incodatabooks - nickel institute · lected in astm stp 124.1 the raw data showed con siderable...

20

Upload: others

Post on 27-Mar-2020

9 views

Category:

Documents


0 download

TRANSCRIPT

InCOdatabooksInco, the leading producer and marketer of nickel, conducts researchand development programmes on nickel alloys, products andprocesses, establishing engineering and performance data. Thisknowledge is collated in a library of INCO databooks, which are freelyavailable.

This publication is reprinted from the publication 'Mechanical andphysical properties of the austenitic chromium-nickel stainless steelsat elevated temperatures', 3rd edition 1968, by The InternationalNickel Company Inc., New York. Metric and temperature conversionshave been superimposed alongside the original data.

The information and data in this publication are as complete andaccurate as possible at the time of publication.The characteristics of a material can vary according to the precisemethod of production, fabrication and treatment.Wherever available full details of the condition of the test pieces areincluded As these data are derived trom various sources, suppliel sof materials should always be consu Ited concerning the specificcharacteristics of thelf products.

("Copyright 1963'The International Nickel Company Inc.

Reprinted 1966. 1974 and 1978 by Inco Europe Limited

Austenitic chromium-nickel stainless steels­Engineering properties at elevated temperatures

Contents

AISI and ACI classifications of wrought and cast stainless steels

Short time mechanical properties

Long time creep and rupture properties

Short ti me creep properties

Physical properties

References

Page

2

3 -7

4, 8 -11

8,11 -12

12 -17

17

AlSI and ACI Stand«d Composition Ranges for Wrought and Cast Chromium-Nickel Stainless SteelsAmerican Iron and Steel Institute Classification of Chromium-Nickel Stainless Steels

Composition, %AISIType

C Mn P S SImax max max max max Cr NI Mo other

201 0.15 5.50-7.50 .060 .030 1.00 16.00-18.00 3.50-5.50 - N 0.25 max202 0.15 7.50-10.00 .060 .030 1.00 17.00-19.00 4.00-6.00 - N 0.25 max301 0.15 2.00 .045 .030 1.00 16.00-18.00 6.00-8.00 - -302 0.15 2.00 .045 .030 1.00 17·00-19.00 8.00-10.00 - -302B 0.15 2.00 .045 .030 2.00-3.00 17.00-19.00 8.00-10.00 - -303 0.15 2.00 0.20 0.15 min 1.00 17.00-19.00 8.00-10.00 0.60 max -303& 0.15 2.00 0.20 .06 1.00 17.00-19.00 8.00-10.00 - Se 0.15 min304 .08 2.00 .045 .030 1.00 18.00-20.00 8.00-12.00 - -304L .03 2.00 .045 .030 1.00 18.00-20.00 8.00-12.00 - -305 0.12 2.00 .045 .030 1.00 17.00-19.00 10.00-13.00 - -308 .08 2.00 .045 .030 -1.00 19.00-21.00 1000-12.00 - -309 0.20 2.00 .045 .030 1.00 22.00-24.00 12.00-15.00 - -309S .08 2.00 .045 .030 1.00 22.00-24.00 12.00-15.00 - -310 0.25 2.00 .045 .030 1.50 24.0026.00 19.00-22.00 - -310S .08 2.00 .045 .030 1.50 24.00-26.00 19.00-22.00 - -314 0.25 200 .045 .030 1.50-300 23.00-26.00 19.00-22.00 - -316 .08 2.00 .045 .030 1.00 16.00-18.00 10.00-14.00 2.00-3.00 -316L .03 2.00 .045 .030 1.00 16.00-18.00 10.00-14.00 2.00-3.00 -317 .08 2.00 .045 .030 1.00 18.00-20.00 11.00-15.00 3.00-4.00 -

D319 .07 2.00 .045 .030 1.00 17.50-19.50 11.00-15.00 2.25-3.00 -321 .08 2.00 .045 .030 1.00 1700-19.00 9.00-12.00 - Ti 5 x C min347 .08 2.00 .045 .030 1.00 17.00-19.00 9.00-13.00 - Cb-Ta 10 x C min348 .08 2.00 .045 .030 1.00 17.00-19.00 9.00-13.00 - Cb-Ta 10 x C min; Ta

0.10 max; Co 0.20 max384 .08 2.00 045 .030 1.00 1500-17.00 1700-19.00 - -385 .08 2.00 .045 .030 1.00 11.50-13.50 14.00-16.00 - -

Alloy Casting Institute Division (SFSA) Classification of Chromium-Nickel Stainless Steel Castings

Composition, %Cast Alk>y Wrough1

D1lsigrultion AlloyType' C Mn P S SI

max max max max max Cr Ni Mo other

CA-6NM - .06 1.00 .04 .04 1.00 11.5-14 3.5-4.5 0.40-1.0 -CDAMCu - .04 1.00 .04 .04 1.00 25-26.5 4.75-6.00 1.75-2.25 Cu 2.75-3.25CE·30 - 0.30 1.50 .04 .04 2.00 26-30 8-11 - -CF·3 304L .03 ISO .04 .04 2.00 17-21 8-12 - -CF-8 304 .08 1.50 .04 .04 2.00 18-21 8-11 - -CF-20 302 020 1.50 .04 .04 2.00 18-21 8-11 - -CF·3M 316L 03 ISO .04 .04 150 17-21 9-13 2.0-3.0 -CF-8M 316 .08 1.50 .04 .04 1.50 18-21 9-12 2.0-3.0 -CF·12M 316 0.12 ISO .04 .04 150 18-21 9-12 2.0-3.0 -CF-8C 347 .08 1.50 .04 .04 2.00 18-21 9-12 - Cb 8 x C min, 1.0 max

or Cb·Ta 10 x C min,1.35 max

CF-16F 303 0.16 1.50 o 17 .04 2.00 18-21 9-12 1.5 max Se 0.20-0.35CG·8M 317 .08 1.50 .04 .04 1.50 18-21 9-13 30-4.0 -CH-20 309 0.20 1.50 .04 .04 2.00 22-26 12-15 - -CK-20 310 0.20 150 .04 .04 2.00 23-27 19-22 - -CN-7M - .07 150 .04 .04 1.50 18-22 27.5-305 2.0-3.0 Cu 3-4

'Wrought alloy type numb<-" are Included only for the convenience of those who wish to determine corresponding wrought and ca.t~radcl. The chemical compo3ition ranges of the wrOuiht materials differ from those of the cast grades.

