initial results from the wisconsin...

43
INITI LTS FR WISCONSIN TOO by J. C. Sprott Plaa Sdies iversity of Wi scons PLP 712 These PLP reports are infoal d prelinary d as such may contain errors not yet elinated. ey are for private cirlation only d are not to be rther trsmitted without csent of the authors d major professor.

Upload: others

Post on 19-Jan-2021

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: INITIAL RESULTS FROM THE WISCONSIN TOKAPOLEsprott.physics.wisc.edu/technote/PLP/plp712.pdfessentially a Tokamak embedded in what used to be called the Small Wisconsin Toroidal Octupole,

INITIAL RESULTS FROM THE WISCONSIN TOKAPOLE

by

J. C. Sprott

Plasma Studies

University of Wisconsin PLP 712

These PLP reports are informal and preliminary and as such may contain errors not yet eljminated. They are for private circulation only and are not to be further transmitted without consent of the authors and major professor.

Page 2: INITIAL RESULTS FROM THE WISCONSIN TOKAPOLEsprott.physics.wisc.edu/technote/PLP/plp712.pdfessentially a Tokamak embedded in what used to be called the Small Wisconsin Toroidal Octupole,

I. Introduction

This paper describes a new plasma confinement configuration at Wisconsin

and preliminary measurements of the plasmas contained therein. The device is

essentially a Tokamak embedded in what used to be called the Small Wisconsin

Toroidal Octupole, and hence the name, Tokapole (Tokamak surrounded by a multi­

pole) . The device is an outgrowth of the ohmic heating studies on the octupole

which were begun by Lencionil in 1967 and continued most recently by Etzweiler2

.

The present configuration was made possible by the installation of stronger

hoop supports which allow the octupole field to be pulsed routinely at its maxi­

mum (5 kV) amplitude, by the development of a 1 msec, 10 kW, 9 GHz ECRH source

for preionization, and most importmltly, by the installation of a new 48 turn

toroidal field coil in November 1976, which allows toroidal fields as high as

5 kG on axis with a half sine wave period of 4 msec and an L/R time of � 5 msec.

All of this was done without sacrificing any of the capabilities of the device

as a toroidal octupole.

The present configuration is similar to one at Gulf General Atomic3

in

which a toroidal field of 430 gauss was added to the DC Octupole and a toroidal

current of 4 kA was produced. In that experiment densities of 3 x 1011

cm-3

and conductivity electron temperatures of 27 eV were obtained.

Figure 1 shows same of the flux surface configurations which can be pro­

duced in a toroidal octupole with ohmic heating. Fig lea) is the case with

no plasma current. Unlike a quadrupole in which a critical plasma current is

required to alter the flux surface topology4, 5

, an octupole with a degenerate

field null is topologically altered with an infinitessimal toroidal plasma

current. Fig l (b) shows the flux surfaces for a case in which the plasma

current is opposite to the hoop current. Fig led) is the case obtained in the

Page 3: INITIAL RESULTS FROM THE WISCONSIN TOKAPOLEsprott.physics.wisc.edu/technote/PLP/plp712.pdfessentially a Tokamak embedded in what used to be called the Small Wisconsin Toroidal Octupole,

2

GGA octupole, and is identical to l (c) except for a rotation of 45° about the

minor axis. Cases (b) , (c) , and (d) have closed flux surfaces which do not

encircle a hoop and so resemble a Tokamak with a four node poloidal divertor.

Such configurations are being considered for impurity control in fusion reac-

tors (as in the UWMAK design study) , but have been investigated experimentally

to only a limited extent. In addition to the GGA octupole, the Princeton FM-16

and the Japanese JFT-2A device7 have tested some aspects of poloidal divertor

action, and the Princeton PDX device presently under construction is dedicated

to a thorough test of poloidal divertors.

Also of interest in predicting Tokapole behavior is the proliferation of

small, low field, research oriented Tokamaks as indicated in the table below:

Device R (em) a (em) BI (kG) I (kA @ q=3)

MIT Rector 57 17.5 x 70 4 40

MIT Versator I 54 13 5.5 30

MIT Versator II 40 15 x 15 9 85

UCLA Microtor 30 10 x 12.5 10 60

UCLA Macrotor 100 44 x 76 5 200

RPI Rentor 45 15 5 42

Cal Tech Tokamak 45.7 16.2 4 40

UC-Irvine Tokamak 60 17 5 40

For comparison, the Wisconsin Tokapole has a maxTImuffi toroidal field of 5 kG,

major radius R = 43 em and a minor radius determined by the distance from the

minor axis to the surface of the hoops of a = 13 em . For a safety factor at the

edge of q = 3, a plasma current of 32 kA would be expected.

For equilibrium, a Tokamak requires a programmed vertical field (and some-

times a horizontal field as well) . Because of the thick aluminum walls, the

Page 4: INITIAL RESULTS FROM THE WISCONSIN TOKAPOLEsprott.physics.wisc.edu/technote/PLP/plp712.pdfessentially a Tokamak embedded in what used to be called the Small Wisconsin Toroidal Octupole,

3

Tokapole cannot have a fast time varying vertical field, unless the coils were

put inside the vacutml system. On the other hand, the L/R time of the hoops

and walls is ITUlch longer than the duration of the experiment and so image cur­

rents could be expected to help provlde the equilibritml. However, the hoop

current is generally opposite to the plasma current, and so there could be a

problem with the equilibritml unless the plasma current becomes large enough

to reverse the currents in the hoops.

II. Diagnostics

The most significant quantity in diagnosing the tokapole plasma is the

total toroidal plasma current. This measurement is made difficult by the fact

that the hoops carry a toroidal current that varies in time and that is often

much larger than the plasma current. The quantities that can be easily measured

are the poloidal gap voltage (VpG) and the current in the 60 turn primary wind­

ing of the iron core ohmic heating transformer (I) . These quantities can be

used to infer a plasma current by considering the electrical circuit of figure

2(a) in which the ohmic heating transformer has been asstmled to have a unity

turns ratio. In the absence of plasma current (Ip

= 0) , the circuit consists

of an inductance (the hoops) and a small series resistance driven by a capa­

citor bank (C) through an ignition switch. If the plasma current is asstmled

to flow on the octupole separatrix (see fig lea) ) , the plasma links 1/3 of the

total flux (since there is twice as much common flux as private flux in the

unperturbed octupole) and hence can be considered as a current source in parallel

with 1/3 of the total system inductance. The plasma is mostly resistive with

some inductance, but that should not matter in the calculation. Then the

poloidal gap voltage can be written as

Page 5: INITIAL RESULTS FROM THE WISCONSIN TOKAPOLEsprott.physics.wisc.edu/technote/PLP/plp712.pdfessentially a Tokamak embedded in what used to be called the Small Wisconsin Toroidal Octupole,

v = IR + � L dI + ! L � (I - I ). PG 3 CIt 3 dt p

Integrating and solving for Ip

gives

Ip

= 3 [I - t, JVPG dt + � J I dt] .

4

(1)

Figure 2(b) shows a circuit that electronically performs the required mathe-

matical operation and yields at its output a signal proportional to the plasma

current. The actual circuit used is somewhat more complicated because the

resistance R is not quite constant in time (it results largely from skin currents

flowing in the hoops, walls, and primary windings) and because the toroidal

field coil links the transformer core and produces a signal proportional to

the toroidal field which must be bucked out. In practice the circuit can be

nulled to about 1% in the absence of plasma which is not quite adequate for

reliable plasma current measurements. Furthermore, the null condition is

dependent on the poloidal field amplitude and magnetic history of the iron core.

Consequently, measurements are usually made by taking an experimental pulse

without plasma (by turning off the pulsed gas source), and then taking a pulse

with plasma and subtracting the two signals to get Ip (t) By this technique

currents accurate to about +0: kA are obtained. The calibration can be checked

by removing the signal which bucks the toroidal field coil current in which

case this known current looks to the circuit like a plasma current, except

larger by a factor of 3 because it links all of the core flux.

The plasma current produces a poloidal field that opposes the octupole

field in the vicinity of the hoops (see fig l(b)). If the toroidal plasma

current is assumed to be contained within a circular surface of radius a centered

on the toroid's minor axis, then a can be estimated by equating the field due

to the plasma (� I /ZTIa) to the field due to the hoops (which varies as a3

o p

giving the result:

Page 6: INITIAL RESULTS FROM THE WISCONSIN TOKAPOLEsprott.physics.wisc.edu/technote/PLP/plp712.pdfessentially a Tokamak embedded in what used to be called the Small Wisconsin Toroidal Octupole,

5

where a is in em and IH

is the total current in the four hoops. The actual

shape of the current channel is probably not circular, but rather more like a

square or diamond as shown in fig 1. There is good reason to believe that the

plasma current is largely contained within radius a since at larger radii the

flux lines encircle the hoop and so the conductivity should be strongly limited

by mirrors2

and obstacles (hoop supports and probes).

The Tokamak safety factor q can also be estimated if it is assunled that

the toroidal plasma current density is constant over the circular cross section

of radius a. Again, this is a reasonable asslmption since the electric field

and mirror ratio are nearly constant for r , a and since the confinement is

probably not adequate to produce strong gradients of density or temperature

within the current channel. The resulting q is independent of r and is given by

2 5a BT

q = I R P

where a is in cm, BT

is the toroidal field on axis in kG, Ip

is the toroidal

plasma current in kA, and R is the major radius (43 em).

The electron temperature can be estimated by again assuming a constant

current density, but over a square cross section with diagonal 2a, a voltage

per turn equal to 1/3 of the poloidal gap voltage (as in fig 2 (a)), and a

resistivity given by the Spitzer formulaS

with Z = 1:

where Ip is in amps, a is in an, V PG is in volts, and T e is in eV. This tempera­

ture is often referred to as the "conductivity temperature" and is always lower

than the real temperature by a factor Ze��3 which for most Tokamaks is in the

range of 1-5 (or higher if very dirty).

Page 7: INITIAL RESULTS FROM THE WISCONSIN TOKAPOLEsprott.physics.wisc.edu/technote/PLP/plp712.pdfessentially a Tokamak embedded in what used to be called the Small Wisconsin Toroidal Octupole,

6

Finally, this temperature can be used in conjunction with a Langmuir probe

to estimate the plasma density. To avoid placing a probe directly in the current

channel (which reduces the toroidal current by �20%), the probe was placed

in the upper outer "bridge" (the narrow region behind a hoop in the upper right

hand corner of fig l(b)). The probe has a special shape9

which enables it to

take a volume averaged density for the case without a plasma current channel.

