indice - costante m. invernizzifigura 3: two further configurations of the stirling engine. (a)...

18
5 novembre 2017 Indice 1 Il motore di Stirling – Il ciclo ideale 2 2 La teoria di Schmidt 9 2.1 Le leggi di variazione dei volumi ................. 11 2.2 La pressione istantanea ...................... 12 2.3 Potenze termiche, potenza utile e rendimento .......... 13 1

Upload: others

Post on 09-Aug-2020

3 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Indice - Costante M. InvernizziFigura 3: Two further configurations of the Stirling engine. (a) Piston and displacer in separate cylinders (“gamma” configuration). (b) Two piston

5 novembre 2017

Indice

1 Il motore di Stirling – Il ciclo ideale 2

2 La teoria di Schmidt 92.1 Le leggi di variazione dei volumi . . . . . . . . . . . . . . . . . 112.2 La pressione istantanea . . . . . . . . . . . . . . . . . . . . . . 122.3 Potenze termiche, potenza utile e rendimento . . . . . . . . . . 13

1

Page 2: Indice - Costante M. InvernizziFigura 3: Two further configurations of the Stirling engine. (a) Piston and displacer in separate cylinders (“gamma” configuration). (b) Two piston

1 Il motore di Stirling – Il ciclo ideale

Secondo [18]:

Con il termine “macchina di Stirling” si indica una vasta gammadi macchine a fluido nelle quali il fluido stesso (generalmente gas)compie un ciclo termodinamico prossimo a quello ideale di Stirling(composto da due trasformazioni isocore e due isoterme) ed il cuimoto e regolato non da valvole o altri dispositivi equivalenti, madalla variazione dei volumi di lavoro occupati dal fluido in senoalla macchina stessa.

Testo tratto da [7, Section 1.8]The Stirling engine forms part of the family of “air engines” or “hot-air

engines”. Inside it, a mass of gas (air, in the earliest engines; nowadays,nitrogen, helium or hydrogen at high pressure) expands and contracts in acycle, as it is heated then cooled, producing mechanical work.

The Stirling engine incorporates a regenerator which functions as a ther-modynamic sponge, alternately absorbing and releasing heat to the gas whichpasses through it. It is the presence of this regenerator which, theoretically,enables the Stirling engine to reach its maximum efficiency, once the two li-mit temperatures TH and TC have been set. The engine operates in a closedcycle.

Reverend Robert Stirling1 invented the regenerator and the new enginethat used it in 1816: this was the regenerative air engine, which would subse-quently bear his name. The Rev Stirling and his brother James2 constructedseveral engines over the following years. Two years after the patent, the firstengine was built for pumping water from a quarry in Ayrshire (Scotland).

The air engines were used as an alternative to steam engines, towards theend of the 1800s. However, the rapid development of the internal combustionengines (Otto and Diesel) led to their decline. It was only towards the endof the 1930s that the Philips Electric Company, Eindhoven, started to studythem once more and created several prototypes with good efficiency and smallpower supply, but without any real commercial success. For example, theengine described in [?] has a power of 180W with an engine speed of 1500rpm(a diagram of the engine is shown in Fig. 1). General Motors, under licencefrom Philips, subsequently built engines with power ranging between 7-8kWand 600kW (for locomotives and ships). That was until 1970. Then the Ford

1Robert Stirling (1790-1878), a Minister in the Church of Scotland at Galston, Ayrshire.2James Stirling (1800-1876), a Scottish engineer.

2

Page 3: Indice - Costante M. InvernizziFigura 3: Two further configurations of the Stirling engine. (a) Piston and displacer in separate cylinders (“gamma” configuration). (b) Two piston

(a) (b)

Figura 1: (a) Drawing of the Philips air-engine generator MP 1002 CA. (b)Simplified diagram of the air engine. The heater (H), the regenerator (R)and the cooler (K) are shown, for clarity’s sake, at one side of the cylinderand not around it. (From Author [?]).

Motor Company, again under licence from Philips, took over from GeneralMotors, but research was called off in the early 1980s.

