inexact newton methods for large-scale nonlinear...

59
Introduction Interior-Point Method SQO Method Summary Inexact Newton Methods for Large-Scale Nonlinear Optimization Frank E. Curtis, Lehigh University involving joint work with Johannes Huber, University of Basel Travis Johnson, Northwestern University Daniel P. Robinson, Johns Hopkins University Olaf Schenk, University of Lugano Andreas W¨ achter, Northwestern University IBM T. J. Watson Research Center, Math Seminar 11 November 2013 Inexact Newton Methods for Large-Scale Nonlinear Optimization 1 of 59

Upload: others

Post on 03-Jul-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Inexact Newton Methods for Large-Scale Nonlinear Optimizationcoral.ise.lehigh.edu/frankecurtis/files/talks/ibm_13.pdf · Daniel P. Robinson, Johns Hopkins University Olaf Schenk,

Introduction Interior-Point Method SQO Method Summary

Inexact Newton Methods forLarge-Scale Nonlinear Optimization

Frank E. Curtis, Lehigh University

involving joint work with

Johannes Huber, University of BaselTravis Johnson, Northwestern University

Daniel P. Robinson, Johns Hopkins UniversityOlaf Schenk, University of Lugano

Andreas Wachter, Northwestern University

IBM T. J. Watson Research Center, Math Seminar

11 November 2013

Inexact Newton Methods for Large-Scale Nonlinear Optimization 1 of 59

Page 2: Inexact Newton Methods for Large-Scale Nonlinear Optimizationcoral.ise.lehigh.edu/frankecurtis/files/talks/ibm_13.pdf · Daniel P. Robinson, Johns Hopkins University Olaf Schenk,

Introduction Interior-Point Method SQO Method Summary

Outline

Introduction

Interior-Point Method

Sequential Quadratic Optimization Method

Summary

Inexact Newton Methods for Large-Scale Nonlinear Optimization 2 of 59

Page 3: Inexact Newton Methods for Large-Scale Nonlinear Optimizationcoral.ise.lehigh.edu/frankecurtis/files/talks/ibm_13.pdf · Daniel P. Robinson, Johns Hopkins University Olaf Schenk,

Introduction Interior-Point Method SQO Method Summary

Outline

Introduction

Interior-Point Method

Sequential Quadratic Optimization Method

Summary

Inexact Newton Methods for Large-Scale Nonlinear Optimization 3 of 59

Page 4: Inexact Newton Methods for Large-Scale Nonlinear Optimizationcoral.ise.lehigh.edu/frankecurtis/files/talks/ibm_13.pdf · Daniel P. Robinson, Johns Hopkins University Olaf Schenk,

Introduction Interior-Point Method SQO Method Summary

Problem formulation

Consider a constrained nonlinear optimization problem:

minx

f(x)

s.t. c(x) = 0, c(x) ≤ 0(NLP)

Want a solver with the following features:

I Scalable step computation

I Superlinear convergence in primal-dual space

I Handles negative curvature

In addition, in real-time optimization, we want:

I Monotonicity in a measure of progress

I Active-set detection (for warm-starting)

Inexact Newton Methods for Large-Scale Nonlinear Optimization 4 of 59

Page 5: Inexact Newton Methods for Large-Scale Nonlinear Optimizationcoral.ise.lehigh.edu/frankecurtis/files/talks/ibm_13.pdf · Daniel P. Robinson, Johns Hopkins University Olaf Schenk,

Introduction Interior-Point Method SQO Method Summary

Motivating example 1: Hyperthermia treatment planning

I Cancer therapy to heat large, deeply seated tumors by radio wave adsorption

I Heat the tumor to a target temperature with minimal damage to nearby cells

Inexact Newton Methods for Large-Scale Nonlinear Optimization 5 of 59

Page 6: Inexact Newton Methods for Large-Scale Nonlinear Optimizationcoral.ise.lehigh.edu/frankecurtis/files/talks/ibm_13.pdf · Daniel P. Robinson, Johns Hopkins University Olaf Schenk,

Introduction Interior-Point Method SQO Method Summary

Motivating example 2: Server room cooling

I Heat generating equipment in a server room must be cooled

I Place and control ACs to satisfy cooling demands while minimizing costs

I Suggested by Michael Henderson, Vanessa Lopez, and Ulisses Mello (IBM)

Inexact Newton Methods for Large-Scale Nonlinear Optimization 6 of 59

Page 7: Inexact Newton Methods for Large-Scale Nonlinear Optimizationcoral.ise.lehigh.edu/frankecurtis/files/talks/ibm_13.pdf · Daniel P. Robinson, Johns Hopkins University Olaf Schenk,

Introduction Interior-Point Method SQO Method Summary

Algorithmic framework: Basic

(NLP) solver

subproblem solver

linear solver

Inexact Newton Methods for Large-Scale Nonlinear Optimization 7 of 59

Page 8: Inexact Newton Methods for Large-Scale Nonlinear Optimizationcoral.ise.lehigh.edu/frankecurtis/files/talks/ibm_13.pdf · Daniel P. Robinson, Johns Hopkins University Olaf Schenk,

Introduction Interior-Point Method SQO Method Summary

Algorithmic framework: Detailed

(NLP) solver

approximation model

termination conditions

approximate

solution

step type

subproblem solver

approximation model

termination conditions

approximate

solution

step type

linear solver

Inexact Newton Methods for Large-Scale Nonlinear Optimization 8 of 59

Page 9: Inexact Newton Methods for Large-Scale Nonlinear Optimizationcoral.ise.lehigh.edu/frankecurtis/files/talks/ibm_13.pdf · Daniel P. Robinson, Johns Hopkins University Olaf Schenk,

Introduction Interior-Point Method SQO Method Summary

Algorithmic framework: Inexact

(NLP) solver

approximation modeltermination conditions

approximate solutionstep type

subproblem solver

approximation modeltermination conditions

approximate solutionstep type

linear solver

Inexact Newton Methods for Large-Scale Nonlinear Optimization 9 of 59

Page 10: Inexact Newton Methods for Large-Scale Nonlinear Optimizationcoral.ise.lehigh.edu/frankecurtis/files/talks/ibm_13.pdf · Daniel P. Robinson, Johns Hopkins University Olaf Schenk,

Introduction Interior-Point Method SQO Method Summary

Newton’s method for nonlinear equations

Newton’s method for solving the nonlinear system

F (x) = 0

involves solving the linear system (approximation model)

F (xk) +∇F (xk)dk = 0.

If we measure progress with the merit function

φ(x) := 12‖F (x)‖22,

then there is consistency between the step and merit function:

∇φ(xk)T dk = F (xk)T∇F (xk)dk = −‖F (xk)‖22 ≤ 0.

Inexact Newton Methods for Large-Scale Nonlinear Optimization 10 of 59

Page 11: Inexact Newton Methods for Large-Scale Nonlinear Optimizationcoral.ise.lehigh.edu/frankecurtis/files/talks/ibm_13.pdf · Daniel P. Robinson, Johns Hopkins University Olaf Schenk,

Introduction Interior-Point Method SQO Method Summary

Inexact Newton for nonlinear equations

Inexact Newton for solving the nonlinear system

F (x) = 0

involves approximately solving the linear system (approximation model)

F (xk) +∇F (xk)dk = rk.