With the current channel, the density is characteristic of the divertor scrape

off region only, but it may be that the particle lifetime in the divertor region

(Nl msec) exceeds the time required for a particle to escape from the current

channel and so the densities would not be very different. In any case the

density is estimated using the conductivity temperature T and the ion saturation e

current density JSAT as follows:

10 10 JSAT n = ----

� where J

SAT is in mA/cm2, Te is in eV and n is in cm-3. Actually, the probe is

operated as a floating double probe by returning the current not to the

grounded tank wall, but rather to a second larger electrode in the bridge a

short distance away, thereby reducing the probe's sensitivity to the floating

potential changes which are typically 15-20 volts. Further corrections are

made for the fact that the 45 volt probe bias may not be large compared with

either kTe/e or the voltage drop across the 10�resistor used to measure JSAT.

The complete formula with these corrections is

10 10 JSAT n = ----------------------------

� {I - eXp[(0.00265 JSAT-45)/Te]}

(5)

Page 8: INITIAL RESULTS FROM THE WISCONSIN TOKAPOLEsprott.physics.wisc.edu/technote/PLP/plp712.pdfessentially a Tokamak embedded in what used to be called the Small Wisconsin Toroidal Octupole,

1

III. Typical Results

The Tokapole can be operated in either of two modes: 1) If the toroidal

field is applied first and then the octupole is pulsed on near the peak of BT,

the plasma current flows in the same direction as the hoop current, and the

configuration of fig Ub) is obtained. 2) If the octupole field is turned

on before the toroidal field, and the toroidal field reaches its peak while

the octupole field is decaying, the plasma current flows opposite to the hoop

current. A third mode in which the toroidal field is pulsed on near the peak

of the octupole field results in large poloidal currents and a topology as in

fig lea). Although all three cases have been studied, only case 1) will be

discussed here because 1) it most closely resembles a Tokamak, 2) it produces

the highest plasma current, and 3) it is the most extensively studied.

Figure 3 shows the time dependence of the magnetic fields for this case.

Although the toroidal field has been operated at S kG peak on axis for a 4 msec

half period, most of the experiments have been done with a 3 kG field and a

2 msec half period. This is because for fields above 3 kG, the 9 GHz ECRH

preionization is ineffective and because the falling toroidal field apparently

helps to heat the plasma and keep the conductivity and hence the toroidal current

from decaying. Also shown is the ECRH preionization power and the poloidal

gap voltage which is determined almost entirely by the hoops. Recall that the

single turn voltage at the position of the plasma is VpG/3. The Tokapole,

unlike a Tokamak, is characterized by a fixed toroidal electric field, and the

plasma current is determined by the plasma properties. In a Tokamak, the

plasma current is fixed and the voltage varies with the plasma. Figure 3 also

shows a typical case of the plasma current as measured by the method previously

described. The current reaches a peak of - 2S kA at a time of - 800 �sec after

the beginning of the ohmic heating pulse. At the time of peak current the

Page 9: INITIAL RESULTS FROM THE WISCONSIN TOKAPOLEsprott.physics.wisc.edu/technote/PLP/plp712.pdfessentially a Tokamak embedded in what used to be called the Small Wisconsin Toroidal Octupole,

8

plasma radius is a - 10 em, the safety factor is q - 1, the conductivity elec­

tron temperature is - 25 eV and the average density is _ 5 x 1012 em-3 Since

this density is measured in the bridge region, the peak density on the axis of

the current channel is probably � 1013 crn-3 The poloidal field produced by

the plasma should be _ 500 gauss at a radius of 10 em.

The rapid determination of these quantities was made possible by a computer

program developed by Alan Biddle in which analog signals representing Ip' VpG'

JSAT, and BT are digitized and used to calculate the quantities of interest

during the minute or so between experimental pulses. A sample of the computer

printout is shown in fig 4. Three experimental pulses are shown, the first

case is under normal conditions, the second is with the toroidal field reduced

to 1.5 kG and the third is with the poloidal gap voltage reduced to half its

normal value. In addition to the values at the time of peak current, the program

also calculates the conductivity temperature and electron density at 200Msec

intervals throughout the discharge. These quantities along with a and q are

plotted in figure 5 as a function of time for the normal (BT = 3 kG) discharge.

With the assistance of Rich Groebner, some attempt was made to estimate

h 1 1 . h H . 1 . 1 1· . h dlO t e actua e ectron temperature uSlng t e e Slllg et-trlp et lne ratlo met 0 •

The Tokapole was run with He gas at less than optimum conditions giving plasma

currents of 5-10 kA and conductivity temperatures of - 15 eVe The measured

electron temperature was typically 20-35 eV giving a Zeff of rv2-3. It is not

known whether the Zeff is the same for the higher current hydrogen 'discharges,

but the value obtained is certainly within reason.

IV. Flux Plots

With measurements of the toroidal plasma current, it is possible to calcu-

late more precisely the flux surfaces which result. For this purpose a computer

code (SIPLOT) was used. The code calculates flux surfaces for a linear octupole

Page 10: INITIAL RESULTS FROM THE WISCONSIN TOKAPOLEsprott.physics.wisc.edu/technote/PLP/plp712.pdfessentially a Tokamak embedded in what used to be called the Small Wisconsin Toroidal Octupole,

9

with 4 equal filimentary currents to represent the hoops and 12 filamentary

image currents to represent the walls. The dimensions are scaled to closely

approximate the toroidal octupole. Figure 6 shows one quadrant of an octupole

without plasma current. The poloidal flux contours are at intervals of � 1/10

of the total flux (called Dories) . Figure 7 shows a case with a filimentary

current down the axis with a magnitude of 10% of the total current in the four

hoops (corresponding very nearly to the 25 kA case discussed earlier) . In

figure 8 the plasma current is also 10% of the hoop current but in the opposite

direction. Figure 9 is a more realistic case in which the current is 10% of

the hoop current but distributed with a constant current density over a circular

surface of radius a centered on the axis. Figure 10 is the same as figure 9

but with the current in the opposite direction. Figure 11 is the same as figure

9 but with a plasma current equal to 20% of the hoop current. Figure 12 is the

same as figure 9 but redrawn with all four quadrants, and it probably represents

the best estimate of the Tokapole flux plot.

Note that for the case of plasma current in the same direction as the hoop

current (fig 12) , there is very little magnetic flux between the center of the

current channel and the surface of the hoops «1 Dory) , and so the confinement

may not be very good, especially at high temperatures. The absolute containment zone

(banana orbit size) of protons with energy greater than about 25 eV would

extend from the minor axis to the surface of the hoops. A particle might still

be confined for the time required to VB drift across the toroidal field, however.

At 25 eV and BT

= 3 kG, this time is � 600 �sec.

V. Comparison with SLMULT

A zero dimensional computer code (SLMULT) has been used to successfully

predict the results of a wide variety of experimental cases in the Wisconsin

toroidal octupole. The program includes a subroutine (OHMIC) for ohmic heating

Page 11: INITIAL RESULTS FROM THE WISCONSIN TOKAPOLEsprott.physics.wisc.edu/technote/PLP/plp712.pdfessentially a Tokamak embedded in what used to be called the Small Wisconsin Toroidal Octupole,

10

but does not take into account the modification of the flux surfaces by the

plasma current. Nevertheless, a blind application of the program (Jan. 5, 1977

version) resulted in a prediction not wildly out of agreement with experiment

(at the time of peak current):

Quantity

Toroidal Current (Ip)

Density (n)

Electron Temp (Te)

Ion Temp (Ti)

Ion Sat Current (JSAT)

Neutral Density (n ) o

Experiment

2S kA

S x 1012 cm-3

24 eV

?

1000 mA/dil2

?

SIMULT

?

2.5 x 1012 em-3

4 eV

3 eV

500 mA/an2

2 x 1012 an-3

The calling program �IN) along with the printout of the results for SIMULT

are included in the Appendix. A graph showing the time dependence of the simula­

tion results is shown in figure 13. Figure 13 should be compared with the experi-

mental results in figure 5. The results suggest an underestimation of the

heating due to the toroidal current which is just what would be expected from

neglecting the existence of the current channel. Future work will include

refinements of SIMULT to more accurately represent the Tokapole cases.

VI. Experimental Scalings

With so many parameters available, there are numerous possible scalings

that could be studied. Neutral H2 gas is pulsed in a short burst to a pressure

of about 10-.4 torr about 16 msec before the fields are applied. The pumping

speed is -lOOQ£/sec, and the pressure does not decay appreciably during the

experiment. At higher pressures the electron temperature drops, and at lower

pressures the density drops, both of which decrease the plasma current.

Page 12: INITIAL RESULTS FROM THE WISCONSIN TOKAPOLEsprott.physics.wisc.edu/technote/PLP/plp712.pdfessentially a Tokamak embedded in what used to be called the Small Wisconsin Toroidal Octupole,

All of the measurements described here were done with constant and near

optimal gas pressure. At moderately low pressures, occasional pulses

11

exhibit runaway behavior as evidenced by a large plasma current ( � 20 kA)

which peaks early in time ( � 200 �sec) with relatively small densities

(�lOlO - lOll cm-3). This regime is diffucult to reproduce, and conse­

quently,. the existence of high energy electrons (as evidenced by x-rays or

synchrotron radiation) has not been verified. Figure 14 shows the peak plasma

current as a function of pressure (actually puff valve dial setting with 600

torr manifold pressure) with and without the 9 GHz ECRH preionization. The

effect of the preionization is to enable the plasma to be formed at lower pressures.

The timing of the onset of the ohmic heating and the ECRH preionization

can be varied and the plasma current is found to be optimal for the case shown

in fig 3, although the timing is not very critical. All of the cases discussed

are with this timing. The plasma current always peaks about 700-S00}lsec after

the beginning of the ohmic heating pulse for all cases considered.

Of more interest is the scaling of the plasma current and other parameters

with toroidal field strength and ohmic heating voltage. Figure l5 (a) shows

the variation of the peak plasma current with ohmic heating voltage for BT =

3 kG, measured in units of the voltage to which the poloidal field bank is

charged. (5 kV on the bank gives about 20 volts/turn at the plasma at the

time of peak current.) Figure l5(b) shows the variation of the peak current

with toroidal field for B = 5 kV, again measured in units of the voltage to p which the toroidal field bank is charged. (5 kV on the bank gives about 3 kG

on axis at the time of peak field.) The two curves are remarkably similar

and each give a quadratic dependence of plasma current on the respective field.

