in quest of a systematic framework for unifying and...

65
In Quest of a Systematic Framework For Unifying and Defining Nanoscience Donald A. Tomalia, Ph.D. Director, The National Dendrimer and Nanotechnology Center Central Michigan University Mt. Pleasant, MI 48859 USA ©The National Dendrimer & Nanotechnolgy Center, CMU

Upload: dinhquynh

Post on 22-May-2018

219 views

Category:

Documents


1 download

TRANSCRIPT

In Quest of a Systematic Framework For Unifying and Defining

Nanoscience

Donald A. Tomalia, Ph.D.

Director,The National Dendrimer and Nanotechnology Center

Central Michigan UniversityMt. Pleasant, MI 48859 USA

©The National Dendrimer & Nanotechnolgy Center, CMU

Newly Established Ph.D. Program –(2008)

Nanotechnology/Science of Advanced

Materials

National Dendrimer and Nanotechnology CenterCentral Michigan UniversityMt. Pleasant, MI 48859

Fullerenes

NanoscaleSizes, Shapes,

Physico/Chemical Surfaces

Colloidal Silica

RNA/DNANanotubes

ProteinsDendrimers

Colloidal Metals Viruses

Fullerenes

NanoscaleSizes, Shapes,

Physico/Chemical Surfaces

Colloidal Silica

RNA/DNANanotubes

ProteinsDendrimers

Colloidal Metals

Colloidal Metals Viruses

Nano-Modules

Nano-Compounds

Megamers

Dendronized QD’s

IgG-Dendrimer

Hybrids

Fullerene-DendrimerHybrids

Nanotube-DendrimerHybrids

HIV-Virus/DendrimerHybrids

DNA-DendronHybrids

Silica-DendrimerHybrids

Periodic Patterns, Relationships and Categories of Well-Defined Nanoscale Building Blocks

Report on a National Science Foundation Workshop Central Michigan University

September 24-25, 2007

Expected Nano-Periodic Tables

Reported Nano-Compounds

Proposed Nano-Element Categories

Reported Nano-Periodic Patterns

http://www.nsf.gov/crssprgm/nano/GC_Charact08_Tomalia_nsf9_29_08.pdf

jeffrey
Rectangle
jeffrey
jeffrey
Map of Michigan with Mt. Pleasant circled.

The Concept

A systematic framework is proposed for unifying and defining nanoscience.

This systematic framework is based on the same “first principles” initiated by Lavoisier, Dalton, Mendeleev and others that led to a “periodic system and central paradigm” for traditional elemental atom and small molecule chemistry.

Atom Periodicity

Pico-Modules(Atomic Elements)

Nano-Modules(Nano-Element Categories)

Traditional Chemistry 1st Priniciples?Nano- Periodicity

Bottom-up Structure Controlled Synthesis

Picoscale Collections of Protons, Neutrons and Electrons

Nanoscale Collections of Atoms, Monomers, or Small Molecule Modules

RnXeKrArNeHeNucleus

2 8 8 18 18 32

1018

3654

86

1

2

3

4

5

6

4.00

39.94

83.80

131.30

222.00

20.18

Atomic Weights

N2

RnXeKrArNeHeNucleus

2 8 8 18 18 32

1018

3654

86

1

2

3

4

5

6

4.00

39.94

83.80

131.30

222.00

20.18

Atomic Weights

N2

Atomic Number

ElectronsRequired to

Saturate Shell

.064 nmHe

.138 nmNe

.194 nmAr

.220nmKr

.290 nmRn

1.58 nmG=1

2.2 nmG=2

3.10 nmG=3

4.0 nmG=4

5.3 nmG=5

6.1 nmG=6

.260 nmXe

1 nmG=0

1 nmBucky Ball

(C60)

Nano-Objects

Dendrimers

Atom Mimicry

“The spirit of this perspective is not to disrupt any natural physico-chemical laws, but to encourage new and different thinking.

This is a works in progress! Much more remains to be done.”

Donald A. Tomalia

J. Nanoparticle Res., 11, 1251-1310,(2009)

OutlineI. Background/Historical

(a) First Principles of Traditional Atom/Small Molecule Chemistry

(b) Heuristic Atom Mimicry

(c) Conservation of Hierarchical Design Parameters (CADP CMDP CNDP)?