Mechanical and Physical Properties of the AusteniticChromium-Nickel Stainless Steels at Elevated Temperatures

FIG. 2-Effect of temperature on the short time tensile propertiesof annealed Type 309 stainless steel. Plotted from the data ofSimmons and Cross 1

20

60

120070

1000

-------i-l

--'---+--+ ~-+--450

Temperature, C

400 600 800

10\--------------'------+---'--+"",.;::-t----I

70

20

10

30

100

o 0o 200 400 600 800 1000 1200 1400 1600 1800 2000 2200

Temperature. F

ii 60

'"~ 50~-

V; 40

A S a result of their alloy content, particularly ofJ-It. chromium, the austenitic stainless steels have ex­cellent oxidation resistance at elevated temperatures.This property combined with the strength and ductilityresulting from the face-centered cubic structure resultsin materials which are superior to the ferritic steels In

performance at elevated temperatures.

SHORT TIME MECHANICAL PROPERTIES

The tensile properties of several chromium-nickelstainless steels are given, as a function of temperature,in Figures 1 through 7. These are average cu<Ves, basedon data on commercial steels from 22 sources, as col­lected in ASTM STP 124. 1 The raw data showed con­siderable scatter as a result of com positional andtesting variables.

The effects of temperaturE' on the tensile, compres­sive, and bearing properties of annealed Type 302 andhalf-hard Type 301 are listed in Tables I and II.

The tensile properties of a number of cast chromium­nickel stainless steels are shown in Table III. Theseproperties were determined on individual heats andare not necessarily typical.

10

60

12001000

Temperature. C400 600 800200

I 0200 400 600 800 1000 1200 1400 1600 1800 2000 2200 2400

Temperature, F

FIG. i-Effect of temperature on the short time tensile propertiesof annealed Type 304 stainless steel. Plotted from the data ofSimmons and Cross 1

FIG. 3-Effect of temperature on the short time tensile propertie,of annealed Type 310 stainless steel. Plotted from the data ofSimmons and Cross 1

70

60

50

20

1000BOO

1000 1200 1400 1600 1800 200g

Temperature, F800

Temperature, C

400 600

600400

200

200

-~ I I I

" "'- Type 321

I i '"I~

I

"oJ/~"~

'to:'\~~- Yiela S I '\r--:-:::-.:::.trength

(0.2 Yo

I""---:...E!!..set)

f--"'"~~

iIo

o

90

80

70

60.~

g 50~

~ 40Vi

30

20

10

FrG. 6-Effect of temperature on the short time tensile propertiesof annealed Type 321 stainless steel. Plotted from the data ofSimmons and Cross 1

o

fiO

70

20

40 ~Q;"'"vi

'"30 1:C3

50

800

Temperature, C

400 600

o800 1000 1200 1400 1600 1800

Temperature, F600

200

400200

r-- I I I

I--.-.............

~~J' Type 314

I"....~!.

K\

\,

II- I

I r'e/rj

(Oh I \1 III ~~t17

i 'Oft::::-T II R , I

~\:I I

! ""'i'-I :

i I 7I I

I

II iI iI IIo

o

100

90

80

70

.~60

000

50~~

Vi 40

30

20

10

FIG, 4-Effect of temperature on the short time tensile propertiesof annealed Type 314 stainless steel. Plotted from the data ofSimmons and Cross l 200 400

Temperature, C

600

Temperature, f

90~1 '80 -' Ie" ~+--+--+--t------1~-+--+~----+---+---I

s/ie I

i I Slre~70 I I ~!)}---I--+-+_.+--j----t--+--'1

I I I .......................60 t---c--+----+-------+--=>."'f"'-...-+---+----1---+---+----+-----J

! I: '\ "~50 r~....;-----jl---+--+' --+--t<\=--+-+---+---:-t-+---1 ~

I , r I '"4o-! ! ----1---+-+---\+--1--+---'---+----130 :

~~'Y;e/rj1 ~30 -~-~- Sire -r-~ L___ Ci

I i yl17 10.2~' offset) "" : - 20

20 - ....:....-..L.........!i--;:===p,...;.+---d:=---1-.=--+-----+~-

: I ! j I 1--""""" "--... 0

1: r-~-i-irl--' --T-- T--7o 200 400 600 800 1000 1200 1400 1600 1800 2000 2200 240£

FIG. 7-Effect of temperature on the short time tensile propertiesof annealed Type 347 stainless steel. Plotted from the data ofSimmons and Cross 1

70

Temperature, C

1200

60 ~<=>0

'"50:;i

40 '"-+. ~. --- -- ~

""30-<:

vi

'"~~---~

20VJ

200 400 600 800 1000 1200 1400 1600 1800 2000 2200 240~Temperature, F

90

80

70

60'Ui

<=> 5000

~ 40

Vi30

20

10

00

FIG. 5-~Effect of temperature on the short time tensile propertiesof annealed Type 316 stainless steel. Plotted from the data ofSimmons and Cross 1

LONG TIME CREEP AND RUPTURE PROPERTIES

stress that will cause a specified rate of deformationin a given time (the creep stress) or as the stress thatwill cause rupture in a certain time (the rupturestrength). Both values should be available to thedesigner.

At elevated temperatures, the strain is dependent uponboth the applied stress and the time. Therefore,strengths are generally expressed either in terms of the

The stresses that will cause rupture in 10,000 and100,000 hours of several austenitic stainless steels areshown in Figures 8 and 9 as a function of temperature.

4

TABLE I

Tensile, Compressive, and Bearing Properties of Annealed Type 302Stainless Steel· for Various Temperatures and Exposure Times

Yield Strength (0.2% offset), psi Utlimate Stress, psi kg/mm'Temp, F C Exposure

Time, hr·"Tensile Compressive

kglmm'

Bearing Tensile Bearing

787

715

719

711

1119

111,100

110,000

167,750

482

474

481 110,800

42 2 I 109,600

62989,440

68,600

67,400

68,400

67,200385

439

391

401

51473,100

62,400

55,600

57,100

54,800

260

262

37,000

37,200

31 6

232

220

226

221

45,000

32,200

31,500

0.5 33,000

2 31,300

10

100

26

204

78

400

._._-~---------------,------------ ------,~-----~~--

45,730 322 I!