Assuming Ip � Bp2 BT

2, the scaling of other parameters can be inferred from

equations (2) - (4) :

Page 13: INITIAL RESULTS FROM THE WISCONSIN TOKAPOLEsprott.physics.wisc.edu/technote/PLP/plp712.pdfessentially a Tokamak embedded in what used to be called the Small Wisconsin Toroidal Octupole,

a � B 1/4

B 1/2 �

I 1/8

P T P

-3/2 q � B

P

T � B 1/3

B 2/3

� I 1/6 e p T P

12

Note that a and T depend only on plasma current and that the dependence e

is very weak in both cases. In figure 16 a and T are plotted as a function , e

of I for many different combinations of BT

and B , and the results are p p

consistent with the above sca1ings. Note also that q is independent of BT

and depends only on the ohmic heating voltage. Coincidentally, at the

maximum available ohmic heating voltage (Bp

= 5 kV) q is almost exactly

equal to unity. In figure 17, q is plotted as a function of Bp

for BT

=

5 kV (3 kG) and as a function of BT

for Bp

= 5 kV, and the results are

consistent with the above scalings.

The other interesting scaling is the density as a function of Bp

and BT

which is shown in figure 18. Although the scaling is more complicated than

a simple power law, the data can be reasonably well fit with

� B 8/3

B 4/3

ne p T .

Actually this scaling is a result of some hindsight because it happens to

be just what is required to give a constant energy confinement time defined by

n T V e e 'IE = I V /3 ' p PG

where V is taken as the total volume of the toroid (not the volume of the

current channel) which is 3 x 105

cm3

. Fram the fit to the data, the energy

confinement time is 'IE = 8 �sec. A statistical analysis of the 33 data

points in figure 18 gives 'IE = 11.4 ! 6 �sec. This time is about equal to

Page 14: INITIAL RESULTS FROM THE WISCONSIN TOKAPOLEsprott.physics.wisc.edu/technote/PLP/plp712.pdfessentially a Tokamak embedded in what used to be called the Small Wisconsin Toroidal Octupole,

13

the transit time of a few eV neutral across the plasma. Note that LE is

much shorter than the 800 �sec required for the current to build up, and so

the plasma is apparently in a quasi-steady state. In fact, the decay of the

current after the peak in figure 3 can be accounted for entirely by the

decay in BT

and VPG CIp

� BT

Z V

ZpG) , and so if the toroidal field and poloidal

gap voltage were left on longer, Ip

would be nearly constant. However, the

ohmic heating transformer is being operated near its volt-second limit (but

without cocking) , and so lengthening the pulse by a large factor does not

appear feasible.

The ohmic heating power absorbed by the plasma is given by

and is about sao kW with 5 kV on both capacitor banks. Since LE = const,

the energy stored in the plasma has the same scaling and is � 5 joules for 5 kV

on both banks. Note that since the toroidal field dominates the poloidal

field over most of the volume, the plasma � defined by

� =

Z� n kT o e

B 2 T

is independent of BT

, varies as Bp

3, and has a maximum value of � o. 01%. The

t'poloidal beta" is larger, but still only � 1%.

For the typical Tokapole parameters, the mean free path of a thermal

HZ neutral is :s 1 em and so the interior of the plasma is probably burned

out of thermal neutrals, and is replenished by � 7 - 8 eV Franck Condon

neutrals. This conclusion is further supported by the fact that the H�

light peaks early in the discharge and is falling sharply at the time of

peak current.

Page 15: INITIAL RESULTS FROM THE WISCONSIN TOKAPOLEsprott.physics.wisc.edu/technote/PLP/plp712.pdfessentially a Tokamak embedded in what used to be called the Small Wisconsin Toroidal Octupole,

14

A lower limit on the ion temperature can be obtained by assuming that

the ions are heated only by classical collisions with the electrons and that

the ion lifetime is equal to the energy confinement time. Such a calcula­

tion gives T. > 0.5 eV. l

VI I. Sunnnary and Future Plans

The typical operating parameters and scaling of the Tokapole are summarized

in figure 19 for a toroidal field of 3 kG on axis and the maximum available

ohmic heating voltage of 20 volts/turn.

The most significant question raised by the results is why the energy confine-

ment time is as short as 10 �sec (and constant), and the closely related ques­

tion of why the conductivity electron temperature is only 25 eV. The most

likely explanation is the excitation of impurity atoms released from the walls

by plasma bombardment. The energy confinement time and electron temperature

do not appear to be strongly influenced by the base pressure, however. Most

of the experiments were done with base pressures of - 2 x 10-7

torr, but the

results at 2 x 10-5 torr (a few hours after being up to air) are not signifi­

cantly different. It will be important to measure the energy loss by impurity

radiation and to attempt more aggressive discharge cleaning techniques. If

the losses cannot be accounted for by radiation, then there might be a problem

with the equilibrium or stability of the Tokapole configuration, and this will

be studied both theoretically and experimentally. Because of the relatively

low temperatures, the brief duration of the discharge, the short electron

mean free path, and the experimental fact that a 1/4" diameter probe extended

all the way across the midplane depresses the current by only 20%, there is

hope that probes can be used to measure the spatial and temporal evolution

of all quantities of interest. The first priority item is to get an independent

measurement of the toroidal plasma current using local magnetic probes.

Page 16: INITIAL RESULTS FROM THE WISCONSIN TOKAPOLEsprott.physics.wisc.edu/technote/PLP/plp712.pdfessentially a Tokamak embedded in what used to be called the Small Wisconsin Toroidal Octupole,

15

Of course we have every intention of operating the Tokapole with a 5 kG

toroidal field, and a KU-band microwave system (- 10 kW for 1 msec at 15.5-

17.5 GHz) has recently been installed on the machine for ECRH preionization.

If the scaling laws continue to extrapolate, we would expect to achieve

I � 70 kA T � 30 eV and n � 8 x 1012 cm-3 with POH � 1.4 MW. Later it

p ,

ec .

might be possible to go to even higher toroidal fields with the acquisition

of rnroe capacitors (72 kG at present) provided there is interest in doing so.

The Tokapole configuration also offers the possibility of various types

of rf heating. The first priority in such studies will be fast wave ion

cyclotron resonance heating. The density and radius are such that toroidal

eigenrnodes ought to exist and apparatus is presently under construction which

should be capable of supplying _ 1 �n� of rf power at either the fundamental

or second harmonic of the ion cyclotron resonance frequency.

Page 17: INITIAL RESULTS FROM THE WISCONSIN TOKAPOLEsprott.physics.wisc.edu/technote/PLP/plp712.pdfessentially a Tokamak embedded in what used to be called the Small Wisconsin Toroidal Octupole,

16

ACKNOWLEDGEMENTS

The work described here would not have been possible without the diligent

efforts of Jaimie Barter, Joan Etzweiler, Rich Groebner, Don Holly, Alan Biddle,

Bruce Lipschultz, David Shepard and Tom Lovell and his crew of hourly students

in converting the octupole into a tokapole. Mike Zarnstorff and his assistants

were responsible for the computer data acquistion system which was of immeas­

urable help in collecting and analyzing the data. This work was supported

by the u.S. Energy Research and Development Administration.

Page 18: INITIAL RESULTS FROM THE WISCONSIN TOKAPOLEsprott.physics.wisc.edu/technote/PLP/plp712.pdfessentially a Tokamak embedded in what used to be called the Small Wisconsin Toroidal Octupole,

REFERENCES

1. D. E. Lencioni, Univ. of Wisc. Ph. D. Thesis (1969).

2. J. F. Etzweiler and J. C. Sprott, Bull. Am. Phys. Soc. �, 1049 (1976).

3. R. Prater, Y. Hamada, R. Freeman, C. Moeller, T. Tamano, and T. Ohkawa, Phys. Rev. Letters 34, 1432 (1975).

4. G. L. Schmidt, Univ. of Wisc. Ph. D. Thesis (1975).

5. W. C. Guss, Univ. of Wisc. Ph. D. Thesis (1976).

6. K. Ando, S. Ejima, S. Davis, R. Hawryluk, H. Hsuan, D. Meade, M. Okabayashi, N. Sauthoff, J. Schmidt, and J. Sinnis, Plasma Physics and Controlled Nuclear Fusion Research, Vol II, page 103, Vienna (1975r:-

7. S. Shimomura, H. Maeda, H. Ohtsuka, A. Kitsunezaki, T. Nagashima, S. Yamamoto, H. Kimura, M. Nagami, N. Ueda, A. Funahashi, T. Matoba, S. Kasai, H. Takeuchi, K. Takahashi, K. Kumagai, T. Tokutako, K. Anno, and T. Arai, Phys. Fluids 19, 1635 (1976).

8. F. Chen, Introduction to Plasma Physics, Plenum Press, New York (1974), page 162.

--

9. J. C. Sprott and E. J. Strait, IEEE Transactions on Plasma Science, PS-4, (1976).

10. R. W. P. McWhirter in Plasma Diagnostic Techniques, R. H. Huddlestone and S. L. Leonard, eds. , Academic Press, New York (1965), page 255.

Page 19: INITIAL RESULTS FROM THE WISCONSIN TOKAPOLEsprott.physics.wisc.edu/technote/PLP/plp712.pdfessentially a Tokamak embedded in what used to be called the Small Wisconsin Toroidal Octupole,

APPENDIX

* * * 1- * * I ! : J r V H 1 1 t P T I ! iF) S I-J A R It! G E 'i E. C - - - t·� U L TT - r> q (J C E S S (l P S Y S T E iJ Q (I �; I 1\ : ceo 7 r 5 p prJ F r T ! ( ' 2. q p ('\ ! IS f R � £j i 2 6 '" 1 f) C 1 Q F I L E : P R "" J I) ii C C

"lI R I I i < S P P (l T i • ? q 8 0 I 4 1 ? h Po J f\? 1 '? • 1 t.-f IOlASG.T HYP, �A5C.TH 20 • • T,U570a �cnpy,r. 20.,TEMP, F L! p r'l! R ... �1 ACe .!J. \) 0 0 L r B P 2 (' 1 11 7 ... 1 \) : 1 9 tIl �����\ncl�*SIMULT(0) COPJ[C n� °'/05/77 AT It:aS!20

'7 RlGCI<.S COPIED. E 0 F f r : C 0 i) r· i H R E n 0 t'J 1 r-I P IJ T T t. P : fFR�F: �t... �rOR.rs TFMP.MAIN,.H6IN r: n r T � A. 1·1 - 1'-1 .1 ee l " 1 7 S - (I 1 II 7 1 7 7 - , i"I � 1 Q � e; 2 ( , ;)) I-I.e.. t-.:

o () lOt t • D tt'l F r: S I 0 t.1 r (1 P T (5) , P ( 2 1 ) , V A L ( '27 I 1 0 1 ) , V A L t·1 ( 7 , ? ) 00H1? 2. orYC])=5 0010� 3. InrT(2)=t Q010� ". IODT(31=O OOJ0S 5. J0PT(�)=1 O()lJI. 001,)1 I)Olln Ou111 01)11' o (! I 1 � t) �'1 j IJ l) \) 1 l � O()jlh Ou11' 0012() 1)01.?1 001'" O('l.?� OV!?IJ Ol'12t;; (I CI 1 ?I::J 00]27 00131) U 0 I � 1 0!1t3j 00 13� 00 PIJ (j!) 1 :)c;

b.

