infrared(spectroscopy(( (ir)( - los angeles …methods(of structure(determination(•...

71
INFRARED SPECTROSCOPY (IR) Theory and Interpreta.on of IR spectra

Upload: phungcong

Post on 12-Mar-2018

216 views

Category:

Documents


2 download

TRANSCRIPT

Page 1: INFRARED(SPECTROSCOPY(( (IR)( - Los Angeles …METHODS(OF STRUCTURE(DETERMINATION(• Infrared’Spectroscopy’(IR)(–Triggering(molecular(vibraons(through(irradiaon(with(infrared(light.(Provides

INFRARED  SPECTROSCOPY    (IR)  

Theory  and  Interpreta.on  of  IR  spectra  

Page 2: INFRARED(SPECTROSCOPY(( (IR)( - Los Angeles …METHODS(OF STRUCTURE(DETERMINATION(• Infrared’Spectroscopy’(IR)(–Triggering(molecular(vibraons(through(irradiaon(with(infrared(light.(Provides

ORGANIC  STRUCTURE  DETERMINATION  

How  do  we  know:  •  How  atoms  are  connected  together?  • Which  bonds  are  single,  double,    or  triple?  • What  funcHonal  groups  exist  in  the  molecule?  •  If  we  have  a  specific  stereoisomer?  

The  field  of  organic  structure  determinaHon  aLempts  to  answer  these  quesHons.  

Page 3: INFRARED(SPECTROSCOPY(( (IR)( - Los Angeles …METHODS(OF STRUCTURE(DETERMINATION(• Infrared’Spectroscopy’(IR)(–Triggering(molecular(vibraons(through(irradiaon(with(infrared(light.(Provides

INSTRUMENTAL  METHODS  OF  STRUCTURE  DETERMINATION  

•  Infrared  Spectroscopy  (IR)  –  Triggering  molecular  vibraHons  through  irradiaHon  with  infrared  light.  Provides  mostly  informaHon  about  the  presence  or  absence  of  certain  funcHonal  groups.  

•  Nuclear  Magne.c  Resonance  (NMR)  –  ExcitaHon  of  the  nucleus  of  atoms  through  radiofrequency  irradiaHon.  Provides  extensive  informaHon  about  molecular  structure  and  atom  connecHvity.  

•  Mass  spectrometry  (MS)  –  Bombardment  of  the  sample  with  electrons  and  detecHon  of  resulHng  molecular  fragments.  Provides  informaHon  about  molecular  mass  and  atom  connecHvity.  

•  Ultraviolet  spectroscopy  (UV)  –  PromoHon  of  electrons  to  higher  energy  levels  through  irradiaHon  of  the  molecule  with  ultraviolet  light.  Provides  mostly  informaHon  about  the  presence  of  conjugated  π systems  and  the  presence  of  double  and  triple  bonds.  

Page 4: INFRARED(SPECTROSCOPY(( (IR)( - Los Angeles …METHODS(OF STRUCTURE(DETERMINATION(• Infrared’Spectroscopy’(IR)(–Triggering(molecular(vibraons(through(irradiaon(with(infrared(light.(Provides

Physical    sHmulus  

Molecule   response   DetecHng    instrument  

Visual  (most  common)  representaHon,  or  

Spectrum  

SPECTROSCOPY  -­‐  Study  of  spectral  informaFon  

Upon  irradiaHon  with  infrared  light,  certain  bonds  respond  by  vibraHng  faster.  This  response  can  be  detected  and  translated  

into  a  visual  representaHon  called  a  spectrum.  

Page 5: INFRARED(SPECTROSCOPY(( (IR)( - Los Angeles …METHODS(OF STRUCTURE(DETERMINATION(• Infrared’Spectroscopy’(IR)(–Triggering(molecular(vibraons(through(irradiaon(with(infrared(light.(Provides

SPECTRUM  INTERPRETATION  PROCESS  

1.  Recognize  a  pa%ern.  

2.  Associate  paLerns  with  physical  parameters.  3.  IdenHfy  possible  meanings,  i.e.  propose  

explana4ons.  

Once  a  spectrum  is  obtained,  the  main  challenge  is  to  extract  the  informaHon  it  contains  in  abstract,  or  hidden  form.    This  requires  the  recogniHon  of  certain  paLerns,  the  associaHon  of  these  paLerns  with  physical  parameters,  and  the  interpretaHon  of  these  paLerns  in  terms  of  meaningful  and  logical  explanaHons.  

Page 6: INFRARED(SPECTROSCOPY(( (IR)( - Los Angeles …METHODS(OF STRUCTURE(DETERMINATION(• Infrared’Spectroscopy’(IR)(–Triggering(molecular(vibraons(through(irradiaon(with(infrared(light.(Provides

ELECTROMAGNETIC  SPECTRUM  Most  organic  spectroscopy  uses  electromagneFc  energy,  or  radiaFon,  as  the  physical  sHmulus.  

ElectromagneHc  energy  (such  as  visible  light)  has  no  detectable  mass  component.  In  other  words,  it  can  be  referred  to  as  “pure  energy.”  

Other  types  of  radiaHon  such  as  alpha  rays,  which  consist  of  helium  nuclei,  have  a  detectable  mass  component  and  therefore  cannot  be  categorized  as  electromagneHc  energy.  

