infrared spectroscopy of h2 in mofs - oberlin

43
Infrared Spectroscopy of H 2 in MOFs 1) More than just a characterization technique 2) Experimental probe of H 2 ∙∙∙MOF interactions 3) Requires some specialized equipment 4) Storage, quantum sieving, catalysis 5) CO 2 , CH 4 , N 2 , other gases

Upload: others

Post on 13-Nov-2021

3 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Infrared Spectroscopy of H2 in MOFs - Oberlin

Infrared Spectroscopy of H2 in MOFs 1) More than just a characterization technique

2) Experimental probe of H2∙∙∙MOF interactions

3) Requires some specialized equipment

4) Storage, quantum sieving, catalysis

5) CO2, CH4, N2, other gases

Page 2: Infrared Spectroscopy of H2 in MOFs - Oberlin

Infrared Spectroscopy! Are you crazy?

H H

Page 3: Infrared Spectroscopy of H2 in MOFs - Oberlin

Infrared Spectroscopy! Are you crazy?

The atoms are neutral

No Dipole moment

H H

Page 4: Infrared Spectroscopy of H2 in MOFs - Oberlin

Infrared Spectroscopy! Are you crazy?

Interactions with MOF can polarize H2

H H

H H

The atoms are neutral

No Dipole moment

Page 5: Infrared Spectroscopy of H2 in MOFs - Oberlin

Infrared Spectroscopy! Are you crazy?

H H

H H Interactions with MOF can polarize H2

The atoms are neutral

No Dipole moment

Page 6: Infrared Spectroscopy of H2 in MOFs - Oberlin

Infrared Spectroscopy! Are you crazy?

H H

H H Interactions with MOF can polarize H2

The atoms are neutral

No Dipole moment

H2 polarizability is almost isotropic Mostly activates pure vibrational transitions

Page 7: Infrared Spectroscopy of H2 in MOFs - Oberlin

H2 Quadrupole Mechanism

Hydrogen polarizes MOF atoms

Quadrupole moment highly anisotropic Vibrations and Ro-vibrations are activated

H2 quadrupole moment can polarize MOF atoms

Page 8: Infrared Spectroscopy of H2 in MOFs - Oberlin

Diffuse Reflectance Infrared Spectroscopy

1) Long effective optical path length

2) Powder sample require no processing

3) Typically use 10 mg of powder

4) Sample chamber can be quite small

Page 9: Infrared Spectroscopy of H2 in MOFs - Oberlin

Diffuse Reflectance Spectroscopy: Cryostat Assembly

Rev. Sci. Instr. 77, 093110 (2006)

Page 10: Infrared Spectroscopy of H2 in MOFs - Oberlin

Samples are mounted in a glove-box

Page 11: Infrared Spectroscopy of H2 in MOFs - Oberlin

This image cannot currently be displayed.

Page 12: Infrared Spectroscopy of H2 in MOFs - Oberlin

Quantum Dynamics of Adsorbed H2

• Vibration

• Rotation

• Translation Center-of-mass On the order of 100 cm-1

= 4161 cm-1 for free H2

= 59 cm-1 for free H2

( ) 02/1 vvEv +=

( ) 01 BJJEJ +=

0B

Page 13: Infrared Spectroscopy of H2 in MOFs - Oberlin

Spectroscopic notation of possible transitions

• Pure Vibrational modes called Q transitions ∆J = 0

• Q(0) and Q(1) are very close in

energy ~ 6 cm-1 apart

• Rotational Sidebands called S Transitions ∆J = 2

Q(0) 4161

S(0) 4498

ν=1 J = 0

J = 2

J = 1

J = 1

Para H2 Ortho H2 ν =0 J = 0

J = 3

Q(1) 4155

S(1) 4713

Page 14: Infrared Spectroscopy of H2 in MOFs - Oberlin

Typical Spectra for H2 in MOFs at 30 K A

bsor

banc

e

48004600440042004000Frequency (cm-1)

Q(0) and Q(1) S(0) S(1)