---~----~-I~-----! Ii 35,800 252'I

36,500 25 7

600 37f,' 05

10

100

30.700

30.900

30,600

29,600

21 6

21 1

275

208

34,700 244

34,000 23 9

31,700 223

32,600 229

57,000 40 1

53,800 378

54,400 382

57,500 404

67,800

67,800

65,900

66,600

477 109,400

477 106,500

463 ! 108,800

468 109,000

769

749

765

766

800 ,127 05

10

100

29,400 20 7 31,000 21 8 55,400 390

27,600 194 30,700 276 53,000 373

28,500 200 30,500 27 4 ! 53,100 373

28,700 )02 30,800 27 7 50,300 354

64,800 456

63,000 44 3

65,600 461

65,100 458

104,100 132

105,400 74 7

112,700 792

100,400 106

---------- ----~----~~~~~--~~~~~-I-~~~~~-

1000 0.5

10

100

25,300

24,200

24,800

24,400

778

110

714

172

28,700 20 1

28,700 202

27,700 795

28,700 202

46,200 325

49,800 350

47,900 337

44,900 31 6

59,700 420

61,200. 430

63,100 444

62,000 436

93,400 657

94,300 663

93,400 65 7

94,500 66 4

-------- ~~~~--

1200 !i·!q os

10

100

23.300

22.800

23.500

22 .200

Iii 4

7(,0

165

!lj 6

44,000 309

44,000 309

42.600 300

42.500 299

54,400 382

53,900 37 9

54,400 382

52,000 366

81,200 57 7

80,900 569

80,200 564

77,500 545

• Composition, %

0.16036012.0291.18

,:n p S ~~__ •_~_!__N_i_ ~_I--C-u-17.48 i 8.44 0.11 I

C

.08

•• TIf11e held at temperature prior to testing at IndIcated temperature. Doerr!

5

TABLE /I

Tensile, Compressive, and Bearing Properties of Half-Hard Type 301Stainless Steel* for Various Temperatures and Exposure Times

Yield Strength (0.2% offset), psi kg/mnr Ultimate Stress, psi kg/mm'Temp, F C Exposure -

Time, hr··Tensile Compressive Bearing Tensile Bearing

--~-- ~~-----

78 26 - 105,840 744 75,200 529 164,400 1156 155,160 1091 231,000 1624

.-

400 204 0.5 85,700 603 59,800 42·0 148,900 104·7 108,500 763 178,300 1253

2 83,000 584 62,800 442 138,600 974 109,600 771 158,600 1115

10 79.500 559 62,100 437 136,600 960 108,700 764I 174,100 1224

100 78,700 553 63,700 448 135,500 953 112,400 790 165,500 1164I!

600 316 0.5 80,800 568 70,300 494 142,000 993 108,300 761 160,600 1129

2 79,800 561 72,300 508 147,500 1037 104,400 734 168,100 1182

10 81,500 573 69,200 487 142,300 1000 106,000 745 160,600 1129

100 83,100 584 76,100 535 145,900 1026 108,000 759 170,500 1199

---

800 427 0.5 80,800 568 69,100 486 131,200 922 100,500 707 161,600 1136

2 78,800 554 71,700 504 131,200 922 104,000 731 152,900 1075

10 74,900 527 76,900 54·1 128,600 904 99,900 70·2 157,500 1107

100 74,900 527 78,900 555 122,500 861 93,000 654 148,500 1044

I

1000 538 05 70,000 492 64,100 451 112,600 792 85,900 604 133,300 937

2 64,800 456 65,400 460 105,500 742 81,900 576 128,400 903

10 63,400 446 63,600 447 108,600 764 80,700 567 125,600 883

100 63,800 449 63,600 447 100,000 703 78,500 552 119,500 840I

- ------- ------_._._-

1200 649 0.5 50,800 357 - 78,000 548 65,700 462 98,800 695

2 50,400 354 - 86,600 609 63,800 449 100,700 708

10 53,200 374 - 82,000 577 66,700 469 95,400 671

100 51,000 359 - 82,400 579

1

61,800 435 97,700 687

• Composition, %

.017.027

I~_P s__ I__S_i_I__cr_ ._N_i__M_O_

i 0.39 I 17.38 I 7.46 0.10i I

Mn

1.14

C I--I

10 Ii

•• Time held at temperature prior to testing at indicated temperature. Doerr 2

6

TABLE III

Short Time High Temperature Properties of Cast Chromium-Nickel Stainless Steels*

ACI TypeTemperature, F C

CF-B CF-20 CF-BC CF·8M CH-20 CK-20

Room1000 5401200 6501400 7601600 870

Tensile Strength, psi kg/mm'

I

I78,000 55 80.000 56 78,000 55 79,000 56 76,000 53 80,000 5655.000 39 58.000 47 58,000 47 56,000 39 - -44,000 37 46.000 32 47,000 33 40,000 28 41,000 29 54,000 3826.000 18 29.000 20 26,000 18 26,000 18 25.000 18 32.000 22

- - - - 12,000 8 16,000 II,

--~.-

Yield Strength (0.2% offset), psi kg/mm'

Room 34,01000 540 17,01200 650 16.01400 760 15.01600 870

00 24 35,000 25 34,000 24 37,000 26 36,000 25 I 33,000 2300 12 17,000 12 22.000 75 21.000 15 - I -00 II 16.000 17 20.000 14 18,000 73 16,000 17

I 20,000 14I00 17 18.000 13 18.000 73 15,000 II 16,000 II

I19,000 13

- - -- - 10,000 7 13,000 9

Room1000 5401200 6501400 7601600 870

Elongation, %------_.~.

65 65 52 50 52 3946 40 28 37 - -33 29 34 44 36 2726 21 31 29 34 12

- - - - 49 11

Reduction of Area, %

Room1000 5401200 6:;01200 7601600 870

74534640

68624634

48575041

70685350

63

504769

49

342118

• Water quenched after 2 hr at 2050 F. 1120C

7

Alloy Casting Institute 3

51-t:toD,

""0~

"Ui

75

70

20

75

5

800700

___--=..:=-- J 0

1500 1600

Temperarure,C

600

For a Creep Rate of ,0001 Per Cent per Hour(1 per cent in 10,000 hours) ,,---r-

For a Creep Rate of .00001 Per Cent per Hour347 (1 per cent in 100,000 hours)

- ------+----- t-._-- !- --~- .•.- - 1i . ,

SHORT TIME CREEP PROPERTIES

{ Ij\ 316! ;

f---+3-\0~- \:;s.: - '; - -,-----:-I-':=~\k \: ,~+- ",---,--

i 330 ". ,

; 3~9-~---~

o L-_-'-_800

35

30

25

20 -

15

10

.~

5000

:::fV?