The  important  parameters  associated  with  electromagneHc  radiaHon  are:  

•     Energy  (E):  Energy  is  directly  proporHonal  to  frequency,  and  inversely     proporHonal  to  wavelength,  as  indicated  by  the  equaHon  below.  •     Frequency  (µ)  •     Wavelength  (λ)  

E  =  hµ

Page 7: INFRARED(SPECTROSCOPY(( (IR)( - Los Angeles …METHODS(OF STRUCTURE(DETERMINATION(• Infrared’Spectroscopy’(IR)(–Triggering(molecular(vibraons(through(irradiaon(with(infrared(light.(Provides

EFFECT  OF  ELECTROMAGNETIC  RADIATION    ON  MOLECULES  

Graphics  source:  Wade,  Jr.,  L.G.  Organic  Chemistry,  5th  ed.  Pearson  EducaFon  Inc.,  2003    

Page 8: INFRARED(SPECTROSCOPY(( (IR)( - Los Angeles …METHODS(OF STRUCTURE(DETERMINATION(• Infrared’Spectroscopy’(IR)(–Triggering(molecular(vibraons(through(irradiaon(with(infrared(light.(Provides

Molecular  VibraHons  

Graphics  source:  Wade,  Jr.,  L.G.  Organic  Chemistry,  5th  ed.  Pearson  EducaFon  Inc.,  2003    

Specific  bonds  respond  to  (absorb)  specific  frequencies  

Page 9: INFRARED(SPECTROSCOPY(( (IR)( - Los Angeles …METHODS(OF STRUCTURE(DETERMINATION(• Infrared’Spectroscopy’(IR)(–Triggering(molecular(vibraons(through(irradiaon(with(infrared(light.(Provides

Molecular  VibraHons  

Infrared  radiaHon  is  largely  thermal  energy.  

It  induces  stronger  molecular  vibraFons  in  covalent  bonds,  which  can  be  viewed  as  springs  holding  together  two  masses,  or  atoms.  

Specific  bonds  respond  to  (absorb)  specific  frequencies.  If  the  bond  is  stretched,  a  restoring  force  pulls  the  two  atoms  

together  toward  their  equilibrium  bond  length.  •  If  the  bond  is  compressed,  the  restoring  force  pushes  the  two  

atoms  apart.  •  If  the  bond  is  stretched  or  compressed  and  then  released,  the  

atoms  vibrate.  

Page 10: INFRARED(SPECTROSCOPY(( (IR)( - Los Angeles …METHODS(OF STRUCTURE(DETERMINATION(• Infrared’Spectroscopy’(IR)(–Triggering(molecular(vibraons(through(irradiaon(with(infrared(light.(Provides

Stretching  and  Bending  VibraHons  

Page 11: INFRARED(SPECTROSCOPY(( (IR)( - Los Angeles …METHODS(OF STRUCTURE(DETERMINATION(• Infrared’Spectroscopy’(IR)(–Triggering(molecular(vibraons(through(irradiaon(with(infrared(light.(Provides

TRANSMISSION  vs.  ABSORPTION  

When  a  chemical  sample  is  exposed  to  the  acHon  of  IR  LIGHT,  it  can  absorb  some  frequencies  and  transmit  the  rest.  Some  of  the  light  can  also  be  reflected  back  to  the  source.  

Chemical  sample  

IR  source  

TransmiLed  light  

From  all  the  frequencies  it  receives,  the  chemical  sample  can  absorb  (retain)    specific  frequencies  and  allow  the  rest  to  pass  

through  it  (transmiLed  light).  

Detector  

The  detector  detects  the  transmiLed  frequencies,  and  by  doing  so  also  reveals  the  values  of  the  absorbed  frequencies.  

Page 12: INFRARED(SPECTROSCOPY(( (IR)( - Los Angeles …METHODS(OF STRUCTURE(DETERMINATION(• Infrared’Spectroscopy’(IR)(–Triggering(molecular(vibraons(through(irradiaon(with(infrared(light.(Provides

AN  IR  SPECTRUM  IN  ABSORPTION  MODE  

The  IR  spectrum  is  basically  a  plot  of  transmiLed  (or  absorbed)  frequencies  vs.  intensity  of  the  transmission  (or  absorpHon).  Frequencies  appear  in  the  x-­‐axis  in  units  of  inverse  cenHmeters  (wavenumbers),  and  intensiHes  are  ploLed  on  the  y-­‐axis  in  percentage  units.  

The  graph  above  shows  a  spectrum  in  absorpFon  mode.  

Page 13: INFRARED(SPECTROSCOPY(( (IR)( - Los Angeles …METHODS(OF STRUCTURE(DETERMINATION(• Infrared’Spectroscopy’(IR)(–Triggering(molecular(vibraons(through(irradiaon(with(infrared(light.(Provides

AN  IR  SPECTRUM  IN  TRANSMISSION  MODE  

The  graph  above  shows  a  spectrum  in  transmission  mode.  This  is  the  most  commonly  used  representaFon  and  the  one  found  in  most  chemistry  

and  spectroscopy  books.  Therefore  we  will  use  this  representaHon.  

Page 14: INFRARED(SPECTROSCOPY(( (IR)( - Los Angeles …METHODS(OF STRUCTURE(DETERMINATION(• Infrared’Spectroscopy’(IR)(–Triggering(molecular(vibraons(through(irradiaon(with(infrared(light.(Provides

IR  SPECTRUM                    Each  stretching  and  bending  vibraHon  occurs  with  a  characterisHc  frequency  as  the  

atoms  and  charges  involved  are  different  for  different  bonds  

The  y-­‐axis  on  an  IR  spectrum  is  in  units  of  %  transmiLance  

In  regions  where  the  EM  field  of  an  osc.  bond  interacts  with  IR  light  of  the  same  ν  –  transmiLance  is  low  (light  is  absorbed)  

In  regions  where  no  osc.  bond  is  interacHng  with  IR  light,  transmiLance  nears  100%  

Page 15: INFRARED(SPECTROSCOPY(( (IR)( - Los Angeles …METHODS(OF STRUCTURE(DETERMINATION(• Infrared’Spectroscopy’(IR)(–Triggering(molecular(vibraons(through(irradiaon(with(infrared(light.(Provides

CLASSIFICATION  OF  IR  BANDS  IR  bands  can  be  classified  as  strong  (s),  medium  (m),  or  weak  (w),  depending  on  their  relaHve  intensiHes  in  the  infrared  spectrum.  A  strong  band  covers  most  of  the  y-­‐axis.  A  medium  band  falls  to  about  half  of  the  y-­‐axis,  and  a  weak  band  falls  to  about  one  third  or  less  of  the  y-­‐axis.  