7. 8. 9.

to. t 1 •

12 ..

.13 .. 14. 15. t 6 •

17 .. 18. 19. 20. 21 •

?2. ;>3. (4, .?5. I' b •

?7. .?8. ?9.

T t.) P T ( ) = 0 P(1)�2,2 P(.?)=)O.o � (,!):9Q.(l P(4)=0.0 P('i)::2.'�·S P(6)=20(}r..O p ( 7 ) :::: 1 (\ 'I 0 • C' j::: ( 8 ) = I) • ill) 5 P(9)=O.OI)3C, p(10)=r;,).o p ( 1 L ) = 3 • 0 r(12):-v.noos P(13):.? () P(ltJ)=O.()(;t:; [:. (1 r:;)=0.0i)b P(jo):<JO.() "( 11) =-f!. iJOOS P(18)=O,OOOI:" P(19):Q,O P(?O):1.0F!J P(?l )=�r,Ci).O C .... L L S T ! 1[ Il T ( T () P T , P , \/ A L , V A L f-1 ) F '<1"'

EN8 O� COMPILATtO�: fii4t.p• I ¥:�

r�'J OPGtll)ST,(CS.

M�P?7_� RLT�b4 01/17.1n!lQ:5u E�lr'l MAP �X9T

Page 20: INITIAL RESULTS FROM THE WISCONSIN TOKAPOLEsprott.physics.wisc.edu/technote/PLP/plp712.pdfessentially a Tokamak embedded in what used to be called the Small Wisconsin Toroidal Octupole,

41liTL lARY IIFATING�

SrFP T PIE (SF. C)

() -.0 \)(IS 1 0 -.000"1 ;>() ",.OOOI.! �n .. , 00 I) 3

l.j ('I -,00u3 Sf' -8001'2 n(\ .... 0("'02 .,. C' -.()()O1. ,,0 .,0001 q('l "tOfIO()

1 n ("I ,,0000 1 1 (j .0001 1;;>(' "OOC2 1 3 () .000? 1 L! () .0003 1 c:; f\ .0003 Ih0 _OOO4l 17<"1 .OOO� p�f) ,001)5 lqr • I) 0 os ?p0 .0000 �ln .01)07 ;l?n ,<'1007 ?:\!l ,OOOP. ?Lln .oon? ?c"j(! .0009 ?�O �O()(l� ';?70 • (, 0 , l' ?p,r, .001 () �o(' • C :} 1 1 �;)(\ .0011 � J (I ,001? "l.?0 .,1·J13 " (' .(}v13 l '" --; . ,0 eli!J �C;(': ,0014 '7,nO ,0015 ,70 ,OOI!:) ,R() .0010 l,qn ,0016 a,) !) .0017 11 t (i .0 l.ll F IJ? 1\ lIOO18 £j�() .0019 440 ,OO1� 4�n • (. (J 2 !

(J h 0 .00?O o7n ,0021 4;';('\ tOO?1 l.J�n ,OO?2 1:;;"Jt1 .002? " 1 " .0023 �?" ,OO?4

!')�iMl(:

r.'Et'S TTY (1i).., .. 9/rC)

• no 10 .OOQU • vO(}/J .f'o:n .3'S\!a

1.17R2 1.7r::.t;9 2.0S1'-1

q'-l • Il0 I:: 7 1?S.6h\!n 337.34141 t71.hB1B

J (I:)S. 71}27 1 ?51. �iJ iliJ 1"1j,Q, .O":::!) if,no .iJt:; l!J 171.11.0?21 t··i!Q.'"'l3Q,? 1<1(J().1t:;37 ?(; 19 .5t:;20 ;i�iq3.?r:.;P· 2167.41<')-; ? ?!J �. � 1'" ?3·'J�.P.,.J� 2'LJ6CJ,.3621 26?O. 1 ·B2 , R, 'J 4 • r.J 'I � A � 1"1.,7 .(.hUQ �S 7.&l6i.1" 11 C! (\ 0 • \'?:3 <:)

IJ 3 ? -; • !.l ? lJ 9 1.I37«.716? l.!,C? 1.l1'11 {.un :.\ • 3 ' a (1 lJ.LJf:.2.777A IJ 5 ? . ' • Q � 3 I) .!JbOS.?1377 L! 0 q 8 • :p 7 -; tJ7oQ.C'lClP'7 4e,j • 1.76h '5 ,"J 2." ?0C; SJ 0R.2i)8� " 3 (, f, • 7? II b !:;6t.S.f.()F47 c:.oll').17rf, C;LlQt'l.08iJl S37S.i663 S?73.ur.:.13 t:;tP�.SLl3(1 5J0/:'.b�7� S:)?7 .:V�3"l, LJ9f'1.1J,?40 ?";1').::-"r::,

ECRH

IF (E V)

.,j2S0 • i 91 .'3

t , 473 t 1 0 .2 Ins

2'.3170 6.£;;923 5,8°6'5 7.903:;

10.?1S'37 ,.c:f:\Q3 7.C:;UOt; S.3?�S J.Q3uQ 5.015!.1 1J.777b lJ.C;'SU 1l.3315 LI,leS� Li.Ob?2 Ll,O?tC) u .Oi)iJC i.J.033S lJ.tl?4 i.!,?IJC::;7 4,LJ36f1 4.6'-J6¢ S#05r.,g S.r:;o1Q 6. I� 1 27 �.<5C;LI

1?,7Li3Q IP.6400 2�.1l1LJO 26,76()1 28,711"Q 2Q.3362 2�,70S() ?6,9971 24,�54'=1 21.3SiJ.) 17."!J8'� 1. 4.3:3 7 'J

9,°917 :l • ? f) r:; 7 ? Q35u ??lSQ !. • &51 3

.qQOi) '.?985 1 �?O77

.,,01.11 l'iJF.92 .0bAt-

TI (E V1

.. 0250 .OiloO .0Ll21.i .nC;16 .C49n .. u'l,i'3 ,O,?9Q .()"?>oo .(\llY� .12�' .1373 .3166 ,6 nil

1.0232 1.1J?27 1.76qlJ 2.CC;Ol 2.26lD ?4?O7 ?�'33C' 2.blSLJ 2.6-"15 2.742? .?B{1�3 2.6R(H' 2.G7?5 3.0Q07 3.?SI.7 �.!J��q 3.894LJ 1j.662Q 5,6iJ86 6.l.lQ3c; 7.1SS7 7,6�qa 8,0734 8.l!(l?6 8.6�6? 8.9iJ3'1 Q.t8()1 9.36QQ 9.L1l97 8,9G6::> t.,71Jt)f, 3.6t;12 2.117qq 1..7636 1,Ob,,::? 1.uLtlFl. 1.0037

.70?1 • S 7 II "lOLlb

®

Df\;EI)T PAL (lo**9/Cr:)

33iJP, .81}()() 314B.p.:-n6 33l!A,8336 3348,7965 33.:.ib.R360 3347.i.I'P3 33£t1.I)S9Q 33i�5.Ro?9 3136.£!5hl 32Ll�.7475 ?930.0"!37 283'eR3'� ?66R.12Q7 2�qC;.5bC)7 ? IJ (I\). 0 3 .., ? 2333.R236 2?79.C::861 2233,700lJ 2193,O8113 21t;t.:,c;pni ?114./Jt:>M� 20hP.O�t::;3 2013.35hQ 1QLJ1.e!.lr.3 lR/H:".Ov()2 1715��3fl.S 1'531j.q9�O l2AO,737R

918.330i? 432.77''1

<1l.6Ql0 I.jO,'S?1.i 35.Pbli9 35,60?4 36.C;H�.�, 38.0?h2 3Q•90,q tJ?,!J71 t 1J,t:..bQ.A7 SO.:?1317 5B.5j()() �:?12RO

231.'5?Ll3 qqR .ll! 17 tbP.;>.'3129 l76b.A30o 1RSOa?3/Ht l.P9v,52()9 191f>.80t:;S 194(l,9Q1Q 19h3.o3P.2 jOAG.05?"' lC/9P,t42q�

Page 21: INITIAL RESULTS FROM THE WISCONSIN TOKAPOLEsprott.physics.wisc.edu/technote/PLP/plp712.pdfessentially a Tokamak embedded in what used to be called the Small Wisconsin Toroidal Octupole,

S P' l l l T J A N 5 , 1 11 7 7 V E R S I O N

F I E L r) P O '.Al f R J S .A T D E T I: T I ( K G A I 5 S ) ( � A T i 8 ) p I; A I s r{ o � )