If we measure progress with the merit function

φ(x) := 12‖F (x)‖22 and require1 ‖rk‖2 ≤ κ‖F (xk)‖2 for κ ∈ (0, 1),

then there is consistency between the step and merit function:

∇φ(xk)T dk = F (xk)T∇F (xk)dk = −‖F (xk)‖22 + F (xk)T rk ≤ (κ− 1)‖F (xk)‖22 ≤ 0.

1Dembo, Eisenstat, Steihaug (1982)

Inexact Newton Methods for Large-Scale Nonlinear Optimization 11 of 59

Page 12: Inexact Newton Methods for Large-Scale Nonlinear Optimizationcoral.ise.lehigh.edu/frankecurtis/files/talks/ibm_13.pdf · Daniel P. Robinson, Johns Hopkins University Olaf Schenk,

Introduction Interior-Point Method SQO Method Summary

Newton’s method for unconstrained optimization

Newton’s method for solving the unconstrained optimization problem

minxf(x) =⇒ ∇f(x) = 0

involves solving the linear system (approximation model)

∇f(xk) +∇2f(xk)dk = 0.

If we measure progress with the merit function

φ(x) := f(x) (NOT 12‖∇f(x)‖22)

then there MIGHT NOT BE consistency between the step and merit function:

∇φ(xk)T dk = ∇f(xk)T dk = −dTk∇2f(xk)dk ≤ 0

Inexact Newton Methods for Large-Scale Nonlinear Optimization 12 of 59

Page 13: Inexact Newton Methods for Large-Scale Nonlinear Optimizationcoral.ise.lehigh.edu/frankecurtis/files/talks/ibm_13.pdf · Daniel P. Robinson, Johns Hopkins University Olaf Schenk,

Introduction Interior-Point Method SQO Method Summary

Inexact Newton for unconstrained optimization

Inexact Newton for solving the unconstrained optimization problem

minxf(x) =⇒ ∇f(x) = 0

involves approximately solving the linear system (approximation model)

∇f(xk) +∇2f(xk)dk = rk.

If we measure progress with the merit function

φ(x) := f(x) and require ‖rk‖ ≤ κ‖∇f(xk)‖ for κ ∈ (0, 1),

then there MIGHT NOT BE consistency between the step and merit function:

∇φ(xk)T dk = ∇f(xk)T dk = −dTk∇2f(xk)dk + rTk dk

?≤ 0

Inexact Newton Methods for Large-Scale Nonlinear Optimization 13 of 59

Page 14: Inexact Newton Methods for Large-Scale Nonlinear Optimizationcoral.ise.lehigh.edu/frankecurtis/files/talks/ibm_13.pdf · Daniel P. Robinson, Johns Hopkins University Olaf Schenk,

Introduction Interior-Point Method SQO Method Summary

Newton’s method for constrained optimization

Newton’s method for solving the constrained optimization problem(minx

f(x)

s.t. c(x) = 0

)=⇒

»∇f(x) +∇c(x)y

c(x)

–= 0

involves solving the linear system (approximation model)»∇xL(xk, yk)

c(xk)

–+

»∇2xxL(xk, yk) ∇c(xk)∇c(xk)T 0

– »dkδk

–= 0.

If we measure progress with the merit function

φ(x, µ) := µf(x) + ‖c(x)‖1,

then there MIGHT NOT BE consistency between the step and merit function:

Dφ(xk, dk) ≤ −µ∇f(xk)T dk − ‖c(xk)‖1?≤ 0

Inexact Newton Methods for Large-Scale Nonlinear Optimization 14 of 59

Page 15: Inexact Newton Methods for Large-Scale Nonlinear Optimizationcoral.ise.lehigh.edu/frankecurtis/files/talks/ibm_13.pdf · Daniel P. Robinson, Johns Hopkins University Olaf Schenk,

Introduction Interior-Point Method SQO Method Summary

Problem formulation

Consider a constrained nonlinear optimization problem:

minx

f(x)

s.t. c(x) = 0, c(x) ≤ 0(NLP)

Even if (NLP) is feasible, we need to balance progress between

I Minimizing the objective function

I Minimizing constraint violation

If (NLP) is infeasible, then we simply want to minimize constraint violation:

minx

v(x), where v(x) := ‖c(x)‖1 + ‖[c(x)]+‖1. (FP)

(A minimizer of (NLP) is always a minimizer of (FP).)

Inexact Newton Methods for Large-Scale Nonlinear Optimization 15 of 59

Page 16: Inexact Newton Methods for Large-Scale Nonlinear Optimizationcoral.ise.lehigh.edu/frankecurtis/files/talks/ibm_13.pdf · Daniel P. Robinson, Johns Hopkins University Olaf Schenk,

Introduction Interior-Point Method SQO Method Summary

Outline

Introduction

Interior-Point Method

Sequential Quadratic Optimization Method

Summary

Inexact Newton Methods for Large-Scale Nonlinear Optimization 16 of 59

Page 17: Inexact Newton Methods for Large-Scale Nonlinear Optimizationcoral.ise.lehigh.edu/frankecurtis/files/talks/ibm_13.pdf · Daniel P. Robinson, Johns Hopkins University Olaf Schenk,

Introduction Interior-Point Method SQO Method Summary

Interior-point method with inexact step computations

We propose an interior-point method for large-scale nonlinear optimization:

I Handles rank deficiency, ill-conditioning, nonconvexity

I Inexactness allowed/controlled with implementable conditions

I Global convergence guarantees

I Encouraging numerical results

I Important remaining issues...

Inexact Newton Methods for Large-Scale Nonlinear Optimization 17 of 59

Page 18: Inexact Newton Methods for Large-Scale Nonlinear Optimizationcoral.ise.lehigh.edu/frankecurtis/files/talks/ibm_13.pdf · Daniel P. Robinson, Johns Hopkins University Olaf Schenk,

Introduction Interior-Point Method SQO Method Summary

Algorithm highlights

Formulate a logarithmic barrier subproblem:

minx

f(x)− γeT (ln s)

s.t. c(x) = 0, c(x) + s = 0(BP)

Apply an iterative method to solve the linear system:2664Hk 0 ∇ck ∇ck0 Ωk 0 Sk∇cTk 0 0 0∇cTk Sk 0 0

37752664dxkdskδkδk

3775 = −

2664∇fk +∇ckyk +∇ckyk

−γe+ Skykck

ck + sk

3775I Slack reset, fraction-to-the-boundary rules

I Step decomposition into normal and tangential components2

I Matrix modifications for handling nonconvexity

I Inexact step must satisfy 1 of 3 termination tests

I Dynamic update for penalty parameter

2Byrd, Omojokun (1989)

Inexact Newton Methods for Large-Scale Nonlinear Optimization 18 of 59

Page 19: Inexact Newton Methods for Large-Scale Nonlinear Optimizationcoral.ise.lehigh.edu/frankecurtis/files/talks/ibm_13.pdf · Daniel P. Robinson, Johns Hopkins University Olaf Schenk,

Introduction Interior-Point Method SQO Method Summary

Convergence theory for (BP)3

AssumptionThe sequence (xk, sk, yk, yk) is contained in a convex set over which f , c, and cand their first derivatives are bounded and Lipschitz continuous.

TheoremIf all limit points of the constraint Jacobian have full row rank, then

limk→∞

‚‚‚‚‚‚‚‚2664∇fk +∇ckyk +∇ckyk

−γe+ Skykck

ck + sk

3775‚‚‚‚‚‚‚‚ = 0.