MOF-5

MOF-74

ZIF-8

HKUST-1

Page 15: Infrared Spectroscopy of H2 in MOFs - Oberlin

Vibrational Redshift as a Function of Binding Energy

Page 16: Infrared Spectroscopy of H2 in MOFs - Oberlin

3.2

3.0

2.8

2.6

2.4

2.2

2.0

1.8

1.6

1.4

1.2

1.0

0.8

0.6

0.4

0.2

0.0

416041404120410040804060404040204000 Frequency (cm-1)

160K

3.2

3.0

2.8

2.6

2.4

2.2

2.0

1.8

1.6

1.4

1.2

1.0

0.8

0.6

0.4

0.2

0.0

416041404120410040804060404040204000 Frequency (cm-1)

140K160K

1

3.2

3.0

2.8

2.6

2.4

2.2

2.0

1.8

1.6

1.4

1.2

1.0

0.8

0.6

0.4

0.2

0.0

416041404120410040804060404040204000 Frequency (cm-1)

120K140K160K

1

3.2

3.0

2.8

2.6

2.4

2.2

2.0

1.8

1.6

1.4

1.2

1.0

0.8

0.6

0.4

0.2

0.0

416041404120410040804060404040204000 Frequency (cm-1)

100K120K140K160K

1

3.2

3.0

2.8

2.6

2.4

2.2

2.0

1.8

1.6

1.4

1.2

1.0

0.8

0.6

0.4

0.2

0.0

416041404120410040804060404040204000 Frequency (cm-1)

90K100K120K140K160K

1

3.2

3.0

2.8

2.6

2.4

2.2

2.0

1.8

1.6

1.4

1.2

1.0

0.8

0.6

0.4

0.2

0.0

416041404120410040804060404040204000 Frequency (cm-1)

80K90K

100K120K140K160K

1

2

3.2

3.0

2.8

2.6

2.4

2.2

2.0

1.8

1.6

1.4

1.2

1.0

0.8

0.6

0.4

0.2

0.0

416041404120410040804060404040204000 Frequency (cm-1)

70K80K90K

100K120K140K160K

12

3.2

3.0

2.8

2.6

2.4

2.2

2.0

1.8

1.6

1.4

1.2

1.0

0.8

0.6

0.4

0.2

0.0

416041404120410040804060404040204000 Frequency (cm-1)

60K70K80K90K

100K120K140K160K

12

3.2

3.0

2.8

2.6

2.4

2.2

2.0

1.8

1.6

1.4

1.2

1.0

0.8

0.6

0.4

0.2

0.0

416041404120410040804060404040204000 Frequency (cm-1)

50K60K70K80K90K

100K120K140K160K

12

3.2

3.0

2.8

2.6

2.4

2.2

2.0

1.8

1.6

1.4

1.2

1.0

0.8

0.6

0.4

0.2

0.0

416041404120410040804060404040204000 Frequency (cm-1)

40K50K60K70K80K90K

100K120K140K160K

1 2

3

3.2

3.0

2.8

2.6

2.4

2.2

2.0

1.8

1.6

1.4

1.2

1.0

0.8

0.6

0.4

0.2

0.0

416041404120410040804060404040204000 Frequency (cm-1)

30K40K50K60K70K80K90K

100K120K140K160K

1 2 3

3.2

3.0

2.8

2.6

2.4

2.2

2.0

1.8

1.6

1.4

1.2

1.0

0.8

0.6

0.4

0.2

0.0

416041404120410040804060404040204000 Frequency (cm-1)

30K40K50K60K70K80K90K

100K120K140K160K

20K

1 2 3

3.2

3.0

2.8

2.6

2.4

2.2

2.0

1.8

1.6

1.4

1.2

1.0

0.8

0.6

0.4

0.2

0.0

416041404120410040804060404040204000 Frequency (cm-1)

30K40K50K60K70K80K90K

100K120K140K160K

20K15K

1 2 3

Temperature Dependent Spectra Co-MOF-74

Page 17: Infrared Spectroscopy of H2 in MOFs - Oberlin

Spectra as a function of concentration (Mg-MOF-74 at 35 K)

VL VS

J. Am. Chem. Soc. 2011,133, 20310

Page 18: Infrared Spectroscopy of H2 in MOFs - Oberlin

Quantum Dynamics of Adsorbed H2

• Vibration

• Rotation

• Translation Center-of-mass On the order of 150 cm-1

= 4161 cm-1 for free H2

= 59 cm-1 for free H2

( ) 02/1 vvEv +=

( ) 01 BJJEJ +=

0B

Page 19: Infrared Spectroscopy of H2 in MOFs - Oberlin

Translational mode energy (quantum sieving?)

Page 20: Infrared Spectroscopy of H2 in MOFs - Oberlin

Back of the Envelope Calculation

Eb

E=0

H2 D2

Page 21: Infrared Spectroscopy of H2 in MOFs - Oberlin

Standard Separation Techniques

Rae, H. K. Selecting Heavy Water Processes; ACS Symposium Series 68, American Chemical Society: Washington, DC1978.