. 0 0 0 0 5 0 . 1') 0 0 0 . O O G O R (J B P t\i C

. 0 0 0 0 5 0 " n o o n . 0 0 0 0 0 L T C r-' C � O () O O 5 0 " n o o n . 0 0 0 0 O L T C I\J C . O () O () C; O " O O O O . 0 0 1 2 w D E X T C . 0 0 0 0 5 0 . 1') 0 (1 0 . 1 U Q 2 O l. E X N C • ( 0 0 0 5 0 , n O O o . 3 1 � 3 O L E. X "I e . 0 0 0 0 5 0 . 1'1 0 0 0 • £!I.j :3 s C1 L E X N C . 0 0 ,) 0 S O . fl O O ·' . r; 9 7 8 n L E X N t . o n () o S O . O O O Q 3 2 . 3 1 r; s O L E X c . 0 0 0 f) S 0 . 'l O O O 2 4 . 7 5 '1 2 O L E: X � c . 0 8 7 2 5 0 . 0 0 0 0 Q 5 . 8 LJ 7 1 O L E X N C , 1 8 2 0 S C . ('I() (l Q 1 � 1 . 2 1 C; 8 O L E X ",! C . 2 7 5 '5 5 11 . (') (lI'l O 2 3 2 . 3 ? LJ 6 O L [ X "I e . 3 6 7 7 5 0 . fl O O O 2 Q l . 3 8 A LJ O L E: X � i C . 4 " 8 t.J 5 () . Q o n o 3 (, Q , 1 3 7 6 O L E :t N C . C5 l.l i e, S O . n l) (l (i 3 � 6 .. 0 5 LI S tl l E X N C , 0 3 5 1 5 0 . 0 P O O 3 7 6 . 8 2 '1 6 O L E X N C . 7 ? () O 5 0 , () (1 0 () 3 Q 3 . 4 7 1 1J I1 L f. X t-.i C . 8 (1 4 q 5 0 . 0 0 () () 4 0 7 .. 7 0 1 3 n L E X I-.: C . 8 8 7 0 5 0 . n O O 0 1.1 2 1 . 1 F1 8 3 O L E X N C , '1 6 7 1 5 0 . 0 0 0 0 !! 3 5 � o O '1 3 O L E X N C

t . o a S 1 S O . 1) 0 0 0 4 5 2 . 6 '1 6 1 O L E X r" c 1 . 1 2 1 0 S O , f' (l 0 (1 4 7 4 _ � ? 3 1 O L E X i � C 1 . 1 Q t'.1 R '5 0 . () \i O O 5 0 2 . 6 9 S � O L E X I\I C 1 . 2 1, 6 2 5 0 , 0 0 0 0 r;;; � O ., 7 0 4 S O L f X ,,: C 1 . 3 3 '5 4 5 0 . 0 0 n o 5 9 2 . 5 £J 2 Q r"l L f X '\I e t . l1 0 2 1 C; C . O O (l O t. � i.l . � r; b 3 O L E X N C 1 . Ll 6 f, 1.I 5 0 . () o a O 7 6 q . l q 2 tJ r- L F: :t �! c: 1 . 5 2 � 3 5 ° . 0 0 0 0 4 ? e .. ? 7 o Q O L E X �: C 1 . c) 8 7 6 5 0 . M I O O l t Q O . 1 3 S 2 O L E " - " T C 1 . 6 1J 4 3 5 0 • (l (I 0 I) 1 5 S 8 . 1 S 0 0 O L E x T C 1 . b Q B !! 5 0 . f'l O O O 1 7 Q O .. 7 1.1 6 iJ O L E x T C 1 . 7 � 9 8 C; O . I) Q lj O 1 f P 6 .. Q Q 3 S O L T C i C 1 . 7 Q ,o, S s O . o o n o l q � I-l . 7 2 R l O L T e T C 1 . fi, LJ � 6 S O . O O O O 1 9 6 8 .. 2 0 3 2 O L T e T C 1 . 8 lon 8 5 0 . 0 o n o l Q Q Q . !.1 2 7 /J O L T C T C 1 . 9 2 -9 3 S O . O C;() Q .' 0 3 0 .. 9 '; 5 3 O L T C T C l . Q 6 6 () 5 0 . n O a O ? 0 5 Q . 4 L1 IJ 2 a t. T C T C 2 . r) 1) u q s o . () o n o ? 0 7 6 .. h 2 3 1.1 a l.- E X T C 2 . 0 3 3 0 S O , o o o n � 0 6 Q .. q 6 q 5 O L E X T C 2 . 0 h 2 2 S O , O O D O ? l) ?, 4 • 1.1 P 1 11 (j L E X T C 2 . 0 8 8 7 5 0 . 1'1 (, 1'\ 0 l q 2 (� . 3 q tJ � O L E X T C 2 . 1 1 2 2 5 0 , G o n a 1 7 2 5 .. 2 2 1.1 0 O L D ' T e 2 . 1 3 3 0 5 0 . 0 0 0 0 1 S 3 0 . Ll 7 2 Q O L E ll j\i C 2 . 1 r; O Q 5 0 . " 0 0 0 t l tJ 6 . b u lI S O L E" X N C 2 . 1 6 6 1 5 0 . (\ 0 0 0 !1 0 0 .. 1 2 S 7 O L E X N t 2 . t 1 � � 5 0 , n o o o 7 lJ 2 . 3 ,q 3 A O L F. x N t 2 . pn q 5 0 . ( 0 ) 0 C; h 6 . ? � � 2 n L T C N C 2 . 1 q 4 7 5 0 . n o o o 6 1 � .. q O O q O L J e 1\i C 2 . 1 Q e 7 5 0 . 0 0 0 0 � R 3 .. b t.l 7 1 O L I e N C 2 . 2 (\ 0 1') 5 0 . 0 0 0 0 In a .. 1 1) 6 6 O L T C f',: C 2 . 1 Q 8 6 5 0 ,, 0 0 0 0 3 '.1 2 . 1 /.II� q O L T C to.l C 2 . 1 'HI 5 '5 (l . O O O O 7 8 . 0 1 0 1 R E T C T C

Page 22: INITIAL RESULTS FROM THE WISCONSIN TOKAPOLEsprott.physics.wisc.edu/technote/PLP/plp712.pdfessentially a Tokamak embedded in what used to be called the Small Wisconsin Toroidal Octupole,

� 3 () . ('\ 0 2 u c:; a o . O O ? S c; c:; n . 0 0 2 5 C:; � 0 . (l O ? 6 � .,U) . 0 0 2 6 C) 8 (' , 0 0 2 7 C; C, 0 . 0 0 2 7 6 11 n , C, 2 8 � , ' (., s (l v ? 9 6 ;> (\ � 0 0 2 9 6 � O . O (} 3 0 I'- i� C' • 0 C 3 0 �. 'i o , 0 0 3 1 t t, !'l , 0 0 3 1 � 7 0 . 0 0 3 2 h P, r . 0 0 3 2 b O () . 0 0 3 3 7 !1 (l , 0 0 3 3 7 1 ('1 . O () 3 4 7 ? n . 0 0 3 5 7 � () . o r) 3 5 7 ;,1 0 . 0 0 3 6 7 r::.. r. . 0 0 3 6 7 n 0 , 0 0 3 7 7 7 0 . 0 0 3 7 7 � (\ . (! l) 3 � 7 0 (\ e O O , A A II O . 0 0 3 9 A 1 i) . (j O Ll Q R ? () , O O lJ f) fJ, 0 . () O � t P. iJ. (\ . 0 ( 4 ) � s (' • C C �l � P, h () . () O LJ 2 P. 7 0 , 0 0 4 3 A P r. , 0 0 1l 3 A, Q O . O v Ll ' <?el l) . O O LJ ll e l f) . 0 0 Ll S 9 ? n . O O � 6 en, !) . 0 0 4 6 � !I 0 , (, <.) U 7 9 C; rl , ('l (t /,n q h () , O O t 8 0 7 0 . 0 0 4 8 O p, (l , o o a 9 q 9 0 . O O /J o

1 0 0 0 . O O S O

I j � Y. I r : U [- I V A l U f S

F< • I ' ! J f) ! C ;) 0 7 (I 5

6 2 . P .? :? 1 5 1) . 1 Q 9 .' o::. ,s . 1) 7 1 C:; 5 7 . 0 1) 0 3 S fJ . Q 3 3 7

5 . 6 5 6 0 t:: 4 . Ll � 1 7 5 1 . Ll l Li ? 4 7 . 7 6 9 6 IJ 3 . S '-< 1 3 -; :::' . 1 l.J lJ 1

"' " v l" o S u . q IJ 3 9 J . Q n 9 ;? '3 « ( l n r.; ll 5 . 1 ? .:1 '; . • ;' 7 0 /0. S • J� LJ P, ..,. Ci . ':'. 6 ? S< r::; . q 1 y� 6 . 1 q 9 � b . S 1 .3 7 h . � U :i ll 7 . 1 7 7 0 7 . 4 9 Q 1 i . 7 Q 1 � B . o 7 1 7 R . ? q �, 7 f . 4 6 � .:J ? . S 6 �, 7 3 . 6 1 4 -' d . 3 8 R '3 ,:'l • C, 7 1 () 7 . 7 7., 7 (1 7 . 3 <f 1 1 7 . 0 3 0 1 6 . e- 7 L! t 6 . 1.1 0 q r::: t> . 3 � · B t-- . 2 ) � 6 h . l ? l " 5 . 7 0 7 S . 7 0 .:.! 9 5 . 5 n 1 0 5 . ? /J 8- 7 I.). . B o S <:? /.;, . �; q 7 (J ? 3 C;: 4 �

5 6 7 4 . ,, 7 2 ')

. (\ 11 7

. 3 o <f 7

. 3 7 7 7

. ? IJ ;;> G

. l S 3 f

. 0 9 2 2

. P 7 /4 1.:. , , 6 7 t; . 0 '-:J h J? , 0 5 8 0 ,, 0 3 ll 3 . (l ? 0 3 . 1 6 5 8

3 . 3 2 S Q -; . 1J 1 7 1 3 . LJ 7 Q O 3 . 5 4 h l 3 . 6 1 3 6 3 . 6 7 6 6 , , 7 2 9 6 3 . 7 6 8 1 3 . 7 6 6 5 ' . 7 � f; 7 � . 7 6 '30 q 3 . 7 1 0 A 7, . 7 3 1 2 3 . 6 6 £! 5 3 . 'S Q (J <f 3 . 5 2 6 3 ' . /J 6 � 4 3 . 11 0 4 Cl -? , b 6 4 2 c , Ci Q 9 7 ' . S S � (l � , '5 2 9 9 ? e '5 2 2 0 ' . 5 3 1 4 3 , 5 0 6 1 � . 5 lJ. C; Q 3 . "5 8 3 0 '; . "' 3 ? 0 3 . � 4 ? Q -; . 7 �· 9 q 3 . � 7 2 C l.! , (l l P & 4 . ? 6 1 1 11 . 7 8 6 Q 8 ,. '"J 6 7 2

. 0 0 6 1

. 0 9 0 7

. 1 5 1.1 5

. 1 1J Q o , 1 16 b • 1 0 "3 7 . 1 0 1 8 . O Fl 6 3 ,, 0 7 IJ 6 ,, 0 6 €:q . 0 5 1'3 8 � 0 '5 q 8 e C 5 1 f3 � ;)1::; � � ,, 0 15 1 3 " O lS O :: , oJ LI ' H . O /J 9 11 " O Ll Q l . O lJ R '? " O LJ 9 0 , (J a 9 .? . O I..l Q 7

, 0 5 0 3

, O S l ?