Otherwise, we at least have

limk→∞

‚‚‚‚»∇ck ∇ck0 Sk

– »ck

ck + sk

–‚‚‚‚ = 0.

and, if µk is bounded away from zero, then

limk→∞

‚‚‚‚»∇fk +∇ckyk +∇ckyk−γe+ Skyk

–‚‚‚‚ = 0.

3Curtis, Schenk, Wachter (2010)

Inexact Newton Methods for Large-Scale Nonlinear Optimization 19 of 59

Page 20: Inexact Newton Methods for Large-Scale Nonlinear Optimizationcoral.ise.lehigh.edu/frankecurtis/files/talks/ibm_13.pdf · Daniel P. Robinson, Johns Hopkins University Olaf Schenk,

Introduction Interior-Point Method SQO Method Summary

Convergence theory for (NLP)3

TheoremIf the algorithm yields a sufficiently accurate solution of (BP) for each γj → 0and if the linear independence constraint qualification (LICQ) holds at a limitpoint x of xj, then there exist Lagrange multipliers (y, y) such that thefirst-order optimality conditions of (NLP) are satisfied.

Inexact Newton Methods for Large-Scale Nonlinear Optimization 20 of 59

Page 21: Inexact Newton Methods for Large-Scale Nonlinear Optimizationcoral.ise.lehigh.edu/frankecurtis/files/talks/ibm_13.pdf · Daniel P. Robinson, Johns Hopkins University Olaf Schenk,

Introduction Interior-Point Method SQO Method Summary

Implementation details

I Incorporated in IPOPT software package4

I interior-point algorithm with inexact step computationsI flexible penalty function for promoting faster convergence5

I tests on ∼ 700 CUTEr problems (almost) on par with original IPOPT

I Linear systems solved with PARDISO6

I includes iterative linear system solvers, e.g., SQMR7

I incomplete multilevel factorization with inverse-based pivotingI stabilized by symmetric-weighted matchings

I Server cooling room example coded w/ libmesh8

4Wachter, Laird, Biegler5Curtis, Nocedal (2008)6Schenk, Gartner7Freund (1997)8Kirk, Peterson, Stogner, Carey

Inexact Newton Methods for Large-Scale Nonlinear Optimization 21 of 59

Page 22: Inexact Newton Methods for Large-Scale Nonlinear Optimizationcoral.ise.lehigh.edu/frankecurtis/files/talks/ibm_13.pdf · Daniel P. Robinson, Johns Hopkins University Olaf Schenk,

Introduction Interior-Point Method SQO Method Summary

Hyperthermia treatment planning

Let uj = ajeiφj and Mjk(x) = 〈Ej(x), Ek(x)〉 where Ej = sin(jx1x2x3π):

min1

2

(y(x)− yt(x))2dx

s.t.

8<: −∆y(x)− 10(y(x)− 37) = u∗M(x)u in Ω37.0 ≤ y(x) ≤ 37.5 on ∂Ω42.0 ≤ y(x) ≤ 44.0 in Ω0

Original IPOPT with N = 32 requires 408 seconds per iteration.

N n p q # iter CPU sec (per iter)16 4116 2744 2994 68 22.893 (0.3367)32 32788 27000 13034 51 3055.9 (59.920)

Inexact Newton Methods for Large-Scale Nonlinear Optimization 22 of 59

Page 23: Inexact Newton Methods for Large-Scale Nonlinear Optimizationcoral.ise.lehigh.edu/frankecurtis/files/talks/ibm_13.pdf · Daniel P. Robinson, Johns Hopkins University Olaf Schenk,

Introduction Interior-Point Method SQO Method Summary

Server room cooling

Let φ(x) be the air flow velocity potential:

minX

civACi

s.t.

8>>>>>><>>>>>>:

∇φ(x) = 0 in Ω∂nφ(x) = 0 on ∂Ωwall∂nφ(x) = −vACi on ∂ΩACiφ(x) = 0 in ΩExhj

‖∇φ(x)‖22 ≥ v2min on ∂Ωhot

vACi ≥ 0

Original IPOPT with h = 0.05 requires 2390.09 seconds per iteration.

h n p q # iter CPU sec (per iter)0.10 43816 43759 4793 47 1697.47 (36.1164)0.05 323191 323134 19128 54 28518.4 (528.119)

Inexact Newton Methods for Large-Scale Nonlinear Optimization 23 of 59

Page 24: Inexact Newton Methods for Large-Scale Nonlinear Optimizationcoral.ise.lehigh.edu/frankecurtis/files/talks/ibm_13.pdf · Daniel P. Robinson, Johns Hopkins University Olaf Schenk,

Introduction Interior-Point Method SQO Method Summary

Server room cooling solution

(multiplier values)

Inexact Newton Methods for Large-Scale Nonlinear Optimization 24 of 59

Page 25: Inexact Newton Methods for Large-Scale Nonlinear Optimizationcoral.ise.lehigh.edu/frankecurtis/files/talks/ibm_13.pdf · Daniel P. Robinson, Johns Hopkins University Olaf Schenk,

Introduction Interior-Point Method SQO Method Summary

Server room cooling solution (multiplier values)

Inexact Newton Methods for Large-Scale Nonlinear Optimization 25 of 59

Page 26: Inexact Newton Methods for Large-Scale Nonlinear Optimizationcoral.ise.lehigh.edu/frankecurtis/files/talks/ibm_13.pdf · Daniel P. Robinson, Johns Hopkins University Olaf Schenk,

Introduction Interior-Point Method SQO Method Summary

Summary and challenges

Interior point method with inexact step computations:

I Handles rank deficiency, ill-conditioning, nonconvexity

I Inexactness allowed/controlled with implementable conditions

I Global convergence guarantees

I Encouraging numerical results

Challenges ahead:

I PRECONDITIONING

I Handling lack of strict complementarity

I Mesh refinement and warm-starting

Inexact Newton Methods for Large-Scale Nonlinear Optimization 26 of 59

Page 27: Inexact Newton Methods for Large-Scale Nonlinear Optimizationcoral.ise.lehigh.edu/frankecurtis/files/talks/ibm_13.pdf · Daniel P. Robinson, Johns Hopkins University Olaf Schenk,

Introduction Interior-Point Method SQO Method Summary

Outline

Introduction

Interior-Point Method

Sequential Quadratic Optimization Method

Summary

Inexact Newton Methods for Large-Scale Nonlinear Optimization 27 of 59

Page 28: Inexact Newton Methods for Large-Scale Nonlinear Optimizationcoral.ise.lehigh.edu/frankecurtis/files/talks/ibm_13.pdf · Daniel P. Robinson, Johns Hopkins University Olaf Schenk,

Introduction Interior-Point Method SQO Method Summary

Sequential quadratic optimization

Advantages:

I “Parameter free” search direction computation (ideally)

I Strong global convergence properties and behavior

I Active-set identification =⇒ Newton-like local convergence

Disadvantage:

I Quadratic subproblems (QPs) are expensive to solve exactly

Inexact Newton Methods for Large-Scale Nonlinear Optimization 28 of 59

Page 29: Inexact Newton Methods for Large-Scale Nonlinear Optimizationcoral.ise.lehigh.edu/frankecurtis/files/talks/ibm_13.pdf · Daniel P. Robinson, Johns Hopkins University Olaf Schenk,

Introduction Interior-Point Method SQO Method Summary

Fritz John and penalty functions

(NLP):

minx

f(x)

s.t. c(x) = 0, c(x) ≤ 0

(FP):

minx

v(x) :=

‚‚‚‚»c(x)

[c(x)]+

–‚‚‚‚1

Define the Fritz John (FJ) function

F(x, y, y, µ) := µf(x) + c(x)T y + c(x)T y

and the `1-norm exact penalty function

φ(x, µ) := µf(x) + v(x).