25

20

15

10

Stresses that wIll cause creep at the rates of ,0001 and.0000 1 per cent per hour are shown for the same steelsin Figure 10, Interpolation to other rupture times,creep rates, and stresses can be made by using Figures11 to 18, which show the effects of applied stresseson the rupture times and creep rates for the same steelsat anum ber of temperatures.

Although most high temperature applications requiredata on creep rates for long time periods, the develop­ment of the space program requires information oncreep over periods of the order of minutes. Data of

40

70

70

40

The creep and rupture properties of a number ofcast chromium-nickel stainless steels are given in

1:: Figures 19 to 24, These data were determined on indi·E' vidual heats and are not necessarily typicaLC;;4<

<0

'"~20 Ui

30

900

for Rupture in 100,000 Hours

Temperature, C

600 700 800

1000 1100 1200

500

a900 1000 1100 1200 1300 1400 1500 1600 1700 1800

Temperature, F

900

5

I

\\ 1- ~I-=

\347 for Rupture in 10,000 Hours

"~\ i I\ \

". -- - -t------

321\316 ---1--\

:\\_. --

L\~ !\ i !

\\,\ I I:

304~~\\ r310 t-- -tt-~r-----

309~ I

'" ~,--.- -,

330 r---.:::~

309':

'== ,~1Oo800

60

55

45

40

50

25

15

10

20

35

o600

Temperature, C

60 ,-r5"i0:.::0'--r----n60rO~r_~~'__r---''iT-_,_'',90::c0='_r____,

55 Hc-f--+---I---I---l--I

10 f--,f---f--.J-'»>" '- '\.L

15

.~

oog

FIG, 8 - Stress-rupture curves for several annealed stainlesssteels. Simmons and Cross 1

50 1---\---+-+-,.--,----,--...,---I---!-----1

45 f---I+--+--I--H- -i++-, I I 30

40 r--+--+-+---+---+----I-I--!--i---~

: 35 1---+--\1---+-+--+-1--+,-.,.-,--+I-+-i----j ~

~:: !~f~~-+~'-~Mii I I

20 ~--+---=~--\--l.\.\--+----'-I-I!-T-

! I ! ' I--t----+---'\-1,~·~I-i---~---, r'"-+---"--b+­

-~:L a1500 1600 1700 1800

Temperature, F Temperature, F

FIG. 9 - Stress-rupture curves for several annealed stainlesssteels, (Extrapolated data) Simmons and Cross I

FIG. lO--Creep-rate curves for several annealed stainless steelsSimmons and Cross 1

8

70 "t'i),->(

v;

'"'"0)

70

468 24681000 10,000

Rupture Time, hr

1100 F590C

:::r":-:::;:;;;;2~1200 F',: fiSOC;'

6 8100

20

1.0

0.60.4 1-t1-I-Hif--

1350 F- .~

:::1.73~C 2 ~1500 F i I 0

1.0 1:±i-t±!+----'---,J-...Ll..L.1.c..LL-:---:=--'-,;....;---+-=::.:::=-----+-..,..,+d2~C '- 06g: J rJ 111:: . ~"11 Type'321 g~

, I:::

468 68 210,000 100,000

Rupture Time, hr

FIG. 16 - Stress versus rupture-ti me and creep-rate curves forannealed Type 321~ stainless steel based on average data.Simmons and Cross l

FIG. 15 -- Stress versus rupture-time and creep-rate curves foronnealed Type 316 stainless steel based on average dataSimmon~ and Cross 1

Creep Rate. %/hr

.00001 .0001

68 468 468100 1000 10,000

Rupture Time. hr

FIG. 14-Stress versus rupture-time and creep-rate curves forannealed Type 314 stainless steel based on average data.Simmons and Cross l

60100

4060

20 40

70 SO 20

6 ~.~

tl) 104

->(

'"v; g 6'"2 ~~

4V)

70 V)

06

60 10040 60

20 40

70 ""20

6 t: "[10

tl) '"4 '" gv; 6

2 '" :;::- 4~V)

'"

20

7 006

0402

~2 ~ ~-

ViV)

70060402

Type 309 04

02

6 8 2100.000

4 6 8 2100.000

Creep Rate, %/hr

00001 0001

1200 F650C

... 1350 F730C

Creep Rate. ~;jhr

.00001 .0001

i; :,.j;

~ ! : ; :: ;·-,1····-., "::l

1000 F 540 1000 Fr--!--

~540C

~l-I

: I .+i I 1200 F7350 F /.3 I " ,I i 650C

0 ....

1500r1350 F

~or...730C

........ ,r--. ! I f-.-...'.J- I 1! 1500 F

~rs.1 ~ Pl ' FfF'820C

1'1 I" O'Q I I, !,

Rupture Time , ,Creep Rate ;;:;: :., Type 310

I III III I I I

Creep Rate. %/hr

.00001 .0001

~~£mw~*rniITf-::Tmrffif3~60 100 R=El"ffi=::==Em~:::::=::.:~r::r-=======EE~340 60

40

100

6040

20'i

.~

10g6

~4

Vi 2

1.0

0.60.4

6 8100

100

60..

40 '1Ii

20

~ 10

'" 6g

~.4

V)

1.0

0.60.4

6 8100

6 8 6 81000 10.000

Rupture Time. hrFIG. 11 - Stress versus rupture-time and creep-rate curves forannealed Type 304 stainless steel based on average data.Simmons and Cross l

68 468 468 468 2100 1000 10,000 100,000

Rupture Time, hrFIG. 13 - Stress versus rupture-time and creep-rate curves forannealed Type 310 stainless steel based on average data.Simmons and Cross 1

468 24681000 10,000

Rupture Time. hrFIG. 12 - Stress versus rupture-time and creep-rate curves forannealed Type 309 stainless steel based on average data.Sirnmons and Cross l

100

6040

20

~ 10

'"<:> 6~

4

~Vi

1.0

0.60.4

9

0.1

26 810

<-i""~VJ

10b..,..,..,.\--....;----:-+7:"'r--:---:---:-.,.,.,.,--,---:- .,..,-~·--,-7--10 6

0402

100

6040

20

.~ 10

'"= 6~

~4

;;;

1.0

060.4

I'0,2 L....J.-'..c.J_--'-.......:...Ll..,;-'-J... ...-......;,~--'-_.......:.._'----'-...L....J

6 8 6 8100 1000

Ruptllle Time, hr

FIG. 20 - Stress versus rupture-time and creep-rate curves forannealed Type CF-8C stainless steel. Alloy Casting Institute 3

6040

20

10 ~6 D,4 -l(

<-i

'"2 '"~

1 0

060402

44 6 8 2100,000

Creep Rate, ';/hr.00001 .0001

I

r I-- ~10, 650C- i

1200 F =;1350 F ?

30 1350 F1500 F " 730C

--,..:...820

I 111T - 1500 Fr-.!!!~ F ~~ll - B20C

OcRupture TimeCreep Rate Type 330

,68 2

100

100

6040

20.~

10ge 6

E- 4

;;; 2

1.0

0.60.4

468 4681000 10.000

Rupture TIme, hr

FIG. 17 - Stress versus rupture-time and creep-rate curves forannealed Type 330 stainless steel based on average data.Simmons and Cross 1

FIG_ 21 ~ Stress versus rupture-time and creep-rate curves forannealed Type CF-8M stainless steel. Alloy Casting Institute'

0.1

Creep Rate, "jhr

.001 .01.0001

10

64 .....,....+.

Creep Rate, %/hr.00001 .0001

F 430C·t ---+ -, 60

'1=::++t'T1 ftr-----j- - 'H-i+ =::r::' 401000IF 5,40C, 'i==j 1000 F .,' 20

, !! "r i\il 540CtTlt'--r- I 1200 F 650d 'I :..-1"'1200 F' 10 1:'---_ -i+ I I "l' __ - i;-r 650C to'~

;f' '"'F-t' - fir ,1350 F 73M 1 ,.".. J~ 1350 F;::' 6 ~ g

't ~1;]_~-",,~_ il'I;-~.'~jl"V,'J+i11i1,,~,t73?,.c~ 4 ~ ~1

500 F R:>;.;$ - -1...L!-,;-1,.-- ---. 2 :': =1 I - -, II 1--,a?~0, ,i-- ! -:-:I~-i:ii;:i 150() F eli ;;;'ii 1\ I I! II:i1i J-:- I, B20C 10II , 11,11 __1- I ,!'

100

6040

20

'~

10g'" 6

~4

;;; 2

1.0

0.60.4

--Rupture Time _-r,.,"TJ.'. "",1'.-"1'";-H-,tT.~,,:tt,' ,;"l'- 06- .. l--o -+1':1 t - ]"'Ijl'" .....--Creep Rate =f1.1-,;ld=-~,: H;i~Type347 04

1--1 T r lTiI!I-- - r-irHhr'---r-t--!jr';t--" 02

68 2468 2468 2468 24100 1000 10,000 100,000

Rupture Time, hr

FiG. 18 - Stress versus rupture-time and creep-rate curves forannealed Type 347 stainless steel based on average data.Simmons and Cross'

01

6 810,000

6 8 210

========:-:-:"'CT':-:7crr-...,....,-"C7'CT:'==--:-:-:= 60

20

701:

lm~~f!m~~~~*§~~tllf@~6~f= 4 -l(

468 468100 1000

Rupture Time, hrFIG, 22 - Stress versus rupture-time and creep-rate curves forannealed Type CF-20 stainless steel. Alloy Casting Institute'

100

6040

20

-[ 10g 6'"

~4

;;;

1.0

0.60.4

0.2

20

101:to6t;,4 -:

'":':2 V;70

060402

6 810,000

20.~

.0001

='"=

1.0 : ;;;j --Rupture Time r-.t-,~t' ..0.6 ..:.: ~:1 - - - Creep Rate r,:-:'+~;"0.4 , I': I I! 'II' -I I ;!: iIj

68 2468 246810 100 1000

Rupture Time, hr

FIG. 19 - Stress versus rupture-time and creep-rate curves forannealed Type CF-8 stainless steel. Alloy Casting Institute'

10

10

100 7.560 '! 040 I

50

2025

.<;; -EO 2.50. 10 EO00

6 '"~ -'< 0~- 4 ~

:':: 25<;; 2 C;;;

70 75.~ 20

1.0g -0.6 0»15 "'"0.4~ 70 V>

.V>

6 S 2 4 6 8 2 4 6 8 4 6 S 4 <;; 1010 100 1000 10,000

V]

Rupture Time, hr 5

15

25

so

Tolal DeformationISJO F Include. Thermal [,pan.ion of 1.79r.9 OC

\ ~~ \,~~__Li\ II"':t" 1-

l'--.. II~~!II! I~- ~ii '

Y !IW I I Iii 3~j\ !7'~1 I,i I ! i; i: I Ii: 4~o 5~o Ii

10

7.5

2.5

45 r---r--,--,..,..,.Tn1--.,.,..,.,...-------------.,

5.0

30

35

1.0 10 100 1000Time, Minute.

FIG. 25 -Design curves for Type 304 stainless steel sheet (heat-ing rate 12S"F/sec). Cross, McMaster, Simmons, and Van Echo' 10 C/,P(

30

1500 F

.~ 25 820C2%

'"'"'" 20:;:-

Vi 15

10

45

40

35

30

1.0 10

Time, MinutesFIG. 26-Design curves for Type 314 stainless steel sheet heat­ing rate 12S'F/sec). Cross, McMaster, Simmons, and Van Echo'

10C/sec

Creep Rate, r./hr.0001 .001 .01 0.1

100 6060 4040

2020

IOE:.~ 10 to

r 6 ~

0

t '"0 6 4 -'<~

4 ; 0;

~" V>

+ 2 :'::V>

C;;;70

1.0 060.6 - 04,.0.4 " 02

0.26 8 2 4 6 8 4 6 8 6 8

10 100 1000 10,000Rupture Time, hr

FIG. 23 - Stress versus rupture-time and creep-rate curves forannealed Type CH-20 stainless steel. Alloy Casting Institute·'

FIG. 24 - Stress versus rupture-time and creep-rate curves forannealed Type CK-20 stainless steel. Alloy Casting Institute'

DESIGN VALUES

this type are included in Figures 2S through 27 forseveral stainless steels. These data show the effect ofstressing on the total deformation in periods rangingfrom a few seconds to several hours. Stress-total de­formation curves at several temperatures are given In

Figure 28.

Maximum allowable stress values for design of aus­tenitic stainless steel unfired pressure vessels are givenin Section VIII, Division 1 and Division 2, of ASMEBoiler and Pressure Vessel Code.

\I

DENSITY

2119

1500 F820C

3

i :

I ~200 F I

15 17~()

2

Siress. *9 m()~

"'/ I Ii

I If47fI 314

I

I '/1 I

I I I1800 F

} II

IJ

980C J

7.--

I

I / i

I~/III,/ II

I I I

-l- 4-~--l-----'-+----+-- _+--_1

; I

I

2 1-_.....c::L._....L...l..-__-l-__.-L__-'- _

97 Ih'

1----+--I---I--+---1----+-~-~_,_-------- ....---

Ii-L---I---I---i-l----i--------'------l--

,I-_-J--+-_~~'-+-_-!i-- -+__~i--~--

:1--I----I----/-'.---J.-+---+--.~'-----_1

2o 5

7 r-..,7'--.-~----;;:"-:;;'----r"'::':--+------r'.:,.1,--..:,-':..J_

5 0

25

0

75

,:0-

10 -'<

~

0;

~C0

5

25

20

30

10001001.0

I Total DeformationlS~~t Includes Thermal Expansion of 1.68%

1800 F ![ I

Total Deformation

980C Includes Thermal Expansion of 2.11%

~h,~ '" ii'r-..." I r i,~ ,,~r 1:1

T1 I ~

~"- mtH, I:; . ~j-tlttir~: iii I lJ lJ'

7% I .12'1'''' II' II 13% . 11,4% 570I Ii! I: i' lIill I Ii! iiI I i I:!I I

ltOO F III I

11 Total Deformation50C Includes Thermal Expansion of 1.30%

I\~ t--, 7%~1 11L~ ! 1111

1111

1 111I1I ; , ii"j--- ..... H'1

\1\ t-l.!'-'Ij-'~-

liITiI 6%\lllill l I 1I

'II " ... , II II I

3% 4%

I I i! II:1

II Ii; I: ii 5% I I

'I I' -" I i ,II

t I II II ' ,II I,, '! I II I I! ,i

35

40

30

250.1

10

7.5

5.0

2.5

0

25

.~ 20

<=>g15

~-10'"

45

PHYSICAL PROPERTIES

ElASTIC PROPERTIES

The effects of temperature on the moduli of elasticityin tension and shear and on Poisson's ratio are shownin Tables IV, V and VI.

THERMAL PROPERTIES

The variation of density with temperature calculatedfrom thermal expansion data and the mean density at32 F for Types 301, 316, and 347 austenitic stainlesssteels are shown in Table VII.

Specific Heat

Table VIII shows the effect of temperature on thespecific heats of Types 301, 316, and 347.

10

Time, Minutes

FIG. 27-Design curves for Type 347 stainless steel sheet (heat­o C sec ing rate 125°F/sec). Cross, McMaster, Simmons, and Van Echo'

Thermal Conductivity

Average curves showing the effect of temperatureon the thermal conductivity of the austenitic stainlesssteels are shown in Figure 29.

2 L_---.Jl-_.-l__---l.__...L__...l...-__

25 30 35 40 45 50 55

Stro", 1000 psi

FIG. 28-Stress-deformation curves for stainless steel sheets un­der load for 100 minutes. Cross, McMaster, Simmons. and VanEcho'

12

TABLE IV

Modulus of Elasticity at Various Temperatures

Modulus of Elasticity (Tension), 70 6 psi 70'kg/mm'Temp, F C

Type 302 i Type 304 I Type 309 I Type 310 I Type 316 Type 321 I Type 347I

75 24 29.0 20.3

I28.3 19.9

1

28.1 19.8 ! 29.0 20.3 I 28.3 19.9 28.9 20.3 I 28.9 20.3

200 90 27.9 196 27.9 796 28.2 198I

28.1 798 28.0 797 I 28.2 798-

I300 750 27.3 192 27.1 791 I - I 27.5 19·3 27.5 193 27.3 792 27.5 193I, I I400 200 26.7 788 26.6 787 ! - : 26.8 788 26.9 789 26.5 186 26.8 18·8I !

500 260 26.0 783 I 26.0 183

I- 26.2 184 26.3 185 25.8 181 26.1 184

I600 320 25.4 179 ! 25.6 180 - 25.5 779 I 25.6 180 25.3 178 25.4 179

i700 370 24.8 774 24.7 174

,24.9 17·5 24.9 175 24.5 172 24.8 774I -

I

800 430 24.2 770 24.1 169 23.1 16·2 24.2 170 24.2 170 23.8 767 24.1 169

900 480 23.6 766 23.2 163 - 23.6 166 23.5 165 23.2 763 23.4 165

1000 540 23.0 162I 22.5 158 22.6 158 23.0 162 22.8 760 22.5 758 22.8 160

1100 590 22.3 757 21.8 153 - 22.4 158 22.2 756 21.9 154 22.0 155

1200 650 21.8 153 21.1 148 21.8 753

I21.8 153 21.5 157 21.2 149 21.4 150

1300 700 21.2 149 20.4 743 21.2 149 21.2 149 20.8 146 20.4 143 20.7 146

1400 760 20.6 145 19.4 736 - 20.5 144 20.0 140 19.7 139 20.0 147

1500 820 20.0 741 18.1 127 19.8 739 19.0 13'4 19.1 134 19.1 134 19.4 136

1600 870 - - 19.2 135 19.2 135 I - - 18.7 132I I

Fredericks " Garofalo 6

TABLE V

Modulus of Rigidity at Various Temperatures

Modulus of Rigidity (Shear), 70 6 psi 70'kg/mm'

Type 347

11.4 8.0

11.0 77

10.7 75

10.4 73

10.1 71

9.8 69

9.5 67

9.2 65

8.9 63

8.6 60

8.3 58

8.1 5 7

7.8 55

7.5 53

7.2 50

6.9 49

85 60

8.2 58

79 56

7 7 54

74 52

7.1 50

11.2 7.9

10.8 76

10.6 75

103 72

9.9 70

9 7 68

9.4 66

9.1 64

88 62

Type 321

11.3 7.9

11.0 7 7

10.6 75

10.3 72

10.0 70

9.7 68

9.4 66

9.1 64

88 62

85 60

83 58

8.1 5 7

7.9 56

7.7 54

75 53

Type 316Type 310 I

11.2 7.9 --\­

10.9 77

10.6 75

10.3 72

10.0 70

9.7 68

9.4 66

9.1 64

8.8 62

8.5 60

8.2 58

7.9 56

7.6 53

7.2 50

6.9 49

6.6 46

95 67

9.7 68

9.2 65

89 63

86 60

8.3 58

80 56

7.7 54

7.4 52

8.4 59

8.2 58

7.9 56

7.7 54

7.5 53

c I_I Type 302 I Type 304

-~I -

~; I ;;: ;:-II--~\I; ~f-150 I 10.4 73 108 76

200 10.1 71 I 105 74

260 9.8 69 I 10.2 72

320 9.567 9.970

370 9.3 65 II'

430 9.0 63

480 8.8 62 I540 8.6 60

75200

300

400

500

600

700

800

900

1000

1100 590

1200 650

1300 700

1400 760

1500 820

1600 870

Temp, F

Fredericks ;, Garofalo 6

13

TABLE VI

Poisson's Ratio at Various Temperatures

Poisson's RatioTemp F C, ._------

Type 304 Type 309 Type 310 Type 316I

Type 321 Type 347

-- _._---

300 750 0.28 0.28 0.32 0.26 0.23 0.30

500 260 0.30 0.30 0-31 0_29 0.25 0.31

700 370 0.32 0.30 0.31 0.34 0.27 0.29

900 480 0.28 0.29 0.32 0.30 0.30 0.33

1100 590 0.29 0.27 0.34 0.32 0.29 0.31

1300 700 0.28 0.32 0.34 0.31 0.27 0.35

1500 820 025 0.25 0.29 0.24 - , 0.28, I

Garofalo. Malenock and Smith 7

TABLE VII

Density of Annealed Austenitic Stainless Steels at Various Temperatures

Density, Ib/cu in. (I en)JTemp, F C

---~------_._----_._------ --- _.__.~------------

Type 301 Type 316 Type 347---------------- -_._--_ .._._-----------~ -----------------

-250 160 0.2885 799 0.2897 802 02879 79/

-200 730 0_2882 798 0.2894 807 (U875 ;' 96

-100 73 0_2874 796 0.2886 799 0.2869 1 '14

68 20 0_ 2859 797 0.2873 795 0.2856 ; '17

200 90 0_2848 788 0_2861 792 0.2846 788

400 200 02832 784 0_2846 788 0.2830 7 S:J

600 320 02814 7 79 0.2829 183 0.2813 1 1'1

800 430 0.2797 774 02813 7 7'1 0_2795 114

1000 540 0.2779 769 0.2796 1 74 02777 / f).LJ

1200 650 0.2760 764 0.2779 76_r; o 2759 1 fJ".J

1400 760 0.2741 759 0.2760 164 0_ 2740 1 :,.8

1600 870 0_2723 754 0.2741 759 0.27 21 153

1800 980 0.2705' 749 0.2723 7 :,4 0.2702' 1 <L.'"

• Extrapolated. Garofalo, Malenock and Sm,th :

14

1 II I : I I

II ./

~.,'l.\'.,<:;~,

~v! I~.. I"'\.,0/ / i I

~~v i!

",\"," I II i

/~// I

I

/il i II

!;

r

II

I

~~

'"18 Q.

c::QV;

16c:'"Q.

'""-'....Q

14 c:'";:;

::::12 '"Q

LJ

10

20

800600

Temperature. C

200 400o

o 200 400 600 800 1000 1200 1400 1600 1800

Temperature, f

I !I I I

i~

i .-/V V

" .-----I I---~ --V-i ~ !--:::::~v:.:~~

/~

V/~1/ I I

I I I I

6

11

5-300

-10012 x 10 6

Coefficient of Thermal Expansion

25 Figures 30 and 31 show the average and instanta-neous coefficients of thermal expansion of the austeniticstainless steels as a function of temperature.

20

5

o1600

800

1200

600

800

400200

Temperature, f

Temperature, C

400

o-200

- 400

200

o

25

175

1: 125..a.

.E~ 100

FIG. 29 - Effect of temperature on the thermal conductivity ofchromium-nickel stainless steels.

FIG. 31 - Approximate average coefficients of expansion ofchromium-nickel stainless steels between 70 F and thE' ifldicated 20Ctemperatures.

200 400 600 BOO 1000 1200 1400 1li00 IBOO 2000

Temperature, F

Temperature, C

200 400

20

40

18

35

16~~ ~ 30'"Q.

~14 c::Q EV; j- 25c:'"12 Q.

'" .,"-' > 20.... ~

a

I10 c:'";:; 15

:::: i;;j

8 '"aLJ

10

6

4

800 1000 1200 1400 1600 1800600

Temperature, f

400200o

Temperature, C

11 x 10 ~6_-_1~r-0--,rr---c__20".-0_.....,_4--,O-=,0_----,-_6..;.0-=-0-,---_,.:.8.;...00----,-_---,II I IJ-- I I.

/V-I.--- I

10

9

0 ..... 8.,a..: 70

1 6;;

1j

~5

0(.)

4

FIG. 30 - Average instantaneous coefficients of expansion ofchromium-nickel stainless steels.

FIG. 32 - Thermo-electric properties of Types 302 Band 316stainless steels Dahl and Lonberger 8