, 0 '5 2 3

. 0 5 3 4

. v Ci Ll 7

. IJ S 6 1

, 0 5 7 5 , !) S S q , 0 6 1 (; . O b 3 7 . C' 6 5 3 . 0 6 6 4 . 0 6 6 9 , O b 7 1 . f' b S Q . 0 6 3 3 . 0 6 1 3 . 0 13 4 7 . O C::: B C:; � I) c:; 7 5 . 0 � b 7 , 0 5 6 1 . 0 1:1 5 7 @ 0 5 0 1 . 0 6 1 �

� 7 1 4 . 6 ; 7 3 3 7 6 3 . 3 Q 0 1 3 7 6 3 , 3 7 4 P, 3 7 f<� , 3 6 2 1 '5 7 6 "3 , 3 t.! l ? � 7 b 3 . 3 1 7 £J 3 7 t> 3 . ? 9 ? 1 3 7 3 . ? h ? 9 3 7 f. 3 • ? 3 -' 0 3 7 t':3 , l Q P. 8 3 7 c 3 . 1 6 7 ? 3 7 b 3 . 1 3 1J 8 3 7 h 3 . 0 f. () 2 3 7 6 2 t 7 E'· ? 5 3 7 b ? S S 1 4 .3 7 6 2 , 3 1 0 0 3 7 6 2 . 0 lJ. 5 0 3 7 t> 1 . 7 5 3 8 3 7 b l . 1l 3 S l 3 7 6 1 , O B Q 8 3 7 6 0 , 7 2 ' 9 , 7 6 . 3 3 7 6 3 7 S Q . Q 4 t; Q 3 7 S 9 . S t:; 6 9 3 7 S Q , l B 0 5 3 7 5 8 . 7 F1 i> 3 3 7 S 8 . l.1 3 1 7 3 7 5 8 . 1 (1 t; R 3 7 S 7 . A 0 4 7 3 7 S 7 t c; 2 � ? 3 7 5 7 • .' 0 7 8 3 1 5 ' . 3 9 7 7 3 7 5 7 , � 1 7 7 3 7 r; 7 . � £J 1 o 3 7 '; 7 , t 6 1'- 3 3 7 S 7 . 0 9 ? � 3 7 5 7 . O P � 2 3 7 t:; b . 6 2 Q � 3 7 5 6 , � 7 1 _

3 7 S b . 1 0 Q 4 3 7 S r; . P 3 � 3 3 7 5 S . 5 5 1 2 3 7 h' S • .? S 1 () 3 7 5 Ll . Q 3 0 1 3 7 1:) 1.1 , 5 7 7 1 3 7 5 � , 1 b ? o 3 7 5 3 . 5 7 Q .'3 3 7 S 0 , 8 a 8 11

Page 23: INITIAL RESULTS FROM THE WISCONSIN TOKAPOLEsprott.physics.wisc.edu/technote/PLP/plp712.pdfessentially a Tokamak embedded in what used to be called the Small Wisconsin Toroidal Octupole,

2 . PQ 8 5 0 . 0 0 0 0 . 7 0 7 1J P E I e � I C 2 . 1 7 8 5 S 0 . " o n " 3 . 7 /J 3 ? O L I e N C 2 . 1 h 6 7 5 0 . f1 I) O () 3 . 7 1.1 3 6 O L I e t� C 2 . 1 � 2 1.l 5 O , n o o o 2 . 9 7 0 3 O L I e N C 2 . 1 3 5 6 S o . o o r o 2 . 3 2 2 2 O L I e "I e 2 . 1 1 6 3 c; () • 0 (I (l 0 1 .. 8 6 4 2 O L T C N C 2 . 0 9 l.l 8 5 0 . " 0 0 0 1 .. 8 0 6 2 F D T r: N C 2 . (l 7 0 Q '=; 0 , 1) 0 0 0 2 . 1 8 7 8 F [ ) J t �, r ' "",

2 . 0 Ll 4 7 5 0 . 1'1 0 0 0 1 . S Lt 5 S F e' I e N C 2 . 0 1 6 3 5 () • I) ( , " 0. 1 . H 3 3 3 F D T C r-! c: l ,, 9 R S Fl 5 0 . n o n :) . 7 /J O B F D T C r--.' C 1 . Q I:; 3 (, s o . o n o o . ? C; 1.l 1 � D S R t,I C � . q 1 6 e 5 0 . n o o o . 3 1 ) 0 F (') I C ", r

J ..

1 . R A 2 0 5 " . n o o o . '=c13 t 1 r' L E X N C 1 . 8 1.1 3 6 5 o . n o o O . 9 6 2 3 r1 L E X N C 1. . 8 0 3 3 S O . (') () () O ,, 9 9 4 1 (l L F X ' C 1 . 7 b l ? 5 0 , 0 0 0 (1 1 . 0 3 2 ? O L f X N C 1 , 7 1 7 5 5 0 . � O () O 1 .. 0 7 7 2 O L E X N C 1 � & 7 2 2 5 0 . o 0 n a 1 ", 1 2 Q 2 O L E X N C 1 .. 6 ? 5 3 5 f) . o O O I) 1 . 1 B 7 � O L E )( N C 1 .. 5 7 0 Q s r. . n o n o 1 . 2 5 1 6 O L E X N t 1 . 5 ? 7 2 5 0 . n o o O 1 . 3 1 B f5 O L E x "j C 1 . 4 7 t: 1 c:; o . o o n o i . 3 8 S ':' O L f l( N C 1 . 4 2 3 8 '; 0 . 0 0 (1 1 . 4 (j q 0 O L E X hi e 1 . 3 7 0 4 t:;; (') . n n (l O 1 . s n s s O L E X N C , . 3 1 5 9 S O . a o o n 1 .. 5 f1 5 1 Cl L F X N t: 1 . 2 6 0 3 r. . O O C O 1 .. 6 0 6 9 F f) E X N C 1 . ? 0 3 P s O . ("l o n O 1 . 6 � S 8 F D E X N C 1 . 1 4 6 15 � O . () O O O 1 . 6 5 2 3 F D E X t\i C 1 . 0 P/- � /.j 5 0 . Cl O O O 1 . 6 5 7 6 F D f l( N C 1 . O ? 9 7 r:; O , o O O O 1 ., 6 '3 3 1 � O E X !,I e

. 9 7 0 3 S O . O f O O 1 . '1 2 4 0 F D E X �; C • q 1 (1 3 !:i O . O iJ O O 1 . 3 5 3 I� F D E X N C . R 15 ) O 5 0 . (\ 0 0 0 1 .. 2 8 6 tJ F D E x �! C . 7 P' 9 2 S O . r O O O 1 . 2 2 2 6 F D E X N t. . 7 ? 8 2 5 0 . 0 0 0 0 1 . 1 1:- 2 1 F D E X N C . b 6 h Q 5 0 . 0 0 0 0 1. 1 0 4 /J F' D E X � c � 6 (1 S r; 5 0 . 0 0 0 0 1 . 2 Li 8 1 F r) f l( � C . S LJ. 4 0 5 n . o ' 0 0 1 . 2 :1 0 3 F" D E X N C . 4 e. 2 6 5 0 . ( 1) 11 ( 1 1 . 2 il A l F D F. X N C .. /.I e l ? S O . () O () Q 1 . 2 1 3 3 F" D E X N C . 3 � O O 5 0 . 0 0 0 ll l. 1 Q LJ e; F D E X N C . 2 9 9 0 5 0 . 0 0 0 0 l e 1 7 0 2 F [) E X N C . 2 3 R ' 5 0 . 0 0 0 0 t . 1 � 8 0 F O E x N C • 1 7 e o � o . o o o (: 1, • (J q a '; F D E X "l C • 1 1 8 1. t; o . () O O O 1 . 0 � 1 7 F D E X T C .. O t; R 8 S O . n o o n .. 9 3 2 3 � D E X T C . 0 0 0 0 s o . O O O O ,, 7 2 8 5 F' D E X' T C

? . 2 0 0 0 5 0 . 0 0 0 (1 ? 0 7 7 .. 7 8 P 6

Page 24: INITIAL RESULTS FROM THE WISCONSIN TOKAPOLEsprott.physics.wisc.edu/technote/PLP/plp712.pdfessentially a Tokamak embedded in what used to be called the Small Wisconsin Toroidal Octupole,

C P U T J 'A E F I L f r I C; r. E. O ! I _ f:l T S F I L f T I Q ;, I) (:' i) S T A P E 1 1 0 � E 0 U E S T S T A P E T I r ,.1 I j P r) S S W A P � I=" IJ U E S T S S W A P � 1i f.i D S M E I·, Q P Y U S A G E C A P r. S p , P A G E S p P H · 1 E C T A P E ; -1 0 U N T S E R t r r J O B C' H a H G F="

T O T A t C O S T

I I � : 0 () : 1 f! • ;, 2, ., 4 ? h

3 i1 9 2 5 l� 1 3

1 ? 0 0 6 LJ

q ;> l b ( J . ::> i l C:;

3 q 3 1

1 3 1

C ('j S T ( D O L L A R � )

l P . tJ l 1 0 . 1 9 'H) • 1 4

( , • 0 {j t ( , • 0 2 :1' i ) � 0 n l () . O O f 0 , 1 4 1l n . 0 5 i C , 1 2 $ ( ) , 5 C � (' , t 2 'f, () . ? O

n ; � A 8 0 V f r, n L L � !=-' A � j O l l i <T S A P F- tl P P P C i ) q r,I A T f il �J C A P E P A S f r; r d� O A T E S F O P s r U S E R R 6 A � C E i 2 3 . 1 a

1 0 : 1 Q : () 9 J A � . i J 7 , 1 q 7 ;

( (\ (\ 7 0

Page 25: INITIAL RESULTS FROM THE WISCONSIN TOKAPOLEsprott.physics.wisc.edu/technote/PLP/plp712.pdfessentially a Tokamak embedded in what used to be called the Small Wisconsin Toroidal Octupole,

. r . , .,

J

(�)

(c)

Figure 1

o

( b )

o

(d )

Page 26: INITIAL RESULTS FROM THE WISCONSIN TOKAPOLEsprott.physics.wisc.edu/technote/PLP/plp712.pdfessentially a Tokamak embedded in what used to be called the Small Wisconsin Toroidal Octupole,

::r �

I G N .TRo N i R

-i L ( a )

c v p�

J :IH! � I p

(b)

I

Figure 2

Page 27: INITIAL RESULTS FROM THE WISCONSIN TOKAPOLEsprott.physics.wisc.edu/technote/PLP/plp712.pdfessentially a Tokamak embedded in what used to be called the Small Wisconsin Toroidal Octupole,

>

Figure 3

N

.--___ ....1 '"

U} d ,

-

f-

Page 28: INITIAL RESULTS FROM THE WISCONSIN TOKAPOLEsprott.physics.wisc.edu/technote/PLP/plp712.pdfessentially a Tokamak embedded in what used to be called the Small Wisconsin Toroidal Octupole,

1 8 I p :::: 2 4 . 0 9 0 () ()O A T n=; o r l:� :::: 2 :3 . 7 !3 4 !:5 ;� O

N E :::: . 4 6 8 0 2 9 2 9 E 1 :3 N A :::: 9 + 4 6 9 :3 ::'i 7 0 N C� :::: 1 . 1 1 ;� 7 7 6 1 ci

T I M E I F' J S A T B T V P G I HO CJ P T E N E en ::j � 2 0 0 :::.� 1 7 2 8 9 :3 6 9 8 B 6 6 8 D w 4 0 () 1. 0 3 4 7 �5 0 3 () 6 6 1 6 9 1 4 1 0 1 :3 I-z

6 () O 2 0 1 4 4 4 2 8 7 �5 6 2 �:!. 4 !5 2 0 :L:I. :3 6 '7 0: a.. 8 0 0 �� �3 1 0!5 8 2 4 6 :3 5 '7 :3 1 7 2 4 4 2 6 9

1 0 0 () 1 !5 8 U. :1. 8 4 '7 5 2 3 8 4 2 4 2 6 4 B 1 2 0 () '7 '7 4 2 :1. 1 :1. 4 4 6 4 4 4 2 :1. 2 �5 :1. :3

w :1. 4 0() 4 4 8 6 :� 5 1 4 () 4 9 '7 2 0 1 3 6 2 .... (". �

:I. <I I F' :::: 8 . 0 6 0 0 0 0 0 �H 7 0 0 T E :::: :1. �'5 + 9 !5 6 B 8 4

N E :::: • :1. <.n :3 7 1 0 8 E 1 �5 (.:1 :::: '7 . :.3 0 3 6 3 :'5 '7 (� :::: 1 • () :I. !'.':i () �j 4 3

T I t"! E I P J S A T El l V P G I H O O P T E NE

;� O () 1 () 1 4 :1. 7 6 9 8 8 5 () 4 0 0 :'5 1 �'5 B 1 4 9 �5 6 6 :l. 7 () 9 �.'i:'5 4 6 0 0 '7 4 �5 9 1 4 1 7 6 2 2 4 '7 1 4 :1. ;.� 9 9 8 0 0 '7 '7:38 :1. 2 0 2 5 '7 �5 1 9 :1. 6 2 3 1 �5

1 0 0 0 4 6 7 4 9 0 9 5 2 :3 8 5 :l 6 2 0 6 8

0 1. 2 0 0 :I. 4 5 '7 5 2 '7 4 6 4 4 5 :1. 2 :I. :� 9 9 J: 1 4 0 0 :1. �3 2 5 1 4 c) 4 0 4 9 7 1 :1. :1. 0 2 '7 u � u. CD

2 0 :E I p :::: !3 • 3 2 0 0 0 0 0 A T 6 6 0

w T E :::: :1. 6 + 8B9 :5 9 9 Q;: u-N !:: :::: • �7i (.n 4 3 �.'j 4 4 E :1. 2 I-

:> a.. A :::: '7 . 8 8 9 :1. 2 :l 6 :E 0 l.� :::: :3 . 6 9 '7 4 0 2 0 V

T I ME I F' J S A T B l VPG I H O O F' T E N E

2 0 0 :1. 2 2 8 �3 4 3 5 4 5 5 :l O 4 0 0 3 4 8 3 0 0 0 3 3 8 '7 1 :l :1. �3() 6 0 0 5 :l 8 8 2 8 2 5 3 :l :l 2 6 :1. 6 �"5 1 �j 8 0 0 I� ,.J 2 4 :l 2 4 :1. 4 2 9 :1. 6 3 :l 9 6 4 2

1 0 0 0 t:; 4 3 9 :l '7 9 8 2 6 :l 9 '7 2 () :1. 2 1 :l 1 2 0 0 :� �5 9 8 :l O 6 5 2 4 2 2 8 2 0 :1. 0 8 4

: 1.4 00 :I. 2 0 �') 2 9 3 2 :1. ��55 :l 6 5 6 5

Figure 4

Page 29: INITIAL RESULTS FROM THE WISCONSIN TOKAPOLEsprott.physics.wisc.edu/technote/PLP/plp712.pdfessentially a Tokamak embedded in what used to be called the Small Wisconsin Toroidal Octupole,

Figure 5

Page 30: INITIAL RESULTS FROM THE WISCONSIN TOKAPOLEsprott.physics.wisc.edu/technote/PLP/plp712.pdfessentially a Tokamak embedded in what used to be called the Small Wisconsin Toroidal Octupole,

1 . 0 0 ('1

2 . 0 0 1'

3 , 0 0 0

4 . 0 0 0

C) , o o o

6 , 0 0 0

7 , 0 0 0

• +

• •

• + •

• ...

• ...

• ..

• +

• ..

. o r n t

• •

"

• •

• • •

1 • (I ,,,\ {I + • •

2 . 0 '') 0 ...

Figure 6

3 , 0 0 0 t • •

• • • 9: • • • •

• •

· ., .

• 8 ' · . . , . , . • • • I • •

• • • • • • e: • • •

• • • • •

• .. . . �

• • • · . . . . . . ..

• • Ir • • • •

• •

"

• • •

• • t

• • •

• • • • � . . . . . . . . . � .

• • • • " . .. ,

• • • • • • • @ •

• , • •

• · .. •

• •

• • • •

• •

• • •

· . .. , . •

• •

• •

..

• •

..

• t

• •

• •

• • •

• •

.. • • • • • • • • •

• • •

" • •

• •

• •

• • •

• •

• •

• •

• •

.. ..

• • • • • • • •

· -- . · .. . " .

• • • • • • • •

• • • • • • If •

• • • • • • • • •

• • • • \I: I •

• • • • • • •

• «

• •

• •

• •

.. ..

• · . . " • •

• • • •

" •

III • , .

• • •

"

"

• •

· . .. .

..

• • •

• •

· . ,

• • •

• • • • •

• •

• •

• •

"

• • +

· . . , . . . . .

· .. , . . . . "

• •

\It •

" .

• • •

. , . . . . . . .

"

• t

• I

. ,

• •

..

.. ..

..

• •

t

t . • •

• •

· �

• •

· .. • •

.. .

• • .. .

• •

"

...

• •

" .

• •

,

..

• •

• •

..

• ..

• •

, "

"

"

.'

"

"

,

...

..

" "

..

"

.. .

..

y

6 . 0 0 0 • "

· ..

• • •

• • •

..

• •

• •

. ..

• • •

• •

.. •

"

" "

" .

..

7 � 0 0 0 ....

"

Page 31: INITIAL RESULTS FROM THE WISCONSIN TOKAPOLEsprott.physics.wisc.edu/technote/PLP/plp712.pdfessentially a Tokamak embedded in what used to be called the Small Wisconsin Toroidal Octupole,

.. 0 ( 1) .. •

1 • l I) t) .. . •

2 . 0 0 0 • • •

Figure 7

M A G N E T I C F L U X P L O T

3 .. ( o n .. . •

4 . 0 0 0 • •

. o o n t

2 ,, 0 0 0

tJ . Q O O

5 , O u O

0 , 0 0 (1

7 , 0 0 0

• ..

• ...,

• •

i­t

• • . " . • • • , • • • •

" • · .. . . · .. . . • . , .. •

• • .. " .. . . . . • • · . . �

, • • • • • • • • • • .. .

It ,, •

• •

• • • • • • • •

it • •

· .. . . � . •

· " • e • • I;

• • • • • • • • • • • • •

.. . .

• • •

• • · , · . . " ., ..

• • · , ,� • , ,oJ " , • • • • •

• • • • • ., . . .

• • • • • .. fit • • •

• •

• • •

• • •

" . .

• •

• • .. . . . .

« I • • " • • I:

• • • • • • • • • • • • •

• • • • • • • • • •

• • • • • • • •

• • • t • •

" .

• •

• • • •

• • • •

• • •

• • •

.. .

• • • •

• • • • • • • • • f.t ' . I: • • • •

• •

• •

• •

• •

"

• •

..

• •

"

• • • •

• •

• •

..

· , • "

• •

"

• t •

. . " .

• •

• •

• •

• •

• • • • • • " •

· .. "

• • • t •

• • • • • • •

" . • • «

• " • • • • t • • · ,

• • • •

• • " 't • • • · .. •

• • • • • fl •

· � • " .

• .. .

• • • • • + • • • + •

• •

• • " •

• •

..

,

• •

• •

.. .

• •

• •

• •

• •

t •

• •

• •

• •

+

. . "

.. I •

• •

• •

,

• •

• • •

, •

• • •

t •

,

• •

• .. ..

, . • •

• • .. · ..

• •

• •

.. • •

• ..

• •

• • • •

• •

• •

• • •

• •

..

• � •

y

6 , 0 (') 0 .'

II

,

+

• •

• • •

.. • •

· . ,

• •

• • •

• •

" .

• •

· ..

• • •

• •

• •

" - n o • v -+

. ,

. . . ,

· . . . .

+

Page 32: INITIAL RESULTS FROM THE WISCONSIN TOKAPOLEsprott.physics.wisc.edu/technote/PLP/plp712.pdfessentially a Tokamak embedded in what used to be called the Small Wisconsin Toroidal Octupole,

3 . 0 0 0

4 , 0 0 0

5 . 0 0 0

7 , 0 1) 0

.'

+

..

• +

• ..

t +

Figure 8

,. . .

• •

• •

• • • •

• t) () ' 1

• •

• •

• • • •

• • •

• •

2 . 0 0 (} +

• • • � . "

· , . . . . . . . . .

· . . . . . " . • •

• •

· . . . . - . .

3 . ;) (l () • +

. . "

• •

" .

• • • •

• • • • • • • • • • • • • • • • •

• .tI • • • • • • • • • • • • t • • • • • · . . . . . , . . . . . • • •

· .. • • • • • • • t • • •

, . • •

• • • • • • • •

• , • , If • "

· ..

· . . . .. . "

.. . ..

• •

I •

• •

" .

• •

• .. • • . « · . " . • • • • • • • , . 8

* • • • • � . . • ,. I:

• • • f

• •

• •

• •

» •

• •

.. .. .

• •

· " . .

• • • • If

• • • • • • •

• • • • •

• • •

• • • • • .. ., . .

e

• � « • • '" ,. • • � • • • • t • • • • • t �

· "

..

• •

,

«

• ..

• •

.. •

· "

..

• •

· ..

.. . « • •

,

• •

• •

• t

. . ,

• • • • • • • •

· , •

• •

,

• • • .. +

• •

• • • •

· " •

t • •

.. •

• • •

, .

• •

I� • Q 0 I)

It •

«

..

• •

+

• •

• •

"

«

• •

t

,

..

5 . 0 0 0

• t .