Page 16: INFRARED(SPECTROSCOPY(( (IR)( - Los Angeles …METHODS(OF STRUCTURE(DETERMINATION(• Infrared’Spectroscopy’(IR)(–Triggering(molecular(vibraons(through(irradiaon(with(infrared(light.(Provides

INFRARED  ACTIVE  BONDS    Not  all  covalent  bonds  display  bands  in  the  IR  spectrum.    

Only  polar  bonds  do  so.  These  are  referred  to  as  IR  acFve.  

 The  intensity  of  the  bands  depends  on  the  magnitude  of  the  dipole  moment  associated  with  the  bond  in  quesHon:  

•  Strongly  polar  bonds  such  as  carbonyl  groups  (C=O)  produce  strong  bands.  

• Medium  polarity  bonds  and  asymmetric  bonds  produce  medium  bands.  • Weakly  polar  bond  and  symmetric  bonds  produce  weak  or  non  observable  bands.  

Page 17: INFRARED(SPECTROSCOPY(( (IR)( - Los Angeles …METHODS(OF STRUCTURE(DETERMINATION(• Infrared’Spectroscopy’(IR)(–Triggering(molecular(vibraons(through(irradiaon(with(infrared(light.(Provides

INFRARED  BAND  SHAPES          Infrared  band  shapes  come  in  various  forms.  Two  of  the  most  common  are  narrow  and  broad.  Narrow  bands  are  thin  and  pointed,  like  a  dagger.  Broad  bands  are  wide  and  smoother.  

       A  typical  example  of  a  broad  band  is  that  displayed  by  O-­‐H  bonds,  such  as  those  found  in  alcohols  and  carboxylic  acids,  as  shown  below.  

Page 18: INFRARED(SPECTROSCOPY(( (IR)( - Los Angeles …METHODS(OF STRUCTURE(DETERMINATION(• Infrared’Spectroscopy’(IR)(–Triggering(molecular(vibraons(through(irradiaon(with(infrared(light.(Provides

IR  SPECTROSCOPY  

•  Where  a  parHcular  bond  absorbs  in  the  IR  depends  on  bond  strength  and  atom  mass.  

•  Stronger  bonds  vibrate  at  a  higher  frequency,  so  they  absorb  at  higher  wavenumbers.  

•  Bonds  with  lighter  atoms  vibrate  at  higher  frequency,  so  they  absorb  at  higher  wavenumbers.  

•  Bonds  can  be  thought  of  as  springs  with  weights  on  each  end.  •  The  strength  of  the  spring  is  analogous  to  the  bond  strength,  and  

the  mass  of  the  weights  is  analogous  to  atomic  mass.  •  For  two  springs  with  the  same  weight  on  each  end,  the  stronger  

spring  vibrates  at  a  higher  frequency.  •  For  two  springs  of  the  same  strength,  springs  with  lighter  weights  

vibrate  at  a  higher  frequency  than  those  with  heavier  weights.  

Page 19: INFRARED(SPECTROSCOPY(( (IR)( - Los Angeles …METHODS(OF STRUCTURE(DETERMINATION(• Infrared’Spectroscopy’(IR)(–Triggering(molecular(vibraons(through(irradiaon(with(infrared(light.(Provides

IR  SPECTROSCOPY  

•  Hooke’s  Law  describes  the  relaHonship  of  frequency  to  mass  and  bond  length.  

Page 20: INFRARED(SPECTROSCOPY(( (IR)( - Los Angeles …METHODS(OF STRUCTURE(DETERMINATION(• Infrared’Spectroscopy’(IR)(–Triggering(molecular(vibraons(through(irradiaon(with(infrared(light.(Provides

IR  ABSORPTION  RANGE  

The  four  primary  regions  of  the  IR  spectrum  

 

Page 21: INFRARED(SPECTROSCOPY(( (IR)( - Los Angeles …METHODS(OF STRUCTURE(DETERMINATION(• Infrared’Spectroscopy’(IR)(–Triggering(molecular(vibraons(through(irradiaon(with(infrared(light.(Provides

INFORMATION  OBTAINED  FROM  IR  SPECTRA  

•  IR  is  most  useful  in  providing  informaHon  about  the  presence  or  absence  of  specific  funcFonal  groups.  

•  IR  can  provide  a  molecular  fingerprint  that  can  be  used  when  comparing  samples.  If  two  pure  samples  display  the  same  IR  spectrum  it  can  be  argued  that  they  are  the  same  compound.  

•  IR  provides  informaHon  on  molecular  fragments,  specifically  funcHonal  groups.  

•  Therefore  it  is  very  limited  in  scope,  and  must  be  used  in  conjuncHon  with  other  techniques  to  provide  a  more  complete  picture  of  the  molecular  structure.  

Page 22: INFRARED(SPECTROSCOPY(( (IR)( - Los Angeles …METHODS(OF STRUCTURE(DETERMINATION(• Infrared’Spectroscopy’(IR)(–Triggering(molecular(vibraons(through(irradiaon(with(infrared(light.(Provides

IR  ABSORPTION  RANGE  

•  The  typical  IR  absorpHon  range  for  covalent  bonds  is  600  -­‐  4000  cm-­‐1.  The  graph  shows  the  regions  of  the  spectrum  where  the  following  types  of  bonds  normally  absorb.    

•  Although  the  enHre  IR  spectrum  can  be  used  as  a  fingerprint  for  the  purposes  of  comparing  molecules,  the  600  -­‐  1400  cm-­‐1  range  is  called  the  fingerprint  region.    

•  This  is  normally  a  complex  area  showing  many  bands,  frequently  overlapping  each  other.  This  complexity  limits  its  use  to  that  of  a  fingerprint,  and  should  be  ignored  by  beginners  when  analyzing  the  spectrum.  As  a  student,  you  should  focus  your  analysis  on  the  rest  of  the  spectrum,  that  is  the  region  to  the  leh  of  1400  cm-­‐1.  

Page 23: INFRARED(SPECTROSCOPY(( (IR)( - Los Angeles …METHODS(OF STRUCTURE(DETERMINATION(• Infrared’Spectroscopy’(IR)(–Triggering(molecular(vibraons(through(irradiaon(with(infrared(light.(Provides

THE  FINGERPRINT  REGION  

FuncHonal  Group  Region     Fingerprint  Region  

Page 24: INFRARED(SPECTROSCOPY(( (IR)( - Los Angeles …METHODS(OF STRUCTURE(DETERMINATION(• Infrared’Spectroscopy’(IR)(–Triggering(molecular(vibraons(through(irradiaon(with(infrared(light.(Provides

IR  SPECTROSCOPY  

•  For  a  bond  to  absorb  in  the  IR,  there  must  be  a  change  in  dipole  moment  during  the  vibraHon.  

•  Symmetrical  nonpolar  bonds  do  not  absorb  in  the  IR.  This  type  of  vibraHon  is  said  to  be  IR  inacHve.  

Page 25: INFRARED(SPECTROSCOPY(( (IR)( - Los Angeles …METHODS(OF STRUCTURE(DETERMINATION(• Infrared’Spectroscopy’(IR)(–Triggering(molecular(vibraons(through(irradiaon(with(infrared(light.(Provides

IR  SPECTROSCOPY  of  Alkanes  

Alkanes  –  combinaHon  of  C-­‐C  and  C-­‐H  bonds     C-­‐H           2850-­‐2960  cm-­‐1  (stretches),  ~3000  cm-­‐1      

  C-­‐C             1350-­‐1470  cm-­‐1    

  CH2-­‐CH2           1450-­‐1470  cm-­‐1  

  CH2-­‐CH3         1360-­‐1390  cm-­‐1  

  CH3           1450  cm-­‐1  (asymmetric)  and    

            1375  cm-­‐1  (symmetric)  

  (CH3)2CH       1380  and  1370  cm-­‐1  

  (CH3)3C       1395  (medium)  and  1370  (strong)  cm-­‐1    

Page 26: INFRARED(SPECTROSCOPY(( (IR)( - Los Angeles …METHODS(OF STRUCTURE(DETERMINATION(• Infrared’Spectroscopy’(IR)(–Triggering(molecular(vibraons(through(irradiaon(with(infrared(light.(Provides

n-­‐pentane  

CH3CH2CH2CH2CH3  

3000  cm-­‐1  

1470  &1375  cm-­‐1  

2850-­‐2960  cm-­‐1  sat’d  C-­‐H  

Page 27: INFRARED(SPECTROSCOPY(( (IR)( - Los Angeles …METHODS(OF STRUCTURE(DETERMINATION(• Infrared’Spectroscopy’(IR)(–Triggering(molecular(vibraons(through(irradiaon(with(infrared(light.(Provides

2-­‐methylbutane          (isopentane)  

Page 28: INFRARED(SPECTROSCOPY(( (IR)( - Los Angeles …METHODS(OF STRUCTURE(DETERMINATION(• Infrared’Spectroscopy’(IR)(–Triggering(molecular(vibraons(through(irradiaon(with(infrared(light.(Provides

2,3-­‐dimethylbutane  

Page 29: INFRARED(SPECTROSCOPY(( (IR)( - Los Angeles …METHODS(OF STRUCTURE(DETERMINATION(• Infrared’Spectroscopy’(IR)(–Triggering(molecular(vibraons(through(irradiaon(with(infrared(light.(Provides

cyclohexane  

no  1375  cm-­‐1  

no  –CH3  

Page 30: INFRARED(SPECTROSCOPY(( (IR)( - Los Angeles …METHODS(OF STRUCTURE(DETERMINATION(• Infrared’Spectroscopy’(IR)(–Triggering(molecular(vibraons(through(irradiaon(with(infrared(light.(Provides

IR  SPECTROSCOPY  of  Alkenes  

C=C           1680  –  1640  cm-­‐1  

=C-­‐H  (stretch)       3080  –  3020  cm-­‐1  (~3100  cm-­‐1)  

=C-­‐H  (oop  bending)         MonosubsHtuted       920  -­‐910  (s)  and                         1000  –  990  (s)  cm-­‐1  

      1,1-­‐DisubsHtuted       880  –  900  (s)  cm-­‐1  

      cis-­‐DisubsHtuted       730  –  675  (s)  cm-­‐1  

      trans-­‐DisubsHtuted     975  –  965  (s)  cm-­‐1  

      TrisubsHtuted         810  –  780  (m)  cm-­‐1  

      TetrasubsHtuted      

Page 31: INFRARED(SPECTROSCOPY(( (IR)( - Los Angeles …METHODS(OF STRUCTURE(DETERMINATION(• Infrared’Spectroscopy’(IR)(–Triggering(molecular(vibraons(through(irradiaon(with(infrared(light.(Provides

IR  SPECTRUM  OF  ALKENES  Besides  the  presence  of  C-­‐H  bonds,  alkenes  also  show  sharp,  medium  bands  corresponding  to  the  C=C  bond  stretching  vibraFon  at  about  1600-­‐1700  cm-­‐1.  Some  alkenes  might  also  show  a  band  for  the  =C-­‐H  bond  stretch,  appearing  around  3080  cm-­‐1  as  shown  below.  However,  this  band  could  be  obscured  by  the  broader  bands  appearing  around  3000  cm-­‐1  (see  next  slide)  

Graphics  source:  Wade,  Jr.,  L.G.  Organic  Chemistry,  5th  ed.  Pearson  EducaFon  Inc.,  2003    

Page 32: INFRARED(SPECTROSCOPY(( (IR)( - Los Angeles …METHODS(OF STRUCTURE(DETERMINATION(• Infrared’Spectroscopy’(IR)(–Triggering(molecular(vibraons(through(irradiaon(with(infrared(light.(Provides

1-­‐decene  

910-­‐920  &  990-­‐1000  RCH=CH2  

C=C    1640-­‐1680  

unsat’d  C-­‐H  

3020-­‐3080  cm-­‐1  

Page 33: INFRARED(SPECTROSCOPY(( (IR)( - Los Angeles …METHODS(OF STRUCTURE(DETERMINATION(• Infrared’Spectroscopy’(IR)(–Triggering(molecular(vibraons(through(irradiaon(with(infrared(light.(Provides

4-­‐methyl-­‐1-­‐pentene  

910-­‐920  &  990-­‐1000  RCH=CH2  

Page 34: INFRARED(SPECTROSCOPY(( (IR)( - Los Angeles …METHODS(OF STRUCTURE(DETERMINATION(• Infrared’Spectroscopy’(IR)(–Triggering(molecular(vibraons(through(irradiaon(with(infrared(light.(Provides

2-­‐methyl-­‐1-­‐butene  

880-­‐900  R2C=CH2  

Page 35: INFRARED(SPECTROSCOPY(( (IR)( - Los Angeles …METHODS(OF STRUCTURE(DETERMINATION(• Infrared’Spectroscopy’(IR)(–Triggering(molecular(vibraons(through(irradiaon(with(infrared(light.(Provides

IR  SPECTRUM  OF  ALKENES  This  spectrum  shows  that  the  band  appearing  around  3080  cm-­‐1  can  be  obscured  by  the  broader  bands  appearing  around  3000  cm-­‐1.  

Graphics  source:  Wade,  Jr.,  L.G.  Organic  Chemistry,  6th  ed.  Pearson  PrenFce  Hall  Inc.,  2006    

Page 36: INFRARED(SPECTROSCOPY(( (IR)( - Los Angeles …METHODS(OF STRUCTURE(DETERMINATION(• Infrared’Spectroscopy’(IR)(–Triggering(molecular(vibraons(through(irradiaon(with(infrared(light.(Provides

IR  SPECTROSCOPY  of  Alkynes  

•  Teriminal     C-­‐H  (sp)         3300  cm-­‐1  

•  Terminal     C-­‐C  triple  bd     2250  -­‐2150  cm-­‐1  

•  Internal  symmetrical  C-­‐C  triple  bond  is  absent  

•  Internal  asymmetric  C-­‐C  triple  bd  2250  –  2150  cm-­‐1  is  very  weak    

Page 37: INFRARED(SPECTROSCOPY(( (IR)( - Los Angeles …METHODS(OF STRUCTURE(DETERMINATION(• Infrared’Spectroscopy’(IR)(–Triggering(molecular(vibraons(through(irradiaon(with(infrared(light.(Provides

IR  SPECTRUM  OF  ALKYNES  

Graphics  source:  Wade,  Jr.,  L.G.  Organic  Chemistry,  6th  ed.  Pearson  PrenFce  Hall  Inc.,  2006    

Page 38: INFRARED(SPECTROSCOPY(( (IR)( - Los Angeles …METHODS(OF STRUCTURE(DETERMINATION(• Infrared’Spectroscopy’(IR)(–Triggering(molecular(vibraons(through(irradiaon(with(infrared(light.(Provides

IR  SPECTRUM  OF  A  NITRILE  In  a  manner  very  similar  to  alkynes,  nitriles  show  a  prominent  band  around  2250  cm-­‐1  caused  by  the  CN  triple  bond.  This  band  has  a  sharp,  pointed  shape  just  like  the  alkyne  C-­‐C  triple  bond,  but  because  the  CN  triple  bond  is  more  polar,  this  band  is  stronger  than  in  alkynes.  

Graphics  source:  Wade,  Jr.,  L.G.  Organic  Chemistry,  6th  ed.  Pearson  PrenFce  Hall  Inc.,  2006    

Page 39: INFRARED(SPECTROSCOPY(( (IR)( - Los Angeles …METHODS(OF STRUCTURE(DETERMINATION(• Infrared’Spectroscopy’(IR)(–Triggering(molecular(vibraons(through(irradiaon(with(infrared(light.(Provides

IR  SPECTROSCOPY  of  Arenes  

•  =C-­‐H  stretching       3100  -­‐3000  cm-­‐1  

•  C=C             1600  and  1500  cm-­‐1  

•  =C-­‐H  bending  • MonosubsHtuted  770  –  730  and  710  –  690  cm-­‐1  

•  o-­‐subsHtuted     770-­‐735  cm-­‐1  

• m-­‐subsHtuted     900  -­‐860,  810  –  750  &  725-­‐680  cm-­‐1  

•  p-­‐subsHtuted     840  –  810  cm-­‐1  

•  1,2,4-­‐subsHtuted   900  –  860  and  840  –  780  cm-­‐1  

•  1,2,3-­‐subsHtuted   780  –  740  and  710  –  680  cm-­‐1  

•  1,3,5-­‐subsHtuted   910  -­‐830  and  700  –  675  cm-­‐1    

Page 40: INFRARED(SPECTROSCOPY(( (IR)( - Los Angeles …METHODS(OF STRUCTURE(DETERMINATION(• Infrared’Spectroscopy’(IR)(–Triggering(molecular(vibraons(through(irradiaon(with(infrared(light.(Provides

Aromatics •  If the region between 1667-2000 cm-1 (w) is free of interference (C=O stretching

frequency is in this region) a weak grouping of peaks is observed for aromatic systems

•  Analysis of this region, called the overtone of bending region, can lead to a determination of the substitution pattern on the aromatic ring

Monosubstituted

1,2 disubstituted (ortho or o-)

1,2 disubstituted (meta or m-)

1,4 disubstituted (para or p-)

Page 41: INFRARED(SPECTROSCOPY(( (IR)( - Los Angeles …METHODS(OF STRUCTURE(DETERMINATION(• Infrared’Spectroscopy’(IR)(–Triggering(molecular(vibraons(through(irradiaon(with(infrared(light.(Provides

ethylbenzene  

690-­‐710,  730-­‐770  mono-­‐  

1500  &  1600  

Benzene  ring  

3000-­‐3100  cm-­‐1  

Unsat’d  C-­‐H  

Page 42: INFRARED(SPECTROSCOPY(( (IR)( - Los Angeles …METHODS(OF STRUCTURE(DETERMINATION(• Infrared’Spectroscopy’(IR)(–Triggering(molecular(vibraons(through(irradiaon(with(infrared(light.(Provides

o-­‐xylene  

735-­‐770  ortho  

Page 43: INFRARED(SPECTROSCOPY(( (IR)( - Los Angeles …METHODS(OF STRUCTURE(DETERMINATION(• Infrared’Spectroscopy’(IR)(–Triggering(molecular(vibraons(through(irradiaon(with(infrared(light.(Provides

p-­‐xylene  

810-­‐840(m)  para  

Page 44: INFRARED(SPECTROSCOPY(( (IR)( - Los Angeles …METHODS(OF STRUCTURE(DETERMINATION(• Infrared’Spectroscopy’(IR)(–Triggering(molecular(vibraons(through(irradiaon(with(infrared(light.(Provides

m-­‐xylene  

meta    

690-­‐710,  750-­‐810(m)  

Page 45: INFRARED(SPECTROSCOPY(( (IR)( - Los Angeles …METHODS(OF STRUCTURE(DETERMINATION(• Infrared’Spectroscopy’(IR)(–Triggering(molecular(vibraons(through(irradiaon(with(infrared(light.(Provides

styrene  

no  sat’d  C-­‐H  

910-­‐920  &  990-­‐1000  

RCH=CH2  mono  

1640  C=C  

Page 46: INFRARED(SPECTROSCOPY(( (IR)( - Los Angeles …METHODS(OF STRUCTURE(DETERMINATION(• Infrared’Spectroscopy’(IR)(–Triggering(molecular(vibraons(through(irradiaon(with(infrared(light.(Provides

2-­‐phenylpropene  

mono  880-­‐900  R2C=CH2  

Sat’d  C-­‐H  

Page 47: INFRARED(SPECTROSCOPY(( (IR)( - Los Angeles …METHODS(OF STRUCTURE(DETERMINATION(• Infrared’Spectroscopy’(IR)(–Triggering(molecular(vibraons(through(irradiaon(with(infrared(light.(Provides

IR  SPECTROSCOPY  of  Alcohols,  and  Phenols  

•  Free  O-­‐H,  sharp  at  3650  -­‐3600  cm-­‐1  

•  H-­‐bonded  O-­‐H,  broad  at  3650  –  3300  cm-­‐1  

•  C-­‐O-­‐H  bending,  broad  and  weak  1400  -­‐1220  cm-­‐1  

•  C-­‐O  stretching  at  1260  –  1000  cm-­‐1  

Compound         O-­‐H  stretch       C-­‐O  stretch  Phenol           3610  cm-­‐1       1220  cm-­‐1  

3°  Alcohol         3620  cm-­‐1       1150  cm-­‐1  

2°  Alcohol         3630  cm-­‐1       1100  cm-­‐1  

1°  Alcohol         3640  cm-­‐1       1050  cm-­‐1            

Page 48: INFRARED(SPECTROSCOPY(( (IR)( - Los Angeles …METHODS(OF STRUCTURE(DETERMINATION(• Infrared’Spectroscopy’(IR)(–Triggering(molecular(vibraons(through(irradiaon(with(infrared(light.(Provides

1-­‐butanol  

CH3CH2CH2CH2-­‐OH  

C-­‐O  1o  

3200-­‐3640  (b)  O-­‐H  

Page 49: INFRARED(SPECTROSCOPY(( (IR)( - Los Angeles …METHODS(OF STRUCTURE(DETERMINATION(• Infrared’Spectroscopy’(IR)(–Triggering(molecular(vibraons(through(irradiaon(with(infrared(light.(Provides

2-­‐butanol  

C-­‐O  2o  

O-­‐H  

Page 50: INFRARED(SPECTROSCOPY(( (IR)( - Los Angeles …METHODS(OF STRUCTURE(DETERMINATION(• Infrared’Spectroscopy’(IR)(–Triggering(molecular(vibraons(through(irradiaon(with(infrared(light.(Provides

tert-­‐butyl  alcohol            

C-­‐O  3o  O-­‐H  

Page 51: INFRARED(SPECTROSCOPY(( (IR)( - Los Angeles …METHODS(OF STRUCTURE(DETERMINATION(• Infrared’Spectroscopy’(IR)(–Triggering(molecular(vibraons(through(irradiaon(with(infrared(light.(Provides

IR  SPECTROSCOPY  of  Ethers  

•  C-­‐O                 1300  –  1000  cm-­‐1  

•  Phenyl  alkyl  ethers     1250  and  1040  cm-­‐1  

•  AliphaHc  ethers       1120  cm-­‐1      

Page 52: INFRARED(SPECTROSCOPY(( (IR)( - Los Angeles …METHODS(OF STRUCTURE(DETERMINATION(• Infrared’Spectroscopy’(IR)(–Triggering(molecular(vibraons(through(irradiaon(with(infrared(light.(Provides

methyl  n-­‐propyl  ether  

no  O-­‐-­‐H  

C-­‐O  ether  

Page 53: INFRARED(SPECTROSCOPY(( (IR)( - Los Angeles …METHODS(OF STRUCTURE(DETERMINATION(• Infrared’Spectroscopy’(IR)(–Triggering(molecular(vibraons(through(irradiaon(with(infrared(light.(Provides

IR  SPECTRUM  of  Carbonyl  Family,  Aldehydes  

R H

OC=O$at$1740$+$1725$(s)$cm+1

C=O$at$2860$+$2800$$cm+1

$$$$$$$$$$$$$2760$+$2700$cm+1Hboth$are$weak$bands$about$same$intensities

Oαβ C=O$at$1700$*$1680$(s)$cm*1

C=C$at$1640$*1600$cm*1

H

O

C=O$at$1700$*$1660$(s)$cm*1

C=C$at$1600$and$1450$cm*1

Oαβ

C=O$at$1680$+$1640$(s)$cm+1

Highly$conjugated$system

Page 54: INFRARED(SPECTROSCOPY(( (IR)( - Los Angeles …METHODS(OF STRUCTURE(DETERMINATION(• Infrared’Spectroscopy’(IR)(–Triggering(molecular(vibraons(through(irradiaon(with(infrared(light.(Provides

ELECTRON  DELOCALIZATION  (Resonance)    Affects  the  Frequency  of  the  AbsorpHon  

The  more  double  bond  character,  the  greater  the  frequency  (wavenumber).  

Page 55: INFRARED(SPECTROSCOPY(( (IR)( - Los Angeles …METHODS(OF STRUCTURE(DETERMINATION(• Infrared’Spectroscopy’(IR)(–Triggering(molecular(vibraons(through(irradiaon(with(infrared(light.(Provides

IR  SPECTRUM  of  Ketones  

R R

O Oαβ

R

C=O$at$1700$*$1675$(s)$cm*1

C=C$at$1644$*1617$cm*1C=O$at$1720$+$1708$(s)$cm+1

R

O

C=O$at$1700$*$1680$(s)$cm*1

C=C$at$1600$and$1450$cm*1

O

C=O$at$1670$+$1600$(s)$cm+1

C=C$at$1600$and$1450$cm+1

Page 56: INFRARED(SPECTROSCOPY(( (IR)( - Los Angeles …METHODS(OF STRUCTURE(DETERMINATION(• Infrared’Spectroscopy’(IR)(–Triggering(molecular(vibraons(through(irradiaon(with(infrared(light.(Provides

IR  SPECTRUM  of  Cyclic  Ketones  

•  Both  acyclic  and  cyclic  bending  appears  as  a  medium  intensity  1300  –  1100  cm-­‐1  

•  Cyclic  ketones  C=O  frequency  increases  with  decreasing  ring  size  

•  Strain  effects  –  changes  in  bond  angle  forced  by  the  constraints  of  a  ring  will  cause  a  slight  change  in  hybridizaHon,  and  therefore,  bond  strength  

•  As  bond  angle  decreases,  carbon  becomes  more  electronegaHve,  as  well  as  less  sp2  hybridized  (bond  angle  <  120°)  

O

1815%cm(1

O

1780&cm)1

O

1745&cm)1 1715$cm'1

O

1705%cm(1

O

Page 57: INFRARED(SPECTROSCOPY(( (IR)( - Los Angeles …METHODS(OF STRUCTURE(DETERMINATION(• Infrared’Spectroscopy’(IR)(–Triggering(molecular(vibraons(through(irradiaon(with(infrared(light.(Provides

IR  SPECTRUM  OF  ALDEHYDES  AND  KETONES  

Graphics  source:  Wade,  Jr.,  L.G.  Organic  Chemistry,  6th  ed.  Pearson  PrenFce  Hall  Inc.,  2006    

Page 58: INFRARED(SPECTROSCOPY(( (IR)( - Los Angeles …METHODS(OF STRUCTURE(DETERMINATION(• Infrared’Spectroscopy’(IR)(–Triggering(molecular(vibraons(through(irradiaon(with(infrared(light.(Provides

IR  SPECTRUM  of  Carboxylic  Acids  

•  Conjugated  carboxylic  acids  have  lower  frequency.  

•  Hydrogen  bonded  OH  group  stretch  at  lower  frequency.  

R OH

O O"H$at$3600$"$2400$cm"1

C=O$at$1730$"$1700$(s)$cm"1

C"O$at$1320$"$1210$cm"1

Page 59: INFRARED(SPECTROSCOPY(( (IR)( - Los Angeles …METHODS(OF STRUCTURE(DETERMINATION(• Infrared’Spectroscopy’(IR)(–Triggering(molecular(vibraons(through(irradiaon(with(infrared(light.(Provides

IR  SPECTRUM  OF  A  CARBOXYLIC  ACID  A  carboxylic  acid  funcHonal  group  combines  the  features  of  alcohols  and  ketones  because  it  has  both  the  O-­‐H  bond  and  the  C=O  bond.  Therefore  carboxylic  acids  show  a  very  strong  and  broad  band  covering  a  wide  range  between  2800  and  3500  cm-­‐1  for  the  O-­‐H  stretch.  At  the  same  Hme  they  also  show  the  stake-­‐shaped  band  in  the  middle  of  the  spectrum  around  1710  cm-­‐1  corresponding  to  the  C=O  stretch.  

Graphics  source:  Wade,  Jr.,  L.G.  Organic  Chemistry,  6th  ed.  Pearson  PrenFce  Hall  Inc.,  2006    

Page 60: INFRARED(SPECTROSCOPY(( (IR)( - Los Angeles …METHODS(OF STRUCTURE(DETERMINATION(• Infrared’Spectroscopy’(IR)(–Triggering(molecular(vibraons(through(irradiaon(with(infrared(light.(Provides

RESONACE  ELECTRON  DONATION  DECREASES  the  FREQUENCY  while  INDUCTIVE  ELECTRON  WITHDRAWL  INCREASES  the  

FREQUENCY  

Page 61: INFRARED(SPECTROSCOPY(( (IR)( - Los Angeles …METHODS(OF STRUCTURE(DETERMINATION(• Infrared’Spectroscopy’(IR)(–Triggering(molecular(vibraons(through(irradiaon(with(infrared(light.(Provides

IR  FREQUENCIES  of  Esters  

C-­‐O    2  bands,  one  stronger  and  broader  than  other,  1300-­‐1000  cm-­‐1  

R OR

O

C=O$at$1750$+$1735$(s)$cm+1

Oαβ

RO

C=O$at$1740$+$1715$(s)$cm+1

C=C$at$1640$+$1625$cm+1

OR

O

C=O$at$1740$+$1715$(s)$cm+1

C=C$at$1600$and$1450$cm+1

O R

O

C=O$at$1765$+$1762$(s)$cm+1

C=C$at$168$+$1640$cm+1

Page 62: INFRARED(SPECTROSCOPY(( (IR)( - Los Angeles …METHODS(OF STRUCTURE(DETERMINATION(• Infrared’Spectroscopy’(IR)(–Triggering(molecular(vibraons(through(irradiaon(with(infrared(light.(Provides

