l    i    d   a   r    i   t   y

        d   u   r    i   n   g   t    h   e   e   x   p   e   r    i   m   e   n   t   a    l   p   r   o   c   e   s   s    i   n   t    h   e    l   a    b   o   r   a   t   o   r   y   s   t   r   e   n   g   t    h   e   n   s   o   u   r    f   r    i   e   n    d    l   y   r   e    l   a   t    i   o   n   s

        2    6 .    6    7    3    1 .    2

        5    6    3 .    3    3    3    1 .    2    5

        2    7 .    T    h   e   m   o   r   e    I   c   o   n   t   r    i    b   u   t   e   t   o   t    h   e   e   x   p   e   r    i   m   e   n   t   a    l   p   r   o   c   e   s   s

        i   n   m   y   g   r   o   u   p   t    h   e   m   o   r   e    I    f   e   e    l    b   e   t   t   e

       r   m   y   s   e    l    f

        3    3 .    3    3    4    0 .    6

        3    7    0 .    0    0    4    0 .    6    3

    Res Sci Educ (2013) 43:413 – 435 429

  • 8/21/2019 Inquiry-based lab act - impact on achievement and attitudes.pdf

    18/23

    first dimension (laboratory environment and using equipments) indicated that while the percentage of experimental group students who want to be informed about using laboratoryequipments increased from 36.67% to 66.67%, the increases in the control group was from40.63 to 43.75. Experimental group students also began to believe in the importance of 

    laboratory safety in a higher percentage.The percentage of students’  answers to the second dimension (experimental process inthe laboratory) of the ATCLS showed that the experimental group students’ attitudes relatedto feeling like a scientist while experimenting increased in the ratio of 30%. 46.67% of theexperimental group students also believed that conducting experiments in the laboratoryincreased their achievement by strengthening the theoretical knowledge they learned in thelesson.

    The percentage of students’   answers to the third dimension (assessment in thelaboratory) showed that 70.00% of the experimental group of students began to believethat proving a scientific law in the laboratory experiment increased their confidence. While

    their attitudes about comprehending the experimental results increased, their analyticalthinking capacity increased from 23.33% to 56.67%, and their attitudes about worryingabout misinterpreting the experimental findings decreased from 43.33% to 20.00%.

    The highest increase in the experimental group students’ attitudes was determined for thefourth dimension (cooperative learning in the laboratory). After the instruction, over 60% of the students began to find group work in the laboratory enjoyable and that group solidarityduring the experimental process strengthens their friendship. Students’   negative attitudesabout teaching something related to the experiment to their group mates is a waste of time,decreased by 30%.

    Results of Laboratory Assessment Form

    Experimental group students’   performance in the laboratory for each experiment wasassessed by using the Laboratory Assessment Form. Students’ mean scores were compared

     by conducting ANOVA and Bonferroni test. The mean scores were found as 22.47, 26.19,37.57, 43.87 and 47.53 for each laboratory activity respectively. As seen in Table  9, theANOVA results showed there was a statistically significant difference between mean scoresof students’ performances ( F =103.79,  p

  • 8/21/2019 Inquiry-based lab act - impact on achievement and attitudes.pdf

    19/23

    Discussion and Implications

    In this study, the effect of inquiry-based laboratory activities on high school students’understanding of  Electrochemistry, and attitudes toward chemistry and laboratory work was

    investigated.As mentioned in the literature, laboratory activities have long had a distinctive andcentral role in science and especially chemistry and educators have suggested that many

     benefits accrue from engaging students in science laboratory activities (Garnett andHackling   1995; Hofstein and Lunetta   1982; Hofstein et al.   2004; Lunetta   1998; Tobin1990). Inquiry-based laboratories have the potential to develop students’ abilities and skillssuch as: posing scientifically oriented questions, collecting and analysing data, forminghypotheses, designing and conducting scientific investigations, formulating and revisingscientific explanations, and communicating and defending scientific arguments (Hofstein et al. 2005). The results of this study cohere with these findings. According to the results, it 

    can be concluded that inquiry-based laboratory activities caused significantly better acquisition of the scientific conceptions, and increased students’  laboratory performances,attitudes towards chemistry lessons and laboratory work.

    The results of the  EAT  showed that the mean score of experimental group students whocarried out inquiry-based laboratory activities were significantly higher than those in thecontrol group (t =12.07,  p

  • 8/21/2019 Inquiry-based lab act - impact on achievement and attitudes.pdf

    20/23

    significantly after each laboratory activity ( F =103.79,   p

  • 8/21/2019 Inquiry-based lab act - impact on achievement and attitudes.pdf

    21/23

    damaging experimental apparatus before the instruction, this percentage decreased to 30%.The results supported that if students are informed about using laboratory equipment,

     possible hazards, laboratory safety and rules of working in the laboratory before thelaboratory activities, their self-reliance will increase and their fears will decrease. The

    increase in the percentage of students who think their achievements increase bystrengthening the knowledge learnt in the class during the experimental process, showedinquiry-based laboratory activities and inquiry-based laboratory instruction promotedmeaningful learning as indicated in the EAT and LAF results.

    In the light of these results, while the students who conducted inquiry-based laboratoryactivities had few misconceptions about electrochemistry, the students in the traditionallaboratory class had more misconceptions. This situation shows the power of inquiry-basedlaboratory instruction for improving students’  understanding and preventing misconcep-tions. It was also found that inquiry-based laboratory instruction improves students’laboratory skills, and attitudes towards chemistry and laboratory work. Therefore, inquiry-

     based laboratory activities should be constructed and used widely in chemistry lessons.

    Acknowledgement   This study was supported by The Scientific and Technological Research Council of Turkey (TUB-105K058).

    References

    Abd-El-Khalick, F., BouJaoude, S., Duschl, R., Lederman, N. G., Mamlok-Naaman, R., Hofstein, A., et al.

    (2004). Inquiry in science education: International perspectives.   Science Education, 88, 397 – 

    419.Acar, B. (2008). An active learning application based on constructivism for the subject of  “acid and bases” inhigh school chemistry lesson. Dissertation, University of Dokuz Eylul.

    Acar, B., & Tarhan, L. (2007). Effect of cooperative learning strategies on students’   understanding of concepts in electrochemistry. International Journal of Science and Mathematics Education, 5, 349 – 373.

    Backus, L. (2005). A year without procedures.  The Science Teacher, 72, 54 – 58.Berberoğlu, G., &