(d) Breaking Hierarchical Symmetry - P.W. Anderson “the whole becomes not only more than, but very different from the sum of its parts”

II. Proposed Nanomaterials Classification RoadmapIII. Nano-Element (Module) CategoriesIV. Nano-Elements Nano-Compounds/AssembliesV. Nano-Periodic Property PatternsVI. Conclusions - The Future

I. IntroductionBackground and Historical

picometer

10-1

10-10

10-11

10-12

(trillions)

10-2

10-3

10-4

10-5

10-6

10-7

10-9

100

Macroscale

Microscale

Atoms

MolecularStructures

NanostructuresAssemblies

Atom PeriodicityNanoscale

Picoscale

BriefHistorical Overview

19th/20th Century Chemists/Physicists

D. Mendeleev (1869)

R. Feynman (1959)

A. Lavoisier (1789)J. Dalton (1808)

Alchemy Pre-1789

Nano-Alchemy (1959-Present)

InertSize

Reactive Surface Chemistry

Shape

Critical Atomic Design Parameters (CADP’s)

Flexibility/Polarizabilty

Electronegativity

Conservation of Hierarchical Design Parameters?(CADP CMDP CNDP)

Critical Nanoscale Design Parameters (CNDP’s)

ISI Citations2135

(CADP CMDP CNDP)

Dendrimer Chemstry Over-view

Outer Shell Modular Reactivity(Picometer to Nanometer Dimensions)

D.A. Tomalia, et al., PNAS, 99 (8) 5081-5087 (2002).

Chemical Bond Formation Leading to Saturated Outer Shell: Atoms, Dendrimers,

Core-Shell Tecto(dendrimers)

Missing One DendrimerShell Reagent Exposing

Functionality (y)

Missing One Terminal Branch Cell in Outer Shell (x) Exposing Functionality (y)

Missing One Electron (y) in Outer Shell (x)

Penultimate to Saturated Noble Gas

Configuration

Functional Components Directing

Valency

(Core–Shell)Architecture Induced

Reactivity(Unfilled Shells)

Unfilled Outside Dendrimer Shell

Unfilled Outer Branch Cell Shell

Unfilled Outer Electron Shell

Valency(Reactivity)

5.0 ≥ 100 nm1–15 nm0.05–0.6 nmDimensions

Core–ShellTecto(dendrimers)DendrimersAtoms

Chemical Bond Formation Leading to Saturated Outer Shell: Atoms, Dendrimers,

Core-Shell Tecto(dendrimers)

Missing One DendrimerShell Reagent Exposing

Functionality (y)

Missing One Terminal Branch Cell in Outer Shell (x) Exposing Functionality (y)

Missing One Electron (y) in Outer Shell (x)

Penultimate to Saturated Noble Gas

Configuration

Functional Components Directing

Valency

(Core–Shell)Architecture Induced

Reactivity(Unfilled Shells)

Unfilled Outside Dendrimer Shell

Unfilled Outer Branch Cell Shell

Unfilled Outer Electron Shell

Valency(Reactivity)

5.0 ≥ 100 nm1–15 nm0.05–0.6 nmDimensions

Core–ShellTecto(dendrimers)DendrimersAtoms

Unfilled Shell (x)

Unfilled Shell (x)

Unfilled Shell (x)

x

x

21

x

x

xx

x

x

xx

x

x

x

x

Ix

x

21

x

x

xx

x

x

xx

x

x

x

x

Iyy

ZZ

ZZ

Z 12

**

** ZZ

ZZ

Z 12

N2

1xx

x

x

xx

x

y

ZZ

ZZ

Z 12

**

** ZZ

ZZ

Z 12

NN2

1xx

x

x

xx

xx

x

x

x

xx

x

yy

(e.g., fluorine)