However, the studies into the engine were never wholly abandoned: inthe 1960s, William T. Beale made a significant contribution to the develo-pment of the free piston version (the free-piston Stirling engine, in whichthe movement of the internal parts of the engine is guaranteed by dynamicactions, without having to resort to kinematic couplings3); from 1964 un-til the 1990s, research into the Stirling engine focussed on the possibility ofusing it to make an artificial heart, [?]; towards the end of the 1970s andup to 1990, various underwater propulsion units for non- nuclear propulsionsubmarines which did not require air as a comburent were designed, mainlywith the contribution of the German group MAN-MWM and the Swedishcompany Kockums (which still has some of these engines in production), [?].Today, there are numerous companies offering Stirling engines, above all formicro-cogeneration, often associated with the combustion (or gassification)of biomass, with electrical power of up to several dozen kW.

In fact, any Stirling engine can also operate as a refrigerator: supplyingmechanical energy and removing the heat source at high temperatures. Inthis way, the volume designated for the expansion absorbs heat at low tem-perature, generating a cooling effect. By using cryogenic fluids (for example,nitrogen, hydrogen, helium) as working fluids, we create the so-called minia-

3Another peculiarity of these engines is their self-starting capacity. By heating theexpansion space and cooling the compression volume, the engine starts up automatically.

3

Page 4: Indice - Costante M. InvernizziFigura 3: Two further configurations of the Stirling engine. (a) Piston and displacer in separate cylinders (“gamma” configuration). (b) Two piston

ture cryocoolers (with power levels of even less than one W). These will notbe discussed here, but this is a sector in which the Stirling machine is widelyused these days (although the market is relatively small).

The ideal thermodynamic cycle by which the engine operates is similarto the Ericsson cycle4) but with two isocores in place of the two isobars.An indication of how the engine works can be seen in Fig. 2. The basiccomponents of the engine are: a piston, which enables the exchanges ofmechanical power; the “displacer”, which transfers the gas in alternatingfashion from the cold to the hot head of the engine; the regenerator, which,during the transfer of the gas from the hot volume to the cold, absorbs heatfrom the gas or releases heat to the gas passing through it. The presenceof the regenerator is necessary if we want the engine to operate at highefficiency (although it does introduce significant pressure losses which, ifthey are excessive, could cancel out the useful work). The regenerator maybe either external to the cylinder that contains the piston-displacer system,inside the displacer or absent. In the latter case, it is the annulus betweenthe displacer and the cylinder that operates in place of the regenerator (bymeans of the cylinder and displacer walls) and it is known as regenerativeannulus.

In the situation shown in Fig. 2a, the piston is stationary at its upperdead point and the displacer transfers the gas from the cold head to the hotone. During the transfer (which actually happens without consuming workand, in the ideal case, with a constant total volume), the gas is forced to passthrough the regenerator, which pre-heats it before it is entirely displaced fromthe cold space to the hot one.

The pressure of the gas in the hot space increases, as a consequence of thethermal power Qin that is introduced. The piston-displacer system beginsto move, supplying mechanical power W (Fig. 2b), reaching the lower deadpoint, corresponding to where the pressure will be at its lowest designedvalue.

When the piston reaches the end of its stroke (Fig. 2c), the displacertransfers the hot gas towards the cold space and during this transfer the gas,as it cools, releases part of its internal energy to the regenerator. When allthe gas reaches the cold end of the engine, the piston presses it, increasingits pressure (Fig. 2d) and reaching once more the new upper dead point.At the same time as the compression, there is also an extraction of thermalpower Qout from the engine. At this point, the thermodynamic cycle canstart again. Unlike the closed cycles with external combustion based on the

4From John Ericsson (1803-1889), an engineer born in Sweden. He emigrated toAmerica and created numerous technically different engines..