µ ≥ 0 acts as objective multiplier/penalty parameter.

Inexact Newton Methods for Large-Scale Nonlinear Optimization 29 of 59

Page 30: Inexact Newton Methods for Large-Scale Nonlinear Optimizationcoral.ise.lehigh.edu/frankecurtis/files/talks/ibm_13.pdf · Daniel P. Robinson, Johns Hopkins University Olaf Schenk,

Introduction Interior-Point Method SQO Method Summary

Optimality conditions

(NLP):

minx

f(x)

s.t. c(x) = 0, c(x) ≤ 0

(FP):

minx

v(x) :=

‚‚‚‚»c(x)

[c(x)]+

–‚‚‚‚1

(PP):

minx

φ(x, µ) := µf(x)+v(x)

(FJ):

F(x, y, y, µ) :=

µf(x) + c(x)Ty + c(x)

Ty

KKT conditions for (FP) and (PP) expressed with residual

ρ(x, y, y, µ) :=

26664µg(x) + J(x)y + J(x)y

min[c(x)]+, e− ymin[c(x)]−, e+ ymin[c(x)]+, e− ymin[c(x)]−, y

37775I FJ point:

ρ(x, y, y, µ) = 0, v(x) = 0, (y, y, µ) 6= 0

I KKT point:

ρ(x, y, y, µ) = 0, v(x) = 0, µ > 0

I Infeasible stationary point:

ρ(x, y, y, 0) = 0, v(x) > 0

Inexact Newton Methods for Large-Scale Nonlinear Optimization 30 of 59

Page 31: Inexact Newton Methods for Large-Scale Nonlinear Optimizationcoral.ise.lehigh.edu/frankecurtis/files/talks/ibm_13.pdf · Daniel P. Robinson, Johns Hopkins University Olaf Schenk,

Introduction Interior-Point Method SQO Method Summary

Penalty function model and QP subproblems

(NLP):

minx

f(x)

s.t. c(x) = 0, c(x) ≤ 0

(FP):

minx

v(x) :=

‚‚‚‚»c(x)

[c(x)]+

–‚‚‚‚1

(PP):

minx

φ(x, µ) := µf(x)+v(x)

(FJ):

F(x, y, y, µ) :=

µf(x) + c(x)Ty + c(x)

Ty

KKT residual:

ρ(x, y, y, µ)

Define a local model of φ(·, µ) at xk:

lk(d, µ) := µ(fk + gTk d) + ‖ck + JTk d‖1 + ‖[ck + JTk d]+‖1

Reduction in this model yielded by a given d:

∆lk(d, µ) := ∆l(0, µ)−∆l(d, µ)

Two subproblems of interest:

mind−∆lk(d, µk) + 1

2dTHkd (PQP)

mind−∆lk(d, 0) + 1

2dTHkd (FQP)

∆lk(d, µ) > 0 implies d is a direction of strict descent for φ(·, µ) from xk

Inexact Newton Methods for Large-Scale Nonlinear Optimization 31 of 59

Page 32: Inexact Newton Methods for Large-Scale Nonlinear Optimizationcoral.ise.lehigh.edu/frankecurtis/files/talks/ibm_13.pdf · Daniel P. Robinson, Johns Hopkins University Olaf Schenk,

Introduction Interior-Point Method SQO Method Summary

Optimality conditions (for QPs)

(NLP):

minx

f(x)

s.t. c(x) = 0, c(x) ≤ 0

(FP):

minx

v(x) :=

‚‚‚‚»c(x)

[c(x)]+

–‚‚‚‚1

(PP):

minx

φ(x, µ) := µf(x)+v(x)

(FJ):

F(x, y, y, µ) :=

µf(x) + c(x)Ty + c(x)

Ty

KKT residual:

ρ(x, y, y, µ)

Local model of φ at xk:

lk(d, µ)

KKT conditions for (PQP) and (FQP) expressed with

ρk(d, y, y, µ,H) :=

266664µgk +Hd+ Jky + Jky

min[ck + JTk d]+, e− ymin[ck + JTk d]−, e+ ymin[ck + J

Tk d]+, e− y

min[ck + JTk d]−, y

377775I “Exact” solution of (PQP):

ρk(d, y, y, µk, Hk) = 0

I “Exact” solution of (FQP):

ρk(d, y, y, 0, Hk) = 0

Inexact Newton Methods for Large-Scale Nonlinear Optimization 32 of 59

Page 33: Inexact Newton Methods for Large-Scale Nonlinear Optimizationcoral.ise.lehigh.edu/frankecurtis/files/talks/ibm_13.pdf · Daniel P. Robinson, Johns Hopkins University Olaf Schenk,

Introduction Interior-Point Method SQO Method Summary

“Exact” SQO: Scenario A

(NLP):

minx

f(x)

s.t. c(x) = 0, c(x) ≤ 0

(FP):

minx

v(x) :=

‚‚‚‚»c(x)

[c(x)]+

–‚‚‚‚1

(PP):

minx

φ(x, µ) := µf(x)+v(x)

(FJ):

F(x, y, y, µ) :=

µf(x) + c(x)Ty + c(x)

Ty

KKT residuals:

ρ(x, y, y, µ)

ρk(d, y, y, µ,H)

Local model of φ at xk:

lk(d, µ)

Solution (dk, yk+1, yk+1) of (PQP) satisfies

I ρ(dk, yk+1, yk+1, µk, Hk) = 0

I ∆lk(dk, µk) ≥ εvk for ε ∈ (0, 1)

then

I dk ← dk is the search direction

I µk+1 ← µk

Inexact Newton Methods for Large-Scale Nonlinear Optimization 33 of 59

Page 34: Inexact Newton Methods for Large-Scale Nonlinear Optimizationcoral.ise.lehigh.edu/frankecurtis/files/talks/ibm_13.pdf · Daniel P. Robinson, Johns Hopkins University Olaf Schenk,

Introduction Interior-Point Method SQO Method Summary

“Exact” SQO: Scenario B

(NLP):

minx

f(x)

s.t. c(x) = 0, c(x) ≤ 0

(FP):

minx

v(x) :=

‚‚‚‚»c(x)

[c(x)]+

–‚‚‚‚1

(PP):

minx

φ(x, µ) := µf(x)+v(x)

(FJ):

F(x, y, y, µ) :=

µf(x) + c(x)Ty + c(x)

Ty

KKT residuals:

ρ(x, y, y, µ)

ρk(d, y, y, µ,H)

Local model of φ at xk:

lk(d, µ)

Solution (dk, yk+1, yk+1) of (PQP) satisfies

I ρ(dk, yk+1, yk+1, µk, Hk) = 0

I ∆lk(dk, µk) ≥ ε∆lk(dk, 0) for ε ∈ (0, 1)

where solution (dk, yk+1, yk+1) of (FQP) satisfies

I ρ(dk, yk+1, yk+1, 0, Hk) = 0

then

I dk ← dk is the search direction

I µk+1 ← µk

Inexact Newton Methods for Large-Scale Nonlinear Optimization 34 of 59

Page 35: Inexact Newton Methods for Large-Scale Nonlinear Optimizationcoral.ise.lehigh.edu/frankecurtis/files/talks/ibm_13.pdf · Daniel P. Robinson, Johns Hopkins University Olaf Schenk,