Page 22: Infrared Spectroscopy of H2 in MOFs - Oberlin

Selectivity vs Translational Frequency

Dashed line shows simple back of the envelope Solid line shows full (harmonic) thermodynamic calculation

J. Am. Chem. Soc. 2013, 135, 9458−9464

Page 23: Infrared Spectroscopy of H2 in MOFs - Oberlin

H2 and D2 Mixtures in Mg-MOF-74

Page 24: Infrared Spectroscopy of H2 in MOFs - Oberlin

H2 and D2 Mixtures (After sitting at room temperature)

Page 25: Infrared Spectroscopy of H2 in MOFs - Oberlin

Mass Spectroscopy HD formation at room temperature

Page 26: Infrared Spectroscopy of H2 in MOFs - Oberlin

Mass Spectroscopy HD formation at room temperature

Pristine Air-Exposed

Page 27: Infrared Spectroscopy of H2 in MOFs - Oberlin

Mass Spectroscopy HD formation at room temperature

Pristine Air-Exposed Reactivated 180 oC

Page 28: Infrared Spectroscopy of H2 in MOFs - Oberlin

H2 and D2 Mixtures (After sitting at room temperature)

Page 29: Infrared Spectroscopy of H2 in MOFs - Oberlin

Fundamental

Overtone

Deuterium in MOF-5

Pure MOF-5 MOF-5 with D2

Inte

nsity

In

tens

ity

Page 30: Infrared Spectroscopy of H2 in MOFs - Oberlin

Frequency Shift Fundamental versus Overtone

Secondary

D2

H2

HD

D2

HD

H2

Q(1) Q(0) Fundamental

Overtone

J. Mol. Spect. 2015, 307, 20-26

Page 31: Infrared Spectroscopy of H2 in MOFs - Oberlin
Page 32: Infrared Spectroscopy of H2 in MOFs - Oberlin

Direct Experimental Evidence of Binding Mechanism?

J. Am. Chem. Soc. 136, 17827 (2014) Tsivion, Long, and Head-Gordon

How could we most directly determine the relative contribution of these three mechanisms? “More direct” implies less need for theoretical modelling.

Page 33: Infrared Spectroscopy of H2 in MOFs - Oberlin

Typical Spectra for H2 in MOFs at 30 K A

bsor

banc

e

48004600440042004000Frequency (cm-1)

Q(0) and Q(1) S(0) S(1)

MOF-5

MOF-74

ZIF-8

HKUST-1

Page 34: Infrared Spectroscopy of H2 in MOFs - Oberlin

Binding Sites in MOF-5

J.L.C. Rowsell, E.C. Spencer, J. Eckert, J. Howard, and O.M. Yaghi, Science, 309, 1350 (2005)

E. Spencer, J. Howard, G. McIntyre, J. L. C. Rowsell, and O. M. Yaghi, Chem. Commun. 3, 278 (2006).

Page 35: Infrared Spectroscopy of H2 in MOFs - Oberlin

MOF-5 Temperature Dependence

Page 36: Infrared Spectroscopy of H2 in MOFs - Oberlin

Concentration Dependence

Page 37: Infrared Spectroscopy of H2 in MOFs - Oberlin

MOF-5 with H2 Molecules at Primary Site

Page 38: Infrared Spectroscopy of H2 in MOFs - Oberlin

Stick Spectrum for Interacting ortho-H2 Pairs

Page 39: Infrared Spectroscopy of H2 in MOFs - Oberlin

Ortho to Para Conversion with Time

Page 40: Infrared Spectroscopy of H2 in MOFs - Oberlin

H2 and D2 Mixture

Page 41: Infrared Spectroscopy of H2 in MOFs - Oberlin

CO2 in Different Metal MOF-74 J. Phys. Chem. C 2015, 119, 5293-5300

Page 42: Infrared Spectroscopy of H2 in MOFs - Oberlin

Acknowledgements

Jesse Rowsell 1977-2015

Page 43: Infrared Spectroscopy of H2 in MOFs - Oberlin

Undergraduate Students on Our Papers

Michael Friedman

Kelty Allen

John Matters Jocienne

Nelson

Brian Burkholder

Ben Thompson

Elizabeth Gilmour

Jenny Schloss

Patrick Landreman

Jesse Hopkins

Ross Myers

Chris Pierce