Gx

GxGx

Gx Gx

Gx

Gx

Gx

Gy

Gx

GxGx

Gx Gx

Gx

Gx

Gx

Gyyy

ZZ

ZZ

Z 12

**

** ZZ

ZZ

Z 12

N2

1xx

x

x

xx

x

y

ZZ

ZZ

Z 12

**

** ZZ

ZZ

Z 12

NN2

1xx

x

x

xx

xx

x

x

x

xx

x

yy

ZZ

ZZ

Z 12

**

** ZZ

ZZ

Z 12

N2

1xx

x

x

xx

x

y

ZZ

ZZ

Z 12

**

** ZZ

ZZ

Z 12

NN2

1xx

x

x

xx

xx

x

x

x

xx

x

yyx

x

21

x

x

xx

x

x

xx

x

x

x

x

Ix

x

21

x

x

xx

x

x

xx

x

x

x

x

Iyy

x

x

21

x

x

xx

x

x

xx

x

x

x

x

Ix

x

21

x

x

xx

x

x

xx

x

x

x

x

Iyy

Gx

GxGx

Gx Gx

Gx

Gx

Gx

Gy

Gx

GxGx

Gx Gx

Gx

Gx

Gx

Gyyy

Gx

GxGx

Gx Gx

Gx

Gx

Gx

Gy

Gx

GxGx

Gx Gx

Gx

Gx

Gx

Gyyy

“Atom Mimicry”

D.A. Tomalia, Prog. Polym. Sci., 30, 294-324, (2005).

John Dalton(1808)

Atoms Compound Atoms

• Atoms Form ChemicalBonds

• Atoms Bond with DiscreteStoichiometries, Valency and Combining Weights

• Atoms Bond withDiscrete Directionality

• Atoms Exhibit PeriodicProperties

Traditional Chemistry – “Central Dogma”First Principles

First Systematic, Synthetic Nano-

structure Platform

Dendrimers (early 1980s)

RnXeKrArNeHeNucleus

2 8 8 18 18 32

1018

3654

86

1

2

3

4

5

6

4.00

39.94

83.80

131.30

222.00

20.18

Atomic Weights

N2

RnXeKrArNeHeNucleus

2 8 8 18 18 32

1018

3654

86

1

2

3

4

5

6

4.00

39.94

83.80

131.30

222.00

20.18

Atomic Weights

N2

Atomic Number

ElectronsRequired to

Saturate Shell

G=6G=5G=4G=3G=2G=1G=0Core

33 6 12 24 48 96 192

921

4593

189381

01

23

456

359

1,043

5,15410,633

21,59143,507

2,414

Molecular Weights

Core

G=6G=5G=4G=3G=2G=1G=0Core

33 6 12 24 48 96 192

921

4593

189381

01

23

456

359

1,043

5,15410,633

21,59143,507

2,414

Molecular Weights

Core

Dendrimeric Number(Degree of Polymerization)

MonomersRequired to

Saturate Shell

Dendrimeric(1 - 20 nm)

Principal Monomer Shells (Generations)

Atom Mimicry: Core-Shell Architectures

Picoscale Structures Nanoscale Structures

.064 nmHe

.138 nmNe

.194 nmAr

.220nmKr

.290 nmRn

1.58 nmG=1

2.2 nmG=2

3.10 nmG=3

4.0 nmG=4

5.3 nmG=5

6.1 nmG=6

.260 nmXe

1 nmG=0

1 nmBucky Ball

(C60)

N. Bohr (1922)

F. Aston (1922)

Atomic(0.05 - 0.6 nm)

Principal Electron Shells (Periods)

D A. Tomalia, W.A. Goddard, et al., Angew. Chem. Int. Ed. Engl., 29, 136 (1990).

Size Control (Diameters) In Dendrimers

C.L. Jackson, H.D. Chanzy, F.P. Booy, B.J. Drake, D.A. Tomalia, B.J. Bauer, E.J. Amis, Macromolecules, 31(18), 6259, (1998).

Self-Assembly of PAMAM Dendrimers (G9) (Atom Mimicry)

D.A. Tomalia, et al., Pure and Applied Chem., 72, 2343 (2000).

C C C C C

CC C C C C

Nano-Element Valency:[H-1] type; [Cubic-(Ag)n ]

M. Rycenga, J. M. McLellan, Y. Xia; Adv. Mater.,(2008), 20, 2416-2420

[Inert Gases]0 = H2 , Cl2, O2

CH4

-(CH2)-n=3,4

=

=

=

= 2-D Assembly

= 3-D Assembly

Atom Mimicry:

(a) Core-Shell Architecture (b) Outer Shell Reactivity

picometer

10-1

10-8

10-10

10-11

10-12

(trillions)

10-2

10-3

10-4

10-5

10-6

10-7

10-9

100

Macroscale

Microscale

Atoms

MolecularStructures

NanostructuresAssemblies

Atom PeriodicityNanoscale

Picoscale

Critical Hierarchical Design Parameters

Size

Shape

SurfaceChemistry

Flexibility

Architecture(Symmetry)

(CNDP)

(CMDP)

(CADP)

Atom Mimicry

Conservation of Hierarchical Design Parameters?