Introduction Interior-Point Method SQO Method Summary

“Exact” SQO: Scenario C

(NLP):

minx

f(x)

s.t. c(x) = 0, c(x) ≤ 0

(FP):

minx

v(x) :=

‚‚‚‚»c(x)

[c(x)]+

–‚‚‚‚1

(PP):

minx

φ(x, µ) := µf(x)+v(x)

(FJ):

F(x, y, y, µ) :=

µf(x) + c(x)Ty + c(x)

Ty

KKT residuals:

ρ(x, y, y, µ)

ρk(d, y, y, µ,H)

Local model of φ at xk:

lk(d, µ)

Solution (dk, yk+1, yk+1) of (PQP) satisfies

I ρ(dk, yk+1, yk+1, µk, Hk) = 0

and solution (dk, yk+1, yk+1) of (FQP) satisfies

I ρ(dk, yk+1, yk+1, 0, Hk) = 0

then

I dk ← τdk + (1− τ)dk so ∆lk(dk, 0) ≥ ε∆lk(dk, 0)

I µk+1 < µk so ∆lk(dk, µk) ≥ β∆lk(dk, 0) for β ∈ (0, 1)

I Overall:

∆lk(dk, µk) ≥ β∆lk(dk, 0) ≥ βε∆lk(dk, 0)

Inexact Newton Methods for Large-Scale Nonlinear Optimization 35 of 59

Page 36: Inexact Newton Methods for Large-Scale Nonlinear Optimizationcoral.ise.lehigh.edu/frankecurtis/files/talks/ibm_13.pdf · Daniel P. Robinson, Johns Hopkins University Olaf Schenk,

Introduction Interior-Point Method SQO Method Summary

“Exact” SQO

repeat

(1) Check whether KKT point or infeasible stationary point has been obtained.

(2) Compute an exact solution of (PQP).(a) If Scenario A occurs, then go to step 4.

(3) Compute an exact solution of (FQP).(a) If Scenario B occurs, then go to step 4.

(b) Otherwise, Scenario C occurs.

(4) Perform a backtracking line search to reduce φ(·, µk+1).

endrepeat

Inexact Newton Methods for Large-Scale Nonlinear Optimization 36 of 59

Page 37: Inexact Newton Methods for Large-Scale Nonlinear Optimizationcoral.ise.lehigh.edu/frankecurtis/files/talks/ibm_13.pdf · Daniel P. Robinson, Johns Hopkins University Olaf Schenk,

Introduction Interior-Point Method SQO Method Summary

Inexact algorithm preview

Our inexact algorithm involves 6 (!) scenarios:

I 3 are derived from scenarios in the “exact” algorithm

I 3 focus on penalty parameter and Lagrange multiplier updates

Two critical questions to answer:

I When can we terminate the QP solver?

I When is a given inexact solution good enough?

Inexact Newton Methods for Large-Scale Nonlinear Optimization 37 of 59

Page 38: Inexact Newton Methods for Large-Scale Nonlinear Optimizationcoral.ise.lehigh.edu/frankecurtis/files/talks/ibm_13.pdf · Daniel P. Robinson, Johns Hopkins University Olaf Schenk,

Introduction Interior-Point Method SQO Method Summary

Terminating the QP solver: Test P1

(NLP):

minx

f(x)

s.t. c(x) = 0, c(x) ≤ 0

(FP):

minx

v(x) :=

‚‚‚‚»c(x)

[c(x)]+

–‚‚‚‚1

(PP):

minx

φ(x, µ) := µf(x)+v(x)

(FJ):

F(x, y, y, µ) :=

µf(x) + c(x)Ty + c(x)

Ty

KKT residuals:

ρ(x, y, y, µ)

ρk(d, y, y, µ,H)

Local model of φ at xk:

lk(d, µ)

Solution (dk, yk+1, yk+1) of (PQP) satisfies

I yk+1 ∈ [−e, e], yk+1 ∈ [0, e]

I ∆lk(dk, µk) ≥ θ‖dk‖2 > 0 for θ ∈ (0, 1)

I ‖ρk(dk, yk+1, yk+1, µk, Hk)‖ ≤ κ‚‚‚‚»ρ(xk, yk, yk, µk)

ρ(xk, yk, yk, 0)

–‚‚‚‚

Inexact Newton Methods for Large-Scale Nonlinear Optimization 38 of 59

Page 39: Inexact Newton Methods for Large-Scale Nonlinear Optimizationcoral.ise.lehigh.edu/frankecurtis/files/talks/ibm_13.pdf · Daniel P. Robinson, Johns Hopkins University Olaf Schenk,

Introduction Interior-Point Method SQO Method Summary

Terminating the QP solver: Test P2

(NLP):

minx

f(x)

s.t. c(x) = 0, c(x) ≤ 0

(FP):

minx

v(x) :=

‚‚‚‚»c(x)

[c(x)]+

–‚‚‚‚1

(PP):

minx

φ(x, µ) := µf(x)+v(x)

(FJ):

F(x, y, y, µ) :=

µf(x) + c(x)Ty + c(x)

Ty

KKT residuals:

ρ(x, y, y, µ)

ρk(d, y, y, µ,H)

Local model of φ at xk:

lk(d, µ)

Solution (dk, yk+1, yk+1) of (PQP) satisfies

I yk+1 ∈ [−e, e], yk+1 ∈ [0, e]

I ∆lk(dk, µk) ≥ θ‖dk‖2 > 0 for θ ∈ (0, 1)

I ‖ρk(dk, yk+1, yk+1, µk, Hk)‖ ≤ κ‖ρ(xk, yk, yk, 0)‖Furthermore,

I If ∆lk(dk, 0) < εvk, then

‖(yk+1, yk+1)‖∞ 0

I If ∆lk(dk, µk) < β∆lk(dk, 0), then

‖(yk+1, yk+1)‖∞ 0

Inexact Newton Methods for Large-Scale Nonlinear Optimization 39 of 59

Page 40: Inexact Newton Methods for Large-Scale Nonlinear Optimizationcoral.ise.lehigh.edu/frankecurtis/files/talks/ibm_13.pdf · Daniel P. Robinson, Johns Hopkins University Olaf Schenk,

Introduction Interior-Point Method SQO Method Summary

Terminating the QP solver: Test P3

(NLP):

minx

f(x)

s.t. c(x) = 0, c(x) ≤ 0

(FP):

minx

v(x) :=

‚‚‚‚»c(x)

[c(x)]+

–‚‚‚‚1

(PP):

minx

φ(x, µ) := µf(x)+v(x)

(FJ):

F(x, y, y, µ) :=

µf(x) + c(x)Ty + c(x)

Ty

KKT residuals:

ρ(x, y, y, µ)

ρk(d, y, y, µ,H)

Local model of φ at xk:

lk(d, µ)

Solution (dk, yk+1, yk+1) of (PQP) satisfies

I yk+1 ∈ [−e, e], yk+1 ∈ [0, e]