4

Page 5: Indice - Costante M. InvernizziFigura 3: Two further configurations of the Stirling engine. (a) Piston and displacer in separate cylinders (“gamma” configuration). (b) Two piston

(a) (b)

(c) (d)

Figura 2: The four phases of the Stirling engine with piston and displacer inthe same cylinder (“beta” configuration). (a) Mass transfer stroke (from thecold to the hot side). (b) Expansion stroke. (c) Mass transfer stroke (fromthe hot side to the cold). (d) Compression stroke.

Rankine or Brayton cycles, the working fluid in the Stirling engines does notfollow a unidirectional flow, but oscillates continuously inside the volumethat constitutes the engine.

Another two classic types of engine are shown in Fig. 3. A great varietyof mechanisms have been developed for connecting the various pistons. Se-veral configurations of this engine, as already mentioned, have pistons thatare not mechanically coupled (free pistons). Other layouts (with a hybridcoupling) have the power piston coupled mechanically with the exterior andthe displacer free. A typical engine of this type is the Ringbom 5 machine,[?].

The real thermodynamic cycle by which the working fluid inside the en-gine operates does not follow the ideal cycle at all: the pistons and the

5Ossian Ringbom, Finnish, “subject of the Czar of Russia, residing at Borga” patentedin the United States (Patent no. 856102 , June 4, 1907. Application filed July 17, 1905)and in UK (Patent no. 10675, 22nd May, 1906. Date of Application, 22nd May 1905) hisown hot-air engine.

5

Page 6: Indice - Costante M. InvernizziFigura 3: Two further configurations of the Stirling engine. (a) Piston and displacer in separate cylinders (“gamma” configuration). (b) Two piston

(a) (b)

Figura 3: Two further configurations of the Stirling engine. (a) Piston anddisplacer in separate cylinders (“gamma” configuration). (b) Two pistonmachine (“alpha” configuration).

displacer do not have a discontinuous movement; the gas is not confined ea-ch time to just the well-defined volumes of expansion and compression, butdistributed throughout the whole area of the engine; the expansion and thecompression are not isothermal; the cooling and heating sections, which arephysically distinct from the volumes of expansion and compression, introducedead spaces6; the regenerator, albeit fundamental, introduces a further deadspace; the regeneration is not perfect. Then there are the losses due to me-chanical friction and the windage effects. The main losses inside the engineare: thermal in nature, due to heat conduction from the hot expansion regionto the cold compression space and dynamic (essentially the pressure losses,which depend on the number of revs and on the mean operating pressure).

The spaces in which the compression and expansion take place vary intime cyclically and simultaneously, but not in phase. They are connectedby the regenerator and two auxiliary exchangers: the cooler and the heater.The general conceptual layout, which is valid for all the “alpha”, “beta” or“gamma” configurations, [?, p. 91], is shown in Fig. 4, with the two opposedpistons. We shall refer to it for the mono-dimensional thermodynamic ana-lysis of the engine.

In Figura 5 e schematizzato un motore con stantuffi disposti a V, [18].Numerosi sono le tipologie di motori Stirling, ciascuna con proprie pecu-

liari configurazioni e con differenti cinematismi: con due pistoni, con pistonee displacer, a pistoni liberi, il motore Ringbom, il motore a pistoni liquidi,[8, 12, 11, 4, 17, 2].

6The dead spaces reduce the compression ratio and the specific useful power.

6

Page 7: Indice - Costante M. InvernizziFigura 3: Two further configurations of the Stirling engine. (a) Piston and displacer in separate cylinders (“gamma” configuration). (b) Two piston

Figura 4: The ideal adiabatic reference model with five volumes.

7

Page 8: Indice - Costante M. InvernizziFigura 3: Two further configurations of the Stirling engine. (a) Piston and displacer in separate cylinders (“gamma” configuration). (b) Two piston

Figura 5: Schema di un motore Stirling con stantuffi disposti a V, [18, 9].A - spazio di espansione, B - spazio di compressione, C - rigeneratore, D- scambiatore di calore caldo ausiliario, E - scambiatore di calore freddoausiliario, F - iniettore di combustibile, G - ingresso dell’aria di combustione,H - scarico dei gas combusti, I - zona di combustione, J - ingresso del fluidorefrigerante, K - uscita del fluido refrigerante, L - preriscaldatore dell’aria dicombustione.

8

Page 9: Indice - Costante M. InvernizziFigura 3: Two further configurations of the Stirling engine. (a) Piston and displacer in separate cylinders (“gamma” configuration). (b) Two piston

Figura 6: Schema di riferimento per la teoria di Schmidt, [18, Capitolo 5].

2 La teoria di Schmidt

Il primo esempio di modello fisico-matematico del motore di Stirling fu messoa punto da Gustav Schmidt, nel decennio 1861-1871. Nel modello di Sch-midt gli spazi di compressione e di espansione sono ipotizzati isotermi e ilrigeneratore ideale.

Agli inizi degli anni 1960, Finkelstein formulo un nuovo modello basatosull’osservazione che le trasformazioni che si verificano negli spazi di lavoronon siano isoterme, ma generiche politropiche, addirittura adiabatiche.

Dopo il modello dovuto a Finkelstein numerosi altri modelli sono sta-ti proposti, con differenti livelli di approssimazione, sino ad arrivare allaapplicazione della analisi numerica dettagliata.

Il modello di Schmidt, tuttavia, nella sua semplicita ed eleganza mettebene in luce le peculiarita nel funzionamento del motore di Stirling e sara quinel seguito illustrato. La trattazione e quella riportata in [18, Capitolo 5].

Mettendo in conto le differenti caratteristiche geometriche il modello diSchmidt descrive qualunque tipo di macchina. In questa sede si fa riferimentoallo schema di Figura 6.

Il motore e costituito da due cilindri disposti a V con angolo di sfasamento

9

Page 10: Indice - Costante M. InvernizziFigura 3: Two further configurations of the Stirling engine. (a) Piston and displacer in separate cylinders (“gamma” configuration). (b) Two piston

α tra i loro assi. I due cilindri sono fra loro collegati dal condotto contenenteil rigeneratore. I cilindri ospitano il pistone di compressione e il pistone chefa da espansore. Le camere di compressione e di espansione sono, rispettiva-mente, mantenute alla temperatura minima e alla temperatura massima. Ilmovimento dei pistoni sposta il gas (il fluido di lavoro) ciclicamente da unacamera all’altra.

Il gas occupa sempre tutto il volume disponbile. Le ipotesi di calcolo sonole seguenti, [18, Capitolo 5]:

condizioni riguardanti il motore

• non vi sono perdite per potenze passive dissipate (masse in moto acce-lerato, organi ausilari, ec);

• non vi sono perdite per attrito fra organi in moto relativo;

• non si verificano fughe di gas (ovvero, la massa di gas all’interno delmotore resta costante);

• le variazioni nel tempo dei volumi di compressione e di espansioneseguono leggi sinusoidali;

• si mette in conto la presenza di “volumi morti” (i volumi non spazzatidai pistoni durante il loro moto);

• la velocita di rotazione e costante e il regime di moto del motore eperiodico e stazionario.

condizioni riguardanti il fluido di lavoro

• tutte le trasformazioni alle quali il fluido e soggetto sono reversibili;

• il fluido e un gas perfetto;

• non vi sono dissipazioni di natura viscosa (assenza di perdite di carico);

• si trascurano l’energia cinetica e l’energia di posizione del fluido;

• la pressione istantanea e la medesima in tutto il motore;

• i processi di espansione e di compressione sono isotermi.

10

Page 11: Indice - Costante M. InvernizziFigura 3: Two further configurations of the Stirling engine. (a) Piston and displacer in separate cylinders (“gamma” configuration). (b) Two piston

altre condizioni generali

• il processo di rigenerazione e perfetto e completo (ad ogni passaggioattraverso il rigeneratore il gas assorbe e cede alla matrice metallicatutta l’energia termica che e idealmente possibile scambiare);

• non vi sono gradienti di temperatura negli scambiatori di calore;

• le pareti dei cilindri e degli stantuffi si trovano costantemente a tempe-rature costanti;

• la temperatura del fluido negli spazi ausiliari e uniforme e costante (peresempio, pari al valore medio delle temperature differenti temperaturealle estremita del rigeneratore).