(AtomMolecular Nano Structures)

Mass Control Comparison Atoms versus Dendrimers

NeNe

AtomicWeight

Atomic Number:

Shell Number:

CuCu

NeHe Ar Kr Xe Rn

1 3 4 5 62

NeNeHg (1.53:1)

Cd (1.29:1)

Li ( 1:1)

Ne

2

Ar

3

Atomic Number:

Shell Number:

He

1

Kr

4

Xe

5

Rn

6

Gen. PD.’s

IdealPD.=1.000

(Monomer Shells)Generations:

G4= 1.05

G3= 1.03

G2= 1.01

G1= 1.005

Dendrimer Mass

IdealPD.=1.000

J.C. Hummelen, J.L.J. van Dongen and E.W. Meijer, Chem. Eur. J. 1997, 3, 1489-1493.

Shape Control in Dendrimers

A.M. Naylor, W. A. Goddard III, G.E. Kiefer and D.A. Tomalia, J. Am. Chem. Soc., 111, 2339-2341, (1989).

Shape Control as a Function of Generational Amplification

Shape and Size Control as a Function of Core and Generation

P. Antoni, Y. Hed, A. Nordberg, D. Nystrom., H. von Holst, A. Hult and M. Malkoch, Angew. Chem. Int. Ed., 2009, 48, 2126-2130.

Surface Chemistry Control with Dendrimers

D.A. Tomalia, Prog. Polym.Sci., 30, 294-324, (2005).

Valency Diversity of Functionality

# of Terminal Groups (Z)

Z= NcNbG

decimeter (dm)

picometer

10-1

10-8

10-10

10-11

10-12

(trillions)

(tens)

10-2

10-3

10-4

10-5

10-6

10-7

10-9

100

Nanoscale Atom Mimicry

Hard NanoparticleCategories

Soft NanoparticleCategories

Nano-elements

Physico-Chemical Properties

Functional/ApplicationProperties

Nano-compounds

Nano-periodic Property Patterns

Metal (M°) (Nanoclusters)

Metal (Chalcogenide)(Nanocrystals)

Metal Oxide (Nanocrystals)

Silica (Nanoparticles) Fullerenes

Hard Particle Nano-Element Categories

Carbon Nanotubes

Carbon Nanotubes

H-1 H-2 H-3 H-4 H-5 H-6

DendrimersDendrons

DendrimersDendrons

ProteinsProteins VirusesViruses RNA/DNANano-latexesNano-latexes PolymericMicelles

Soft Particle Nano-Element Categories

S-1 S-2 S-3 S-4 S-5 S-6

Macroscale

Microscale

Atoms

MolecularStructures

NanostructuresAssemblies

Nano-Periodicity

Atom PeriodicityNanoscale

Picoscale

Critical Hierarchical Design Parameters

Size

Shape

SurfaceChemistry

Flexibility

Architecture(Symmetry)

(CNDP)

(CMDP)

(CADP)

Atom Mimicry

II.Proposed Nanomaterials Classification Roadmap

Well-Defined Materials

Atom Mimicry

Category I

Undefined MaterialsUndefined Materials

Category IIAtom-Based Structures/Assemblies

Nano-compounds

Nano-elementsHard

NanoparticlesSoft

Nanoparticles

Physico-Chemical

• Size• Shape• Surface Chemistry

• Interior Features• Flexibility/Polarizability• Architecture

Functional/Applications

• Photonic• Magnetic• Toxicology

• Electronic• Catalysis• Imaging

Nano-periodic Properites

Diameters: 1-100 nmMass: 104-1010 daltons# of Atoms: 103-109

Topology: 0-D and 1-D

Nanoclusters

GoldPalladiumSilver, etc.