I ‖ρk(0, yk+1, yk+1, µk, Hk)‖ ≤ κ‖ρ(xk, yk, yk, µk)‖Furthermore, for ζ ∈ (0, 1),

I If ‖ρ(xk, yk, yk, µk)‖ < ζ‖ρ(xk, yk, yk, 0)‖, then

‖(yk+1, yk+1)‖∞ 0

Inexact Newton Methods for Large-Scale Nonlinear Optimization 40 of 59

Page 41: Inexact Newton Methods for Large-Scale Nonlinear Optimizationcoral.ise.lehigh.edu/frankecurtis/files/talks/ibm_13.pdf · Daniel P. Robinson, Johns Hopkins University Olaf Schenk,

Introduction Interior-Point Method SQO Method Summary

Terminating the QP solver: Test F

(NLP):

minx

f(x)

s.t. c(x) = 0, c(x) ≤ 0

(FP):

minx

v(x) :=

‚‚‚‚»c(x)

[c(x)]+

–‚‚‚‚1

(PP):

minx

φ(x, µ) := µf(x)+v(x)

(FJ):

F(x, y, y, µ) :=

µf(x) + c(x)Ty + c(x)

Ty

KKT residuals:

ρ(x, y, y, µ)

ρk(d, y, y, µ,H)

Local model of φ at xk:

lk(d, µ)

Solution (dk, yk+1, yk+1) of (FQP) satisfies

I yk+1 ∈ [−e, e], yk+1 ∈ [0, e]

I max∆lk(dk, µk),∆lk(dk, 0) ≥ θ‖dk‖2 for θ ∈ (0, 1)

I ‖ρk(dk, yk+1, yk+1, 0, Hk)‖ ≤ κ‖ρ(xk, yk, yk, 0)‖

Inexact Newton Methods for Large-Scale Nonlinear Optimization 41 of 59

Page 42: Inexact Newton Methods for Large-Scale Nonlinear Optimizationcoral.ise.lehigh.edu/frankecurtis/files/talks/ibm_13.pdf · Daniel P. Robinson, Johns Hopkins University Olaf Schenk,

Introduction Interior-Point Method SQO Method Summary

“Inexact” SQO: Scenario 1

(NLP):

minx

f(x)

s.t. c(x) = 0, c(x) ≤ 0

(FP):

minx

v(x) :=

‚‚‚‚»c(x)

[c(x)]+

–‚‚‚‚1

(PP):

minx

φ(x, µ) := µf(x)+v(x)

(FJ):

F(x, y, y, µ) :=

µf(x) + c(x)Ty + c(x)

Ty

KKT residuals:

ρ(x, y, y, µ)

ρk(d, y, y, µ,H)

Local model of φ at xk:

lk(d, µ)

The current iterate satisfies

I ‖ρ(xk, yk, yk, µk)‖ = 0

I v(xk) > 0

then

I dk ← 0 is the search direction

I µk+1 < δµk for δ ∈ (0, 1)

Inexact Newton Methods for Large-Scale Nonlinear Optimization 42 of 59

Page 43: Inexact Newton Methods for Large-Scale Nonlinear Optimizationcoral.ise.lehigh.edu/frankecurtis/files/talks/ibm_13.pdf · Daniel P. Robinson, Johns Hopkins University Olaf Schenk,

Introduction Interior-Point Method SQO Method Summary

“Inexact” SQO: Scenario 2

(NLP):

minx

f(x)

s.t. c(x) = 0, c(x) ≤ 0

(FP):

minx

v(x) :=

‚‚‚‚»c(x)

[c(x)]+

–‚‚‚‚1

(PP):

minx

φ(x, µ) := µf(x)+v(x)

(FJ):

F(x, y, y, µ) :=

µf(x) + c(x)Ty + c(x)

Ty

KKT residuals:

ρ(x, y, y, µ)

ρk(d, y, y, µ,H)

Local model of φ at xk:

lk(d, µ)

Solution (dk, yk+1, yk+1) of (PQP) satisfies

I Test P1

I ∆lk(dk, µk) ≥ εvk for ε ∈ (0, 1)

then

I dk ← dk is the search direction

I µk+1 ← µk

Inexact Newton Methods for Large-Scale Nonlinear Optimization 43 of 59

Page 44: Inexact Newton Methods for Large-Scale Nonlinear Optimizationcoral.ise.lehigh.edu/frankecurtis/files/talks/ibm_13.pdf · Daniel P. Robinson, Johns Hopkins University Olaf Schenk,

Introduction Interior-Point Method SQO Method Summary

“Inexact” SQO: Scenario 3

(NLP):

minx

f(x)

s.t. c(x) = 0, c(x) ≤ 0

(FP):

minx

v(x) :=

‚‚‚‚»c(x)

[c(x)]+

–‚‚‚‚1

(PP):

minx

φ(x, µ) := µf(x)+v(x)

(FJ):

F(x, y, y, µ) :=

µf(x) + c(x)Ty + c(x)

Ty

KKT residuals:

ρ(x, y, y, µ)

ρk(d, y, y, µ,H)

Local model of φ at xk:

lk(d, µ)

Solution (dk, yk+1, yk+1) of (PQP) satisfies

I Test P1

I ∆lk(dk, µk) ≥ ε∆lk(dk, 0) for ε ∈ (0, 1)

where solution (dk, yk+1, yk+1) of (FQP) satisfies

I Test F

then

I dk ← dk is the search direction

I µk+1 ← µk

Inexact Newton Methods for Large-Scale Nonlinear Optimization 44 of 59

Page 45: Inexact Newton Methods for Large-Scale Nonlinear Optimizationcoral.ise.lehigh.edu/frankecurtis/files/talks/ibm_13.pdf · Daniel P. Robinson, Johns Hopkins University Olaf Schenk,

Introduction Interior-Point Method SQO Method Summary

“Inexact” SQO: Scenario 4

(NLP):

minx

f(x)

s.t. c(x) = 0, c(x) ≤ 0

(FP):

minx

v(x) :=

‚‚‚‚»c(x)

[c(x)]+

–‚‚‚‚1

(PP):

minx

φ(x, µ) := µf(x)+v(x)

(FJ):

F(x, y, y, µ) :=

µf(x) + c(x)Ty + c(x)

Ty

KKT residuals:

ρ(x, y, y, µ)

ρk(d, y, y, µ,H)

Local model of φ at xk:

lk(d, µ)

Solution (dk, yk+1, yk+1) of (PQP) satisfies

I Test P2

and solution (dk, yk+1, yk+1) of (FQP) satisfies

I Test F

then

I dk ← τdk + (1− τ)dk so ∆lk(dk, 0) ≥ ε∆lk(dk, 0)

I µk+1 < µk so ∆lk(dk, µk) ≥ β∆lk(dk, 0) for β ∈ (0, 1)

I Overall:

∆lk(dk, µk) ≥ β∆lk(dk, 0) ≥ βε∆lk(dk, 0)

Inexact Newton Methods for Large-Scale Nonlinear Optimization 45 of 59

Page 46: Inexact Newton Methods for Large-Scale Nonlinear Optimizationcoral.ise.lehigh.edu/frankecurtis/files/talks/ibm_13.pdf · Daniel P. Robinson, Johns Hopkins University Olaf Schenk,

Introduction Interior-Point Method SQO Method Summary

“Inexact” SQO: Scenarios 5 & 6

(NLP):

minx

f(x)

s.t. c(x) = 0, c(x) ≤ 0

(FP):

minx

v(x) :=

‚‚‚‚»c(x)