The  IR  Spectrum  of  an  Ester  

Page 63: INFRARED(SPECTROSCOPY(( (IR)( - Los Angeles …METHODS(OF STRUCTURE(DETERMINATION(• Infrared’Spectroscopy’(IR)(–Triggering(molecular(vibraons(through(irradiaon(with(infrared(light.(Provides

ESTER  IR  FREQUENCIES  O

OEthyl&butyrate1738&cm21

O

O

Methyl'benzoate1724'cm31

O

OPhenyl'acetate1765'cm01

O

O

Methyl'methacrylate1725'cm01

O

OVinyl&acetate

O

O(E)#But#2#en#1#yl-acetate

Page 64: INFRARED(SPECTROSCOPY(( (IR)( - Los Angeles …METHODS(OF STRUCTURE(DETERMINATION(• Infrared’Spectroscopy’(IR)(–Triggering(molecular(vibraons(through(irradiaon(with(infrared(light.(Provides

IR  FREQUENCIES  OF  Cyclic  Esters  (Lactones)  

OO

1770%cm(1

OO

1750&cm)1

OO

1800%cm(1

O

O

1735&cm)1

O

O

1725&cm)1

O

O

1760&cm)1

1820%cm(1

O

O

Page 65: INFRARED(SPECTROSCOPY(( (IR)( - Los Angeles …METHODS(OF STRUCTURE(DETERMINATION(• Infrared’Spectroscopy’(IR)(–Triggering(molecular(vibraons(through(irradiaon(with(infrared(light.(Provides

IR  FREQUENCIES  of  Acid  Chlorides  and  Anhydrides  

        Anhydride  and  Cyclic  Anhydride  

ConjugaHon  moves  the  absorpHon  to  lower  frequency  Ring  strain  (cyclic)  moves  the  absorpHon  to  a  higher  frequency  

R O R

O O C=O$at$1830$+$1800$and$1775$+$1740$cm+1

variable$intensitiesC+O$in$the$range$of$$1300$+$900$cm+1

Page 66: INFRARED(SPECTROSCOPY(( (IR)( - Los Angeles …METHODS(OF STRUCTURE(DETERMINATION(• Infrared’Spectroscopy’(IR)(–Triggering(molecular(vibraons(through(irradiaon(with(infrared(light.(Provides

IR  FREQUENCIES  of  Amides  

•  C=O       1680  –  1630  cm-­‐1  

•  N-­‐H     3350  and  3180  cm-­‐1  for  1°  Amides  

•  N-­‐H     3300  cm-­‐1  for  2°  Amides  

•  N-­‐H       1640  –  1550  cm-­‐1  for  1°  and  2°  Amides             (bending  vibraHons)  

Page 67: INFRARED(SPECTROSCOPY(( (IR)( - Los Angeles …METHODS(OF STRUCTURE(DETERMINATION(• Infrared’Spectroscopy’(IR)(–Triggering(molecular(vibraons(through(irradiaon(with(infrared(light.(Provides

IR  SPECTRUM  OF  AMIDES  

Graphics  source:  Wade,  Jr.,  L.G.  Organic  Chemistry,  6th  ed.  Pearson  PrenFce  Hall  Inc.,  2006    

Page 68: INFRARED(SPECTROSCOPY(( (IR)( - Los Angeles …METHODS(OF STRUCTURE(DETERMINATION(• Infrared’Spectroscopy’(IR)(–Triggering(molecular(vibraons(through(irradiaon(with(infrared(light.(Provides

IR  FREQUENCIES  of  Cyclic  Amides  (Lactams)  

Increase  in  C=O  frequency  for  decreasing  ring  size  

NH

O

1660'cm*1

HN

O

1705(cm+1

Page 69: INFRARED(SPECTROSCOPY(( (IR)( - Los Angeles …METHODS(OF STRUCTURE(DETERMINATION(• Infrared’Spectroscopy’(IR)(–Triggering(molecular(vibraons(through(irradiaon(with(infrared(light.(Provides

IR  FREQUENCIES  of  Amines  

•  Amines  •  N-­‐H       3350  and  3180  cm-­‐1  for  1°  Amines  

          1640  –  1560  cm-­‐1  for  bending  vibraHon  

•  N-­‐H     3300  cm-­‐1  for  2°  Amines  

          1500  cm-­‐1  for  bending  vibraHons  

  N-­‐H       oop  bending  800  cm-­‐1  

  C-­‐N     1350  –  1000  cm-­‐1  

Page 70: INFRARED(SPECTROSCOPY(( (IR)( - Los Angeles …METHODS(OF STRUCTURE(DETERMINATION(• Infrared’Spectroscopy’(IR)(–Triggering(molecular(vibraons(through(irradiaon(with(infrared(light.(Provides

IR  SPECTRA  OF  AMINES  

Graphics  source:  Wade,  Jr.,  L.G.  Organic  Chemistry,  6th  ed.  Pearson  PrenFce  Hall  Inc.,  2006    

Page 71: INFRARED(SPECTROSCOPY(( (IR)( - Los Angeles …METHODS(OF STRUCTURE(DETERMINATION(• Infrared’Spectroscopy’(IR)(–Triggering(molecular(vibraons(through(irradiaon(with(infrared(light.(Provides

IR  FREQUENCIES  of  Nitrogen  Containing  Compounds  

Nitriles  •  Carbon-­‐Nitrogen  triple  bond  with  medium  intensity  at  2250  cm-­‐1  

Isocyanates   R-­‐N=C=O  •  N=C=O   broad  intense  peak  at  2270  cm-­‐1  

Isothiocyanates  R-­‐N=C=S  •  N=C=S     broad  intense  peak  at  2125  cm-­‐1  

Imines   R2C=N-­‐R  •  C=N       variable  intensity  at  1690  –  1640  cm-­‐1