2.1 Le leggi di variazione dei volumi

Con riferimento alla Figura 6, definito λ = r/l, con r << l e λ << 1, lospostamento s del punto B dello stantuffo risulta:

s = r (1− cosϕ) (1)

La variazione istantanea del volume Ve della camera di espansione risultaallora

Ve = πD

2E

4r (1− cosϕ) =

VE

2(1− cosϕ) =

VE

2(1 + cosφ) (2)

con VE = π (D2E/4) 2r che rappresenta la cilindrata della camera di espan-

sione e con φ = 2π − ϕ.Analogamente, per la camera di compressione, mettendo in conto lo

sfasamento α:

Vc =VC

2[1 + cos (φ− α)] =

VE

2ψ [1 + cos (φ− α)] (3)

con ψ = VC/VE.Il volume degli spazi morti, non spazzati dagli stantuffi, e costante nel

tempo e valeVd = VD = xVE (4)

con x = VD/VE.

11

Page 12: Indice - Costante M. InvernizziFigura 3: Two further configurations of the Stirling engine. (a) Piston and displacer in separate cylinders (“gamma” configuration). (b) Two piston

2.2 La pressione istantanea

Le quantita di fluido presenti nelle camere di espansione, di compressione enello spazio morto (il rigeneratore) risultano

Me =PeVe

RTE

(5)

Mc =PcVc

RTC

(6)

Md =PdVD

RTD

(7)

La massa totale, costante, risulta

MT = Me +Mc +MD =PeVe

RTE

+PcVc

RTC

+PdVD

RTD

(8)

Per le ipotesi sulle temperature:

TD =TE + TC

2=

TC

2

�1 + τ

τ

�(9)

con τ = TC/TE. Poi, per le ipotesi assunte sulla pressione istantanea

Pe = Pc = Pd = P (10)

A questo punto la (8), grazie alla (9), diviene

RMT

P=

Ve

TE

+Vc

TC

+VD

TC2

1+τ

τ

(11)

Ovvero, utilizzando la (2) e la (3)

RTCMT

P= τ

VE

2(1 + cosφ) + ψ

VE

2[1 + cos (φ− α)] +

2xVEτ

1 + τ(12)

Posti

H =2xτ

1 + τ(13)

K =2RTCMT

VE

(14)

si ottiene

P =K

τ (1 + cosφ) + ψ [1 + cos (φ− α)] + 2H(15)

12

Page 13: Indice - Costante M. InvernizziFigura 3: Two further configurations of the Stirling engine. (a) Piston and displacer in separate cylinders (“gamma” configuration). (b) Two piston

La (15) rappresenta la legge di variazione della pressione al variare del-l’angolo φ (ovvero del tempo). La pressione P ha un massimo ed un minimoche si possono individuare analizzandone le derivate prime e seconde in fun-zione della variabile φ. In generale, i valori massimi e minimi della pressionevengono assunti come dati di progetto.

Risulta, [18, 9]:

Pmin =K

Y (1 + δ)(16)

Pmax =K

Y (1− δ)(17)

con

Y = τ + ψ + 2H (18)

δ =

�τ 2 + ψ2 + 2τψ cosα

Y(19)

Il rapporto di compressione del ciclo r = Pmax/Pmin risulta uguale a(1 + δ) / (1− δ).

La pressione media Pmedia si puo calcolare come

Pmedia =1

� 2π

0

Pdφ

e risulta, [18, 9]

Pmedia = Pmax

�1− δ

1 + δ(20)

Nota la pressione istantanea P e possibile calcolare le potenze termichescambiate e la potenza utile.

2.3 Potenze termiche, potenza utile e rendimento

Poiche l’espansione e la compressione avvengono in condizioni isoterme, lepotenze scambiate si possono calcolare integrando le potenze meccaniche dicompressione e di espansione.

13

Page 14: Indice - Costante M. InvernizziFigura 3: Two further configurations of the Stirling engine. (a) Piston and displacer in separate cylinders (“gamma” configuration). (b) Two piston

Qc = Wc

= PdVc

dt

= PdVc

dt(21)

Qe = We

= PdVe

dt

= PdVe

dt(22)

con dφ/dt = −dϕ/dt = −ω = −2πN/60 ed N il numero di giri al minutodel motore.

La potenza utile si calcola come

W = We + Wc (23)

E il lavoro W =�W risulta, [18]

W =πPmediaVE

1 +√1− δ2

(1− τ) δ sinφ0 (24)

con φ0 che soddisfa l’equazione

tanφ0 =ψ sinα

τ + ψ cosα(25)

Le energie termiche si calcolano integrando le potenze termiche sulladurata del ciclo:

QC =

�Qc

=

�T

0

PdVc

dtdt

=πPmediaψVEδ

1 +√1− δ2

sin (φ0 − α) (26)

QE =

�Qe

=

�T

0

PdVe

dtdt

=πPmedia sinφ0VEδ

1 +√1− δ2

(27)

14

Page 15: Indice - Costante M. InvernizziFigura 3: Two further configurations of the Stirling engine. (a) Piston and displacer in separate cylinders (“gamma” configuration). (b) Two piston

con T = 60/N che rappresenta il periodo.Il rendimento η puo essere calcolato come rapporto fra il lavoro utile sul

ciclo W e l’energia termica consumata in espansione QE: η = 1− τ .Il rapporto QC/QE risulta uguale a −τ .

E’ usuale adimensionalizzare il lavoro utile W , o la potenza W , sul cicloriferendoli alla pressione massima Pmax e al volume spazzato dagli stantuffiVC + VE = VE (1 + ψ).

Per il lavoro si ottiene, [18]

W∗ =

W

Pmax (VC + VE)=

πδ sinφ0

(1 + ψ)�1 +

√1− δ2

� (1− τ)

�1− δ

1 + δ(28)

I principali parametri caratteristici del motore risultano dunqueessere:

• il volume totale spazzato dai pistoni (VC + VE);

• la pressione massima Pmax;

• l’angolo α di sfasamento tra le variazioni dei volumi di espansione e dicompressione:

• il rapporto delle temperature τ ;

• il valore relativo x del volume morto rispetto al volume della cameradi espansione;

• il valore relativo della camera di compressione rispetto alla camera diespansione;

• il numero di giri N .

Per esempio, fissati x e τ , il lavoro adimensionalizzato W∗ dipende da:

ψ = VC/VE e dall’angolo di sfasamento α. Con le ipotesi assunte, fissatoW

∗, la potenza aumenta linearmente con il numero di giri N .

Esercizio #1 Con riferimento ai dati in Tabella 1, relativi al motore GPU-3(vedi [10, p. 39]), si valuti, con riferimento alla teoria di Schmidt, l’effettodell’angolo di sfasamento α sulla potenza del motore.

In corrispondenza del valore α di massima potenza, tracciare l’andamen-to della pressione P/Pmax in funzione del rapporto V/ (VC + VE + VD), con

15

Page 16: Indice - Costante M. InvernizziFigura 3: Two further configurations of the Stirling engine. (a) Piston and displacer in separate cylinders (“gamma” configuration). (b) Two piston

Tabella 1: Dati per l’esercizio #1.

fluido di lavoro elionumero di giri al minuto N 2500 rpmpressione media Pmedia 41.3 bartemperatura del cooler TC 288 Ktemperatura dell’ heater TE 977 Kvolume spazzato in espansione VE 121 cm3

volume spazzato in compressione VC 114 cm3

volume morto (rigeneratore) VD 193 cm3

massa del gas nel motore MT 1.14 g

V = Vc + Vd + Ve che rappresenta il volume occupato dal gas nel tempodurante il ciclo.

Esercizio #2 Per τ = 0.3 e x = 1, analizzare gli effetti di α e ψ sul lavoroadimensionalizzato W

∗.