[c(x)]+

–‚‚‚‚1

(PP):

minx

φ(x, µ) := µf(x)+v(x)

(FJ):

F(x, y, y, µ) :=

µf(x) + c(x)Ty + c(x)

Ty

KKT residuals:

ρ(x, y, y, µ)

ρk(d, y, y, µ,H)

Local model of φ at xk:

lk(d, µ)

Solution (dk, yk+1, yk+1) of (PQP) satisfies

I Test P3

If ‖ρ(xk, yk, yk, µk)‖ < ζ‖ρ(xk, yk, yk, 0)‖, then

I µk+1 ← µk (Scenario 5)

else

I µk+1 < µk (Scenario 6)

Inexact Newton Methods for Large-Scale Nonlinear Optimization 46 of 59

Page 47: Inexact Newton Methods for Large-Scale Nonlinear Optimizationcoral.ise.lehigh.edu/frankecurtis/files/talks/ibm_13.pdf · Daniel P. Robinson, Johns Hopkins University Olaf Schenk,

Introduction Interior-Point Method SQO Method Summary

“Inexact” SQO (iSQO)

repeat

(1) Check whether KKT point or infeasible stationary point has been obtained.

(2) Check for a trivial iteration.(a) If Scenario 1 occurs, then go to step 6.

(3) Compute an inexact solution of (PQP) satisfying Test P1 or P3.(a) If Scenario 2 occurs, then go to step 6.

(4) Compute an inexact solution of (FQP) satisfying Test F.(a) If Scenario 3 occurs, then go to step 6.(b) If Scenario 5 occurs, then go to step 6.

(5) Compute an inexact solution of (PQP) satisfying Test P2 or P3.If Test 1 holds, then compute an inexact solution of (FQP) satisfying Test F.(a) If Scenario 3 occurs, then go to step 6.(b) If Scenario 4 occurs, then go to step 6.(c) If Scenario 5 occurs, then go to step 6.(d) Otherwise, Scenario 6 occurs.

(6) Perform a backtracking line search to reduce φ(·, µk+1).

endrepeat

Inexact Newton Methods for Large-Scale Nonlinear Optimization 47 of 59

Page 48: Inexact Newton Methods for Large-Scale Nonlinear Optimizationcoral.ise.lehigh.edu/frankecurtis/files/talks/ibm_13.pdf · Daniel P. Robinson, Johns Hopkins University Olaf Schenk,

Introduction Interior-Point Method SQO Method Summary

Well-posedness

AssumptionThe following hold:

(1) The functions f , c, and c are continuously differentiable in an open convexset Ω containing the sequences xk and xk + dk.

(2) The QP solver can solve (PQP) arbitrarily accurately.

(3) The QP solver can solve (FQP) arbitrarily accurately.

LemmaIn iteration k, either iSQO terminates or exactly one of Scenario 1–6 will occur.

TheoremOne of the following holds:

1. iSQO terminates with a KKT point or infeasible stationary point.

2. iSQO generates an infinite sequence of iterates„xk,

»ykyk

–,

»ykyk

–, µk

«where

»ykyk

–∈ [−e, e],

»ykyk

–∈ [0, e], and µk > 0.

Inexact Newton Methods for Large-Scale Nonlinear Optimization 48 of 59

Page 49: Inexact Newton Methods for Large-Scale Nonlinear Optimizationcoral.ise.lehigh.edu/frankecurtis/files/talks/ibm_13.pdf · Daniel P. Robinson, Johns Hopkins University Olaf Schenk,

Introduction Interior-Point Method SQO Method Summary

Global convergence

Assumption

(1) The well-posedness assumptions still apply.

(2) The functions f , c, and c and their first derivatives are bounded and Lipschitzcontinuous in Ω (the open convex set containing xk and xk + dk).

(3) The sequences Hk and Hk—including the initial and any modified valuesof Hk and Hk—are bounded.

LemmaThe KKT residual for (FP) vanishes:

limk→∞

‖ρ(xk, yk, yk, 0)‖ = 0.

LemmaThe KKT residual for (PP) vanishes:

limk→∞

‖ρ(xk, yk, yk, µk)‖ = 0.

Inexact Newton Methods for Large-Scale Nonlinear Optimization 49 of 59

Page 50: Inexact Newton Methods for Large-Scale Nonlinear Optimizationcoral.ise.lehigh.edu/frankecurtis/files/talks/ibm_13.pdf · Daniel P. Robinson, Johns Hopkins University Olaf Schenk,

Introduction Interior-Point Method SQO Method Summary

Global convergence: Vanishing penalty parameter

(If µk ≥ µ for some µ > 0, then we know the KKT residual for (PP) vanishes.)

LemmaIf µk → 0, then either all limit points of xk are feasible or all are infeasible.

LemmaIf µk → 0 and all limit points of xk are feasible, then, with

Kµ := k : µk+1 < µk,

all limit points of xkk∈Kµ are FJ points.

LemmaIf ρ(x∗, y∗, y∗, 0) = 0, x∗ is feasible, and (y∗, y∗) 6= 0, then the MFCQ fails at x∗.

Inexact Newton Methods for Large-Scale Nonlinear Optimization 50 of 59

Page 51: Inexact Newton Methods for Large-Scale Nonlinear Optimizationcoral.ise.lehigh.edu/frankecurtis/files/talks/ibm_13.pdf · Daniel P. Robinson, Johns Hopkins University Olaf Schenk,

Introduction Interior-Point Method SQO Method Summary

Global convergence

TheoremOne of the following holds:

(a) µk = µ for some µ > 0 for all large k and either every limit point of xkcorresponds to a KKT point or is an infeasible stationary point;

(b) µk → 0 and every limit point of xk is an infeasible stationary point;

(c) µk → 0, all limit points of xk are feasible, and, with

Kµ := k : µk+1 < µk,

every limit point of xkk∈Kµ corresponds to an FJ point where the MFCQ fails.

CorollaryIf xk is bounded and every limit point of this sequence is a feasible point atwhich the MFCQ holds, then µk = µ for some µ > 0 for all large k and everylimit point of xk corresponds to a KKT point.

Inexact Newton Methods for Large-Scale Nonlinear Optimization 51 of 59

Page 52: Inexact Newton Methods for Large-Scale Nonlinear Optimizationcoral.ise.lehigh.edu/frankecurtis/files/talks/ibm_13.pdf · Daniel P. Robinson, Johns Hopkins University Olaf Schenk,

Introduction Interior-Point Method SQO Method Summary

Implementation details

I Matlab implementation

I BQPD for QP solves with indefinite Hessians10

I Simulated inexactness by perturbing QP solutionsI Test set involves 307 CUTEr problems with

I at least one free variableI at least one general (non-bound) constraintI at most 200 variables and constraints

I Termination conditions (εtol = 10−6 and εµ = 10−8):

‖ρ(xk, yk, yk, µk)‖ ≤ εtol and vk ≤ εtol; (Optimal)

‖ρ(xk, yk, yk, 0)‖ = 0 and vk > 0; (Infeasible)

‖ρ(xk, yk, yk, 0)‖ ≤ εtol and vk > εtol and µk ≤ εµ. (Infeasible)

I Investigate performance of inexact algorithm with κ = 0.01, 0.1, and 0.5.