• •

• •

, •

• •

,"

• •

• •

«

"

«

..

• •

y

6 . 0 0 0 t •

..

..

..

«

• • + •

• «

• •

• •

«

• •

+

"

f . .

. '" . ,

• • • • •

«

Page 33: INITIAL RESULTS FROM THE WISCONSIN TOKAPOLEsprott.physics.wisc.edu/technote/PLP/plp712.pdfessentially a Tokamak embedded in what used to be called the Small Wisconsin Toroidal Octupole,

• 0 (l 0 ...

� . 0 0 0

7 . 0 0 0

• '+'

e +

• -+

• ...

+ •

+ +

+ •

• •

• •

2 • I) (\ (! .. .

• • • «

• • · . . ..

• • • • * • • •

! , � • • • • •

Figure 9

t·\ 4 G N f T T C F L U i P L O T

3 . C O O • • •

• • • •

• • · ,

· . . .. . • • • · .. • • • •

• •

• • •

If • • •

• •

• 4

• •

• · , . . . . . . " e_ . . . .. • • , .. . . • •

• • •

• • • • • • • • • •

• • • • t • • • •

• •

· . , " , . . . , . . . .

.. . . · . . . " . . .

• • • • · ., . " . .

. . � . . . . � . .

. . . . � . . � . . " .

• •

II !'

• •

• •

• " !'

• •

· '"

• • • • tt

III :0: . " •

· . , • • •

• • ttl • • • �

• • • • , • • t;

• •

• •

• • • II . ,

.. • § • •

I • • • • • •

(I • • •

..

I • .. • •

· . .. •

, .

· ., "

• • ·

• • •

• •

• • • • • •

.. .. .

«

• • • • • • • •

• • • • • • • •

• • • • • • • •

• ..

• • • • • • • • • •

• • , . .. . • •

• • • • • • •

• • • e 0 • • •

• • • •

• • • « , • • • •

• • • • • • •

• • • • • •

• • • • II •

• • • • •

• , • • • " .

" .. . • • • • •

• • 4 • • • • • •

• • • •

• • • • • • •

.. • • + • •

• •

" .

• •

• •

• •

• •

, •

• •

• •

• •

• •

• •

• • • •

• •

• • +

..

.. .

• •

.. «

, . • " "

.. " • • •

• •

• · ,

• •

• •

• • •

• •

• • •

.. .

e

· . + • •

t> • t) (\ 0 ,+

• •

• •

• •

• •

• •

+

• •

• •

• •

• •

• •

• •

• •

• •

.. .

.. .

Page 34: INITIAL RESULTS FROM THE WISCONSIN TOKAPOLEsprott.physics.wisc.edu/technote/PLP/plp712.pdfessentially a Tokamak embedded in what used to be called the Small Wisconsin Toroidal Octupole,

, 0 0 0 t

1 . 0 0 0

2 , O () O

4 . 0 0 (1

5 , 0 0 0

6 , 0 0 0

+ •

"

,

• + •

t •

• + •

Figure 10

0 A G N E T I C F L U X P L O T

. 0 0 0 +

• •

• • •

.. .

• • •

• •

1 • {) 0 u +

2 . 0 0 () 3 . 0 0 0 •

'" .

« • • .. •

.. .

· ,

• •

• + •

« ..

. . . . . . . , . .

.. . • •

• •

· . « . . . . .

• •

• •

• · "

• •

« • •

• • • • • • • r I • • • • • • • · . . . 9 . f . '" • • • • •

• •

• "

• • •

• tJl •

.. • " « • • • • • • • • 8 � • t • " . . � •

. ..

· . . . . . � . . . .

• • • II

• , 0' � .. ..

· . . . . " ..

, .

· " . . . . . •

, . • •

• •

• •

• •

" .

• •

..

• • • . . .. it • •

• • • It , . .. . · . ., . • • •

· . .. . .

• •

• • •

• .. •

• • •

.. ,

..

-- . . · . . ..

• • • · .. . • •

• • ", . II 'It •

• •

• •

..

"

+

· ,

· ..

• • •

• •

• •

• •

. . .. . • • • • •

• � • • • • • • • • • t •

• • • • .. 9; •

• •

• •

. ,

• •

• +

· . ..

A ., , • , . - .

• •

• •

• • •

• • • +

, .

, .

• •

• •

• •

..

• •

• +

.. .

• •

• •

• •

• •

, .

,

• • ...

• • •

• •

• ..

• •

• ..

.. .

• • •

• •

• •

II •

..

v

6 . 0 0 0 +

• •

• •

. ..

..

7 '. () 0 ('I •

Page 35: INITIAL RESULTS FROM THE WISCONSIN TOKAPOLEsprott.physics.wisc.edu/technote/PLP/plp712.pdfessentially a Tokamak embedded in what used to be called the Small Wisconsin Toroidal Octupole,

, o n o

1 . 0 0 0

2 , 0 0 0

3 . 0 0 0

4 , 0 0 0

5 , 0 0 0

1 , 0 0 0

Figure 11

� A � E T r c F L U X P L O T

+ •

• +

,

. O !) O t •

' .

t . I) () () +

.. .

" .. ,. " •

..

2 , 0 0 0 ...

• •

"

, .. .

• • I: •

· .. " .

• • • • , ! • . •

.. , ..

• • •

• • • •

,

4 • • •

..

• • _f , • • • • • • • , • • • • • � • • I . • • • •

• • • * * • • • • • • • • • • •

, .

• •

• •

• • •

· . . , .

• • .. . • • i!' , . " . " . " . • " .

• • + •

• +

..

+

• •

,

,

• .., •

+ ..

,

..

• •

• • · , . . . . . • .. . ... I: • • • •

• · . " . " . .

· � . . . . . . .

& • • • • • 9 • • • • •

• • • • • • • • • • • t « • • • � • • • • •

• • • e • • , • • ,

• • • • • • • • • « , •

" . . " .. . . . .

• •

• •

..

..

.. ..

• • .. . .. . • •

· . ..

• • t

· . � ..

, .

· ..

• ..

.. . .

• • • ,

• • ..

· ..

It • •

• *

• •

.. .

• •

• , .

I

• •

..

• «

• tt .. .

.. •

..

.. . ,

, • • ..

.. • • • • • •

• • · , • • • • • •

• f • . ,

· , • • , . • • • •

• • • • • • • • , . • • •

..

• •

«

..

,

..

• +

• •

..

..

..

..

• •

,

• •

• •

..

e ,

• •

• •

• •

• •

• • · , • • , .. · ,

• • • • • • · .. • •

.. • " .

II • • • • • • • · ,.

.. • , .

+ • + •

..

+

• •

• •

• • • •

• +

t

• •

· ,

• • • •

..

• •

,

• •

S '. U O I) ..

• , . t- J. • •

• • •

• • •

• • •

, .

,.

• •

..

• •

y

• • •

• • "

• • •

• • •

• •

• •

• •

.. .

• • •

• •

.. .

• • •

• +

• · ,.

• •

· � .

• • •

• •

• • •

• •

• • •

· ..

• • •

• •

• •

'7 � 0 I') 0 +

Page 36: INITIAL RESULTS FROM THE WISCONSIN TOKAPOLEsprott.physics.wisc.edu/technote/PLP/plp712.pdfessentially a Tokamak embedded in what used to be called the Small Wisconsin Toroidal Octupole,

1" 1 S (:() NS I N ·J"() I(..c\lJ() J. I�

FlIt 12.

Page 37: INITIAL RESULTS FROM THE WISCONSIN TOKAPOLEsprott.physics.wisc.edu/technote/PLP/plp712.pdfessentially a Tokamak embedded in what used to be called the Small Wisconsin Toroidal Octupole,

'? � l)

� L)

t) -

'Ca U

)( \J\ .,:'" :f II CIJ

C

a • -

.,......

'"

CI) £

'-' �

Z � -..

0 t-

J-<t -J

"I 0

:) � -U\

o

Fig 13

Page 38: INITIAL RESULTS FROM THE WISCONSIN TOKAPOLEsprott.physics.wisc.edu/technote/PLP/plp712.pdfessentially a Tokamak embedded in what used to be called the Small Wisconsin Toroidal Octupole,

x

Fig 14

) It () -

:t .... -

,c-- "3

o t\J

)

::t t--

3

rt :t � 0-

o

" (J) l-

\J\ -

� #' � C"i ,.. « (( at. ... -

co at ({

'"

UJ � :) lI) \1\ UJ � Q.

o

Page 39: INITIAL RESULTS FROM THE WISCONSIN TOKAPOLEsprott.physics.wisc.edu/technote/PLP/plp712.pdfessentially a Tokamak embedded in what used to be called the Small Wisconsin Toroidal Octupole,

F ig 1 5

Page 40: INITIAL RESULTS FROM THE WISCONSIN TOKAPOLEsprott.physics.wisc.edu/technote/PLP/plp712.pdfessentially a Tokamak embedded in what used to be called the Small Wisconsin Toroidal Octupole,

-::> Q)

'-.J

0 0 � Q

f

J ,c. )( lit )(

')( � '"

0 -

')(. "

0 X -«-

os � " '--' -

11 0

X

HCl..

0 0 ..J \I}

CU) 0

� -

I ,

0 �

0 0

0

-J U)

-

Fig 16

Page 41: INITIAL RESULTS FROM THE WISCONSIN TOKAPOLEsprott.physics.wisc.edu/technote/PLP/plp712.pdfessentially a Tokamak embedded in what used to be called the Small Wisconsin Toroidal Octupole,

-

� l£.

'-.;

0 0

� 0

at

0

-

F ig 17

Page 42: INITIAL RESULTS FROM THE WISCONSIN TOKAPOLEsprott.physics.wisc.edu/technote/PLP/plp712.pdfessentially a Tokamak embedded in what used to be called the Small Wisconsin Toroidal Octupole,

-

� '"

0 0

0

Fig 18

00

"

I­m

is)

-.> �

'-'

r:J:lfl..

Page 43: INITIAL RESULTS FROM THE WISCONSIN TOKAPOLEsprott.physics.wisc.edu/technote/PLP/plp712.pdfessentially a Tokamak embedded in what used to be called the Small Wisconsin Toroidal Octupole,

TYPICAL TOKAPOLE PARAMETERS .AND SCALING

BT = 3 kG ( 5 kG maximum)

I = 2 5 kA (� B2 B2T)

P P

a = 10 em (� I 1/8) P

q = 1 (� B - 3/2 ) p

1/6 T = 2 5 eV (� I ) ec p

n = 5 x 1012 em- 3 (� B 8/3 B 4/3) e p T

LE = 10� sec (constant)

Fig 19