16

Page 17: Indice - Costante M. InvernizziFigura 3: Two further configurations of the Stirling engine. (a) Piston and displacer in separate cylinders (“gamma” configuration). (b) Two piston

Riferimenti bibliografici

[1] Allan J. Organ. Thermodynamics and Gas Dynamics of the Stirling

Cycle Machine. Cambridge University Press, The Edinburgh Building,Cambridge CB2 8RU, UK, 1992.

[2] Allan J. Organ. The air engine. Stirling cycle power for a sustainable

future. CRC Press (in North America) and Woodhead Publishing Li-mited, 6000 Broken Sound Parkway, NW, Boca Raton FL 33487 USA,,2007.

[3] Brad Ross and James E. Dudenhoefer. Stirling Machine OperatingExperience. Technical Memorandum 104487, NASA, August 1991.

[4] C. D. West. Liquid Piston Stirling Engines. Van Nostrand ReinholdCompany, 135 West 50th Street, New York, NY 10020, 1983.

[5] Christopher J. Paul and Abraham Engeda. Modeling a complete Stirlingengine. Energy, 80:85–97, 2015.

[6] Christopher J. Paul and Abraham Engeda. A Stirling engine for usewith lower quality fuels. Energy, 84:152–160, 2015.

[7] Costante M. Invernizzi. Closed Power Cycles - Thermodynamic

Fundamentals and Applications. Springer - Verlag, London, 2013.

[8] G. Walker and J. R. Senft. Free Piston Stirling Engines. Lecture Notesin Engineering. Number 12. Springer - Verlag, Berlin, Heidelberg, 1985.

[9] Graham Walker. Stirling Engines. Claredon Press - Oxford, OxfordUniversity Press, Walton Street Oxford OX2 6DP, 1980.

[10] Israel Urieli and David M. Berchowitz. Stirling Cycle Engine Analysis.Adam Hilger Ltd, Techno House, Redcliffe Way, Bristol BS1 6NX, 1984.

[11] James R. Senft. Ringbom Stirling Engine. Oxford University Press, 200Madison Avenue, New York, New York 10016, 1993.

[12] James R. Senft. Miniature Ringbom Engine. Moriya Press, P.O. Box,River Falls WI 54022, 2000.

[13] James R. Senft. An Introduction to Stirling Engines. Moriya Press, P.O.Box, River Falls WI 54022, seventh printing edition, 2007.

17

Page 18: Indice - Costante M. InvernizziFigura 3: Two further configurations of the Stirling engine. (a) Piston and displacer in separate cylinders (“gamma” configuration). (b) Two piston

[14] James R. Senft. Mechanical Efficiency of Heat Engines. CambridgeUniversity Press, 32 Avenue of the Americas, New York, NY 10013-2473,USA, 2007.

[15] Juliette Bert, Daniela Chrenko, Tonino Sophy, Luis Le Moyne, andFrederic Sirot. Simulation, experimental validation and kinematic opti-mization of a Stirling engine using air and helium. Energy, 78:701–712,2014.

[16] Rodger W. Dyson, Scott D. Wilson, and Roy C. Tew. Review of Compu-tational Stirling Analysis Methods. In Proceedings of the Second Interna-

tional Energy Conversion Engineering Conference, number AIAA-2004-5582, Providence, Rhode Island, August 16-19 2004. American Instituteof Aeronautics and Astronautics.

[17] Theodor Finkelstein and Allan J Organ. Air Engines. ASME Press,Three Park Avenue, New York, NY 10016, USA, 2001.

[18] Vincenzo Naso. La macchina di Stirling. editoriale ESA - Masson S.p.A.,Milano, via Statuto 2/4 20121 Milano, 1991.

[19] W. Q. Li and Z. G. Qu. Experimental study of effective thermal con-ductivity of stainless steel fiber felt. Applied Thermal Engineering,86:119–126, 2015.

[20] William R. Martini. Stirling Engine Design Manual. second edition.Technical Report DOE/NASA/3194-1, NASA CR-168088, NationalAronautics and Space Administration and U.S. Department of Energy,January 1983.

18