10Fletcher (2000)

Inexact Newton Methods for Large-Scale Nonlinear Optimization 52 of 59

Page 53: Inexact Newton Methods for Large-Scale Nonlinear Optimizationcoral.ise.lehigh.edu/frankecurtis/files/talks/ibm_13.pdf · Daniel P. Robinson, Johns Hopkins University Olaf Schenk,

Introduction Interior-Point Method SQO Method Summary

Success statistics

Counts of termination messages for exact and three variants of inexact algorithm:

Termination message Exact Inexactκ = 0.01 κ = 0.1 κ = 0.5

Optimal solution found 271 269 272 275Infeasible stationary point found 4 3 2 2

Iteration limit reached 12 10 11 9Subproblem solver failure 18 23 20 19

Termination statistics and reliability do not degrade with inexactness.

Inexact Newton Methods for Large-Scale Nonlinear Optimization 53 of 59

Page 54: Inexact Newton Methods for Large-Scale Nonlinear Optimizationcoral.ise.lehigh.edu/frankecurtis/files/talks/ibm_13.pdf · Daniel P. Robinson, Johns Hopkins University Olaf Schenk,

Introduction Interior-Point Method SQO Method Summary

Inexactness levels

Observe relative residuals for QP solves:

κI :=‖ρk(d, y, y, µk, Hk)‖‖ρ(xk, yk, yk, µk)‖

or κI :=‖ρk(d, y, y, 0, Hk)‖‖ρ(xk, yk, yk, 0)‖

,

For problem j, we compute minimum (κI(j)) and mean (κI(j)) values over run:

min κ κI,mean [0, 1

0−8

)

[10−8, 1

0−6

)

[10−6, 1

0−4

)

[10−4, 1

0−3

)

[10−3, 0.01)

[0.01,

0.1)

[0.1, 0.5)

[0.5, 1

)

[1,∞

)

κI(j

) 0.01 3.5e-03 0 2 10 7 253 0 0 0 00.1 2.8e-02 0 0 2 10 30 232 0 0 00.5 8.8e-02 0 0 2 4 23 69 179 0 0

mean κ κI,mean

κI(j

) 0.01 7.3e-03 0 0 0 0 254 18 0 0 00.1 6.9e-02 0 0 0 0 0 261 13 0 00.5 3.5e-01 0 0 0 0 0 1 264 12 0

Relative residuals generally need only be moderately smaller than parameter κ.

Inexact Newton Methods for Large-Scale Nonlinear Optimization 54 of 59

Page 55: Inexact Newton Methods for Large-Scale Nonlinear Optimizationcoral.ise.lehigh.edu/frankecurtis/files/talks/ibm_13.pdf · Daniel P. Robinson, Johns Hopkins University Olaf Schenk,

Introduction Interior-Point Method SQO Method Summary

Iteration comparison

Considering the logarithmic outperforming factor

rj := − log2(iterjinexact/iterjexact),

we compare iteration counts of our inexact (κ = 0.01) and exact algorithms:

Iteration counts do not degrade significantly with inexactness.

Inexact Newton Methods for Large-Scale Nonlinear Optimization 55 of 59

Page 56: Inexact Newton Methods for Large-Scale Nonlinear Optimizationcoral.ise.lehigh.edu/frankecurtis/files/talks/ibm_13.pdf · Daniel P. Robinson, Johns Hopkins University Olaf Schenk,

Introduction Interior-Point Method SQO Method Summary

Summary and future work

Inexact SQO method with inexact step computations:

I Handles rank deficiency, ill-conditioning, nonconvexity

I Allows generic inexactness in QP subproblem solves

I No specific QP solver required

I Global convergence guarantees

I Numerical experiments suggest inexact algorithm is reliable

I Inexact solutions do not degrade performance

Challenges ahead:

I What QP solver(s) to use? Active-set, interior-point, ADMM, IRWA11, . . .

I Monotonicity in QP solver?

11Burke, Curtis, Wang, Wang (2013)

Inexact Newton Methods for Large-Scale Nonlinear Optimization 56 of 59

Page 57: Inexact Newton Methods for Large-Scale Nonlinear Optimizationcoral.ise.lehigh.edu/frankecurtis/files/talks/ibm_13.pdf · Daniel P. Robinson, Johns Hopkins University Olaf Schenk,

Introduction Interior-Point Method SQO Method Summary

Outline

Introduction

Interior-Point Method

Sequential Quadratic Optimization Method

Summary

Inexact Newton Methods for Large-Scale Nonlinear Optimization 57 of 59

Page 58: Inexact Newton Methods for Large-Scale Nonlinear Optimizationcoral.ise.lehigh.edu/frankecurtis/files/talks/ibm_13.pdf · Daniel P. Robinson, Johns Hopkins University Olaf Schenk,

Introduction Interior-Point Method SQO Method Summary

Algorithmic framework: Inexact

(NLP) solver

approximation modeltermination conditions

approximate solutionstep type

subproblem solver

approximation modeltermination conditions

approximate solutionstep type

linear solver

Inexact Newton Methods for Large-Scale Nonlinear Optimization 58 of 59

Page 59: Inexact Newton Methods for Large-Scale Nonlinear Optimizationcoral.ise.lehigh.edu/frankecurtis/files/talks/ibm_13.pdf · Daniel P. Robinson, Johns Hopkins University Olaf Schenk,

Introduction Interior-Point Method SQO Method Summary

Thanks!

I J. V. Burke, F. E. Curtis, H. Wang, J. Wang, “Matrix-free Solvers for Exact PenaltySubproblems,” in preparation.

I J. V. Burke, F. E. Curtis, and H. Wang, “A Sequential Quadratic Optimization Algorithm withRapid Infeasibility Detection,” second review for SIAM Journal on Optimization, submitted 2012.

I F. E. Curtis, T. C. Johnson, D. P. Robinson, and A. Wachter, “An Inexact Sequential QuadraticOptimization Algorithm for Large-Scale Nonlinear Optimization,” first revision for SIAM Journalon Optimization, submitted 2013.

I F. E. Curtis, J. Huber, O. Schenk, and A. Wachter, “A Note on the Implementation of anInterior-Point Algorithm for Nonlinear Optimization with Inexact Step Computations,”Mathematical Programming, Series B, Volume 136, Issue 1, pg. 209–227, 2012.

I F. E. Curtis, O. Schenk, and A. Wachter, “An Interior-Point Algorithm for Large-ScaleNonlinear Optimization with Inexact Step Computations,” SIAM Journal on Scientific Computing,Volume 32, Issue 6, pg. 3447-3475, 2010.

I R. H. Byrd, F. E. Curtis, and J. Nocedal, “An Inexact Newton Method for Nonconvex EqualityConstrained Optimization,” Mathematical Programming, Volume 122, Issue 2, pg. 273-299, 2010.

I F. E. Curtis, J. Nocedal, and A. Wachter, “A Matrix-free Algorithm for Equality ConstrainedOptimization Problems with Rank-Deficient Jacobians,” SIAM Journal on Optimization, Volume 20,Issue 3, pg. 1224-1249, 2009.

I R. H. Byrd, F. E. Curtis, and J. Nocedal, “An Inexact SQP Method for Equality ConstrainedOptimization,” SIAM Journal on Optimization, Volume 19, Issue 1, pg. 351-369, 2008.

Inexact Newton Methods for Large-Scale Nonlinear Optimization 59 of 59