H-1

Nano-Crystals

Metal-Non Metal (Groups 4A-7A Compounds)

AmorphousNanoparticles

SilcaNanoparticles

H-4

Non-Metals

Rigid Carbon Allotropes

1-D CarbonNanotubes

H-6

0-DFullerenes

H-5

MetalChalcogenides

H-2

Metal Oxides

H-3

Conductors Semi-Conductors

Semi-Metals

Metals(M°)

Synthetic

Dendrons/Dendrimers

S-1

Nanolatexes

S-2

Polymeric Micelles

S-3

Nanostructures/Particles

DNA/RNA

S-6

Biological

Viruses

S-5

Proteins

S-4

Insulators

Non-Metal Organic Structures

Soft/Hard Particle Nano-compounds

Nano-Elements

S-1:H-1 S-2:H-1 S-3:H-1 S-4:H-1 S-5:H-1 S-6:H-1

S-1:H-2 S-2:H-2 S-3:H-2 S-4:H-2 S-5:H-2 S-6:H-2

S-1:H-3 S-2:H-3 S-3:H-3 S-4:H-3 S-5:H-3 S-6:H-3

S-1:H-4 S-2:H-4 S-3:H-4 S-4:H-4 S-5:H-4 S-6:H-4

S-1:H-5 S-2:H-5 S-3:H-5 S-4:H-5 S-5:H-5 S-6:H-5

S-1:H-6 S-2:H-6 S-3:H-6 S-4:H-6 S-5:H-6 S-6:H-6

Soft/Hard Particle Nano-compounds

Nano-Elements

S-1:H-1 S-2:H-1 S-3:H-1 S-4:H-1 S-5:H-1 S-6:H-1

S-1:H-2 S-2:H-2 S-3:H-2 S-4:H-2 S-5:H-2 S-6:H-2

S-1:H-3 S-2:H-3 S-3:H-3 S-4:H-3 S-5:H-3 S-6:H-3

S-1:H-4 S-2:H-4 S-3:H-4 S-4:H-4 S-5:H-4 S-6:H-4

S-1:H-5 S-2:H-5 S-3:H-5 S-4:H-5 S-5:H-5 S-6:H-5

S-1:H-6 S-2:H-6 S-3:H-6 S-4:H-6 S-5:H-6 S-6:H-6

DendrimersDendrons

DendrimersDendrons

Metal (M°) (Nanoclusters)

Metal (M°) (Nanoclusters)

Metal (Chalcogenide)(Nanocrystals)

Metal (Chalcogenide)(Nanocrystals)

Nano-latexesNano-

latexes DNA/RNADNA/RNA

Metal Oxide (Nanocrystals)Metal Oxide

(Nanocrystals)

CarbonNanotubes

CarbonNanotubes

PolymericMicelles ProteinsProteins VirusesViruses

Silica (Nanoparticles)

Silica (Nanoparticles)

FullerenesFullerenes

Soft Particle Nano-compounds

Nano-Elements

S-1:S-1 S-2:S-1 S-3:S-1 S-4:S-1 S-5:S-1 S-6:S-1

S-2:S-2 S-3:S-2 S-4:S-2 S-5:S-2 S-6:S-2

S-2:S-3 S-3:S-3 S-4:S-3 S-5:S-3 S-6:S-3

S-2:S-4 S-3:S-4 S-4:S-4 S-5:S-4 S-6:S-4

S-2:S-5 S-3:S-5 S-4:S-5 S-5:S-5 S-6:S-5

S-2:S-6 S-3:S-6 S-4:S-6 S-5:S-6 S-6:S-6

Soft Particle Nano-compounds

Nano-Elements

S-1:S-1 S-2:S-1 S-3:S-1 S-4:S-1 S-5:S-1 S-6:S-1

S-2:S-2 S-3:S-2 S-4:S-2 S-5:S-2 S-6:S-2

S-2:S-3 S-3:S-3 S-4:S-3 S-5:S-3 S-6:S-3

S-2:S-4 S-3:S-4 S-4:S-4 S-5:S-4 S-6:S-4

S-2:S-5 S-3:S-5 S-4:S-5 S-5:S-5 S-6:S-5

S-2:S-6 S-3:S-6 S-4:S-6 S-5:S-6 S-6:S-6

DendrimersDendrons

DendrimersDendrons

Nano-latexesNano-

latexes DNA/RNADNA/RNAPolymericMicelles ProteinsProteins VirusesViruