inequality.doc

28
Inequalities Advanced Level Pure Mathematics Advanced Level Pure Mathematics Algebra Chapter 6 Inequalities Fundamental Concepts of Inequalities and Methods of Proving Inequalities 2 6.4 Arithmetic Mean and Geometric Mean 7 6.5 Cauchy-Schwarz Inequality 18 6.6 Absolute Values page 1 Prepared by K. F. Ngai 6

Upload: kenneth-wong

Post on 30-Sep-2015

3 views

Category:

Documents


0 download

TRANSCRIPT

HKAL PURE MATHEMATICS

Inequalities

Advanced Level Pure Mathematics

Advanced Level Pure Mathematics

Algebra

Chapter 6

InequalitiesFundamental Concepts of Inequalities and

Methods of Proving Inequalities

2

6.4

Arithmetic Mean and Geometric Mean

7

6.5

Cauchy-Schwarz Inequality

18

6.6

Absolute Values

22

Fundamental Concepts of Inequalities and

Methods of Proving Inequalities Algebraic Inequalities

1.For any real number , Equality holds iff .

2.If and then

3.If , then

4.If , then and .

5.If then for any Equality holds iff

Example 1(a)Prove that for any

(b)Hence or otherwise, deduce that if then

(i)

(ii)

Solution

(a)(i)

(ii)

=

=

(b)(i)By (a), we have

, and

Adding up the inequalities, we have

(ii)By (a)we have

,

Multiplying the inequalities, we have

Example 2Given that Prove that

Example 3Prove that

EMBED Equation.3 .

Equality sign holds iff

Example 4Show that

(a)

(b)

Example 5Show that .

Example 6Show that .Example 6.9

If denote the lengths of the sides of a triangle, prove that

Solution

Example 6.10

Let be positive real numbers not equal to 1 and . Prove that

Solution

Example 6.11

Let and be real numbers such that .Prove that

When does equality hold?

SolutionExample 6.12

Let be positive real number. Prove that

SolutionExample 6.18

Show that for any positive integer ,

Hence deduce that for any positive integer ,

Solution

Example 6.14

Let be a positive integer. Prove that

Solution

Example 6.19

Show that for any positive integer ,

Hence deduce that for any positive integer ,

Solution

6.4Arithmetic Mean and Geometric MeanTheorem 6-3

Let and be two positive real numbers. We have

and equality holds if and only if

Proof

Equality holds if and only if

i.e.

DefinitionLet be non-negative real numbers.

A.M.=

and

G.M.=

are respectively the Arithmetic Mean (A.M.) and Geometric Mean (G.M.) of the given numbers.

Theorem

For any n non-negative numbers

EMBED Equation.3

i.e.

EMBED Equation.3

EMBED Equation.3

The equality holds iff

Example 7By considering the A.M. and G.M. of a suitable set of numbers,

prove the following. ().

(a)

,

(b)

,

Solution

Example 8Give that Prove the following.

(a)

(b)

(c)

Example 9Let be distinct positive numbers, show that

.

Solution

AL-01I-14

(a)If are two real numbers such that , show that and the equality holds if and only if or .

(b)Show by induction that if are positive real numbers such that , then and the equality holds if and only if

(c)Let be positive real numbers. Using (b) or otherwise, show that

EMBED Equation.3

EMBED Equation.3 and the equality holds if and only if .

Example 10For all non-negative integer n, prove that

(a)

, for any

(b)

SolutionExample 11(a)Let be positive numbers. Prove that

Equality holds iff

(b)Hence, or otherwise, prove that ,

(i)

(ii)

Solution

Example 12If , show that

SolutionExample 13By using , show that .

Hence deduce that the roots of the quadratic equation are real and distinct.

Solution

AL-92I-7

(a)Prove that where are positive integers and (b)If are positive numbers and

using and (a)or otherwise prove that

.

Example 14Let be non-negative numbers, prove the following

(a)

(b)

Solution

Example 15Let be positive numbers, prove the following:

(a)

(b)

(c)

(d)

(e)

Note:

Example 16Show that if is a positive integer greater that 1.

(a)

(b)

Example 17If are positive numbers, such that , prove that

if(i)

and are positive numbers.

(ii)

and are positive fractions.

Solution

Example 18Let be a positive integer greater than , prove the following:

(a)

(b)

(c)

(d)

(e)

Solution

Example 19If are positive integers. Show that

(a)

(b)

(c)Hence show

6.5

Cauchy-Schwarz InequalityTheorem

(Cauchy-Schwarz Inequality)

If and are two sets of real numbers, then

.

Equality holds if and only if .

Proof

Define the quadratic polynomial by

, which is non-negative for all real values

i.e.

i.e.

Equality holdsif and only if

if and only if

for any

if and only if

,

if and only if

Example 20Let be real numbers, prove that

Solution

Example 21Let are non-zero real numbers, show that .

Solution

Example 22Let be real numbers..

Show that .

Solution

Example 23Let be a positive integer greater than 1. By using the Cauchy-Schwarz inequality,

show that

Solution

Example 24Given that and Prove that

(a)

(b)

(c)

Solution

Apply the Cauchy-Schwarz Inequality:

(a)Consider the numbers We have

Example 25For any positive number

(a)Prove

Equality holds iff .

Hence, or otherwise, prove that

(i)

(ii)

(b)Prove that for any positive numbers , the following inequality holds.

Hence, or otherwise, if and are three positive real numbers and prove that .

Example 26Prove that for any positive numbers ;

When does the equality hold?

6.6

Absolute ValuesDefinitionThe absolute value of a real number , denoted by ,

is defined by

Properties

(1)

(2)

(3)

and

(4)

(5)

Conversely,if then .

(6)

Conversely,if then

Remark:

EMBED Equation.3 unless

Theorem

For any two real numbers and , the following hold:

(a)Triangle inequality. i.e.

(b)

(c)

Theorem

For any two real numbers and, the following hold:

(a)

(b)For any positive integer , .

(c)

Example 27Solve and

Solution

Consider

Consider

Consider

Consider

or

For all Real number except

The Solution:

and

and except .

Example28

AL-90I-6

Solve the inequality

Solution

AL-93I-7

Find all in satisfying the following two conditions:

AL-90I-12

(a)Let and for all

(i) Find the absolute minimum of on the interval

(ii) Deduce that for all

(b)(i)Let and be positive numbers such that

and

By taking and respectivelyprove thatfor

where the equality holds if and only if

(ii)Deduce thatif and are positive and then

(c)Suppose and are two sequences of positive numbers and

By considering and

prove that

where the equality holds if and only if

AL-93I-1

Prove the following Schwarzs inequality

where and

Henceor otherwiseprove that

AL-01I-3

(a)Let . Show that for all .

(b)Let and be positive numbers with .

Prove that .

6

page 2Prepared by K. F. Ngai

_1120818988.unknown

_1120820331.unknown

_1120822133.unknown

_1120826992.unknown

_1120828036.unknown

_1120828070.unknown

_1120828734.unknown

_1120828961.unknown

_1120828995.unknown

_1120829013.unknown

_1120829029.unknown

_1120829003.unknown

_1120828986.unknown

_1120828867.unknown

_1120828947.unknown

_1120828853.unknown

_1120828080.unknown

_1120828696.unknown

_1120828077.unknown

_1120828047.unknown

_1120828056.unknown

_1120828061.unknown

_1120828054.unknown

_1120828042.unknown

_1120828044.unknown

_1120828038.unknown

_1120827806.unknown

_1120828023.unknown

_1120828031.unknown

_1120828033.unknown

_1120828025.unknown

_1120828017.unknown

_1120828020.unknown

_1120827844.unknown

_1120827172.unknown

_1120827288.unknown

_1120827467.unknown

_1120827183.unknown

_1120827117.unknown

_1120827127.unknown

_1120826997.unknown

_1120826720.unknown

_1120826961.unknown

_1120826974.unknown

_1120826983.unknown

_1120826988.unknown

_1120826976.unknown

_1120826980.unknown

_1120826968.unknown

_1120826971.unknown

_1120826964.unknown

_1120826864.unknown

_1120826956.unknown

_1120826958.unknown

_1120826946.unknown

_1120826952.unknown

_1120826786.unknown

_1120826828.unknown

_1120826775.unknown

_1120823017.unknown

_1120826105.unknown

_1120826692.unknown

_1120826705.unknown

_1120826138.unknown

_1120825969.unknown

_1120826026.unknown

_1120823043.unknown

_1120822507.unknown

_1120822937.unknown

_1120822975.unknown

_1120822869.unknown

_1120822450.unknown

_1120822464.unknown

_1120822221.unknown

_1120821101.unknown

_1120821897.unknown

_1120822033.unknown

_1120822054.unknown

_1120822117.unknown

_1120822015.unknown

_1120822019.unknown

_1120822000.unknown

_1120821902.unknown

_1120821867.unknown

_1120821880.unknown

_1120821854.unknown

_1120820496.unknown

_1120820529.unknown

_1120821083.unknown

_1120821037.unknown

_1120820515.unknown

_1120820355.unknown

_1120820382.unknown

_1120820334.unknown

_1120819422.unknown

_1120819758.unknown

_1120819997.unknown

_1120820039.unknown

_1120820287.unknown

_1120820033.unknown

_1120819793.unknown

_1120819990.unknown

_1120819787.unknown

_1120819527.unknown

_1120819602.unknown

_1120819667.unknown

_1120819749.unknown

_1120819652.unknown

_1120819586.unknown

_1120819509.unknown

_1120819517.unknown

_1120819505.unknown

_1120819016.unknown

_1120819261.unknown

_1120819385.unknown

_1120819413.unknown

_1120819282.unknown

_1120819022.unknown

_1120819027.unknown

_1120819019.unknown

_1120819005.unknown

_1120819011.unknown

_1120819014.unknown

_1120819008.unknown

_1120818995.unknown

_1120819002.unknown

_1120818992.unknown

_1057238216.unknown

_1057238853.unknown

_1086779929.unknown

_1120818953.unknown

_1120818966.unknown

_1120818972.unknown

_1120818974.unknown

_1120818969.unknown

_1120818961.unknown

_1120818963.unknown

_1120818956.unknown

_1086779933.unknown

_1120818948.unknown

_1120818951.unknown

_1087109853.unknown

_1120818944.unknown

_1087109871.unknown

_1087109835.unknown

_1086779931.unknown

_1086779932.unknown

_1086779930.unknown

_1057239069.unknown

_1086598685.unknown

_1086598866.unknown

_1086599045.unknown

_1086779927.unknown

_1086779928.unknown

_1086599141.unknown

_1086599194.unknown

_1086599284.unknown

_1086599069.unknown

_1086598940.unknown

_1086598951.unknown

_1086598904.unknown

_1086598778.unknown

_1086598848.unknown

_1086598849.unknown

_1086598847.unknown

_1086598742.unknown

_1086598755.unknown

_1086598728.unknown

_1086598627.unknown

_1086598649.unknown

_1086598668.unknown

_1086598642.unknown

_1086598603.unknown

_1086598612.unknown

_1057239070.unknown

_1057238960.unknown

_1057239065.unknown

_1057239067.unknown

_1057239068.unknown

_1057239066.unknown

_1057239063.unknown

_1057239064.unknown

_1057239061.unknown

_1057239062.unknown

_1057239058.unknown

_1057239059.unknown

_1057239057.unknown

_1057238908.unknown

_1057238915.unknown

_1057238957.unknown

_1057238911.unknown

_1057238858.unknown

_1057238874.unknown

_1057238902.unknown

_1057238905.unknown

_1057238877.unknown

_1057238861.unknown

_1057238856.unknown

_1057238321.unknown

_1057238453.unknown

_1057238841.unknown

_1057238847.unknown

_1057238850.unknown

_1057238844.unknown

_1057238531.unknown

_1057238838.unknown

_1057238458.unknown

_1057238332.unknown

_1057238365.unknown

_1057238368.unknown

_1057238338.unknown

_1057238326.unknown

_1057238329.unknown

_1057238323.unknown

_1057238271.unknown

_1057238283.unknown

_1057238296.unknown

_1057238312.unknown

_1057238315.unknown

_1057238306.unknown

_1057238308.unknown

_1057238290.unknown

_1057238293.unknown

_1057238286.unknown

_1057238277.unknown

_1057238280.unknown

_1057238274.unknown

_1057238240.unknown

_1057238258.unknown

_1057238261.unknown

_1057238246.unknown

_1057238254.unknown

_1057238234.unknown

_1057238237.unknown

_1057238228.unknown

_1057237983.unknown

_1057238107.unknown

_1057238172.unknown

_1057238201.unknown

_1057238208.unknown

_1057238212.unknown

_1057238205.unknown

_1057238194.unknown

_1057238198.unknown

_1057238184.unknown

_1057238119.unknown

_1057238127.unknown

_1057238130.unknown

_1057238124.unknown

_1057238114.unknown

_1057238116.unknown

_1057238111.unknown

_1057238018.unknown

_1057238077.unknown

_1057238082.unknown

_1057238101.unknown

_1057238104.unknown

_1057238094.unknown

_1057238089.unknown

_1057238080.unknown

_1057238069.unknown

_1057238074.unknown

_1057238065.unknown

_1057238002.unknown

_1057238012.unknown

_1057238015.unknown

_1057238005.unknown

_1057238009.unknown

_1057237996.unknown

_1057237999.unknown

_1057237993.unknown

_1057237989.unknown

_1057237886.unknown

_1057237925.unknown

_1057237941.unknown

_1057237976.unknown

_1057237979.unknown

_1057237973.unknown

_1057237935.unknown

_1057237938.unknown

_1057237928.unknown

_1057237904.unknown

_1057237918.unknown

_1057237922.unknown

_1057237915.unknown

_1057237896.unknown

_1057237900.unknown

_1057237892.unknown

_1057237835.unknown

_1057237869.unknown

_1057237876.unknown

_1057237882.unknown

_1057237872.unknown

_1057237853.unknown

_1057237862.unknown

_1057237838.unknown

_1057237817.unknown

_1057237827.unknown

_1057237831.unknown

_1057237823.unknown

_1057237658.unknown

_1057237788.unknown

_1057237793.unknown

_1057237783.unknown

_1057237726.unknown

_989507806.unknown

_989510761.unknown

_989529561.unknown

_989587552.unknown

_989524678.unknown

_989507863.unknown

_989507577.unknown