IS

TABLE VIII TABLE IX

Specific Heats of Annealed Austeni~ic Stainless

Steels at Various Temperatures

Diffusivity of Annealed Austenitic Stainless Steels

at Various Temperatures

Temp, F cSpecific Heat, BtujlbjOF JjkgK

Temp, F cDiffusivity, sq ftjhr em' / hr

Type 301 Type 316 Type 347____1 1

Type 301 Type 316 Type 347

.085 356 I .085 356

-250 -760 0.159-250 - 760

- 200 - 730

.080 335

.086 360

079 331 .080 335

-200 730 0.158

748 0.156

747 0.151

745 I 0.179 766

740 0.173 767

-100 70· .096 402 .094 394 .094 394 -100 - 70 0.158 747 0.147 737 0.165 753

68 20 0.109 456 0.108 452 0.108 452 68 20 0160 749 0.143 733 0.158 747

200 90 0.117 490 0.116 486 0.116 486 200 90 0.162 757 0.144 734 0.157 746

400 200 0.127 532 0126 528 0.124 579 400 200' 0.167 755 0.148 737 I 0.161 750

600 320 0.133 557 0.131 548 0.131 548 600 320 0.176 764 0.158 747 0.168 756

800 430 0.137 574 0.135 565 0.135 565 800 430 0.185 772 0.167 755 0.176 764

1000 540 0.140 586 0.137 573 0.139 582 1000 540 0.194 780 0.173 767 0.185 772

1200 650 0.143 599 0.140 586 0.144 603 1200 650 0.203 789 I 0.188 775 0.192 778

1400 760 0.148 620 0.147 675 0.149 624 1400 760 0.209 794 0.191 777 0.199 785

1600 870 0.154 645 0.155 649 0.159 666 1600 870' 0.212 797 0.194 780 0.200 786

1800 980 0.162" 678 0.165" 691 0.175" 733 1800 980: 0.212" 797 0.195" 787 0.194" 780

• Extrapolated. Garofalo, Malenock and Smith' • Extrapolated. Garofalo. Malenock and Smith 7

TABLE X

Electrical Resistivity of Annealed Stainless Steels at Various Temperatures

Temp, F cElectrical Resistivity, microhm-r.m

7380889199

107111116120

72799098

105112117121

7479879399

104110

94100105111116120124127129

78839198

105111116120124127

Type 309

72788695

102108114118125

74808996

103108113117121

7077859399

105109113116119122124126

6874839096

102107111

2090

200]204]0540650760870980

709072007320

68200400600800

10001200140016001800200022002400

I I1 ,

: Type 301 i Type 302 i Type 303 Type 304________.__ ! ~_! i~ _

I

Note: microhm·em x 6.0153 = ohms Circular mli foot Various Sources.

16

Diffusivity

The diffusivities of Types 301, 316, and 347 austen­

itic stainless steels are given in Table IX. The datawere calculated by the equation

KD=--

CpdK = thermal conductivity

Cp = specific heat

d = density

ElECTRICAL PROPERTIES

Resistivity

The electrical resistivities of the austenitic stainless

steels and their variations with temperature are shown

in Table X.

Thermo-electric Properties

The temperature-electromotive force relationships

for Types 302 Band 310 austenitic stainless steel

coupled with Chromel'and platinum are compared with

a Chromel-Alumel'couple in Figure 32.

REFERENCES

1. SImmons, W. F. and Cross, H. c.. "Report on theElevated-Temperature Properties of Stainless Steels.,"ASTM Spec. Tech. Pub. No. 124. 1952.

2. Doerr, D. D., "Determinatiun of Physical Properties ofFerrous and Non-ferrous Structural Sheet Materials atElevated Te;nperatures.·' W.A.D.C. Tech. Rep. No.6517,Part2,1954.

3. Unpublished data from Tech. Research Comm.. AlloyCasting Inst.

4. Cross. H. c., McMaster. R. C.. Simmons, W. F .. andVan Echo. ]. A.. "Short Time, High Temperature Prop­erties of Heat-Resisting Alloy Sheet." Rand ReportRA-150n, Battelle Memorial Inst .. Columbus. Ohio.Feb. 27.1948.

5. Fredericks. J. B .. "A Study of the Elastic PrcJpertles ofVarious Solids by Means of Ultrasonic Pulse Tech­niques." Doctor's Thesis, Uni,'. Michigan, 1947 (See"Resume of High Temperature Investigations Con­ducted during 1948-50," Timken Roller Bearing Co..Steel and Tube Div., 1950.)

6. Garofalo, F., "Temperature Dependence of the ElasticModuli of Several Stainless Steels," Proc. ASTM, 60,

1960, P 738.

7, Garofalo, F., Malenock, P. R., and Smith, G, V., "TheInfluence of Temperature on the Elastic Constants ofSome Commercial Steels," ASTM Spec, Tech, Pub.No. 129, 1952, P 10.

8. Dahl, A. 1. and Lonberger, S, T., "The ThermoelectricProperties of Types 302 and 310 Stainless Steel," AirForce Tech. Report No. 6096, Oct. 1950 (PB108382),

The following references are listed for the benefit ofthose who may wish to locate information on elevatedtemperature testing of austenitic stainless steels whichis beyond the scope of this data bulletin.

9. "Steel Products Manual: Section 24, Stainless and HeatResisting Steels," Am. Iron and Steel Inst., June 1957,with Supplementary Information, Sept, 1959.

10. Alloy Casting Inst, Data Sheets, June 1954,

11. Larson, F. R. and Miller, ]., "A Time TemperatureRelationship for Rupture and Creep Stress," Trans.ASME 74, 1952, P 765.

12. Orr, R. L., Sherby. O. D., and Dorm, ]. E., "Correlationof Rupture Data for Metals at Elevated Temperatures,"Trans. Am. Soc. Metals, 46. 1954, P 113.

13. Manson, S. S. and Haferd, A. M., "A Linear Time-'Temperature Relation for Extrapolation of Creep andStress-Rupture Data." Tech. Note No. 2890 Nat. Ad­visory Comm. Aeronaut.. 1953.

14. Graham. A. and Walles, K.F.A.. "Relationships Be­tween Long and Short Time Creep and Tensile Prop­ties of a Commercial Alloy," ]. Iron Steel Inst.. 179.pt 2, 1955, P 105.

15. Frederick. S. F .. "PredIcting Very-Short-Time CreepBeha"ior for Missiles," Metal Progress. Mar. 1961. p 88.

16. Manson, S. S. and Mendelson. A., "Optimization ofParametric Constants for Creep-Rupture Data byMeans of Least Squares," Nat. Aeronaut. Space Admin.Memo 3-10-59E. Mar. 1959.

17. Gow, ]. T. and Harder, O. E .. "Balancing the Composi­tion of Cast 25 Per Cent Chromium-12 Per Cent NickelType Allo\'s," Trans. Am. Soc. Metals, 30. 1942, P 855.

18 Avery. H. S. and Wilks, C. R .. "Cast Heat-ResistingAlloys of the 26"0 Chromium-20C'o Nickel Type,"Trans. Am. Soc. Metals, 40. 1948, P 529.

19. Mangone, R. J. and Hall. A. M, "Properties of TypeHK Cast Alloys," Alloy Casting Bul. No. 17, Oct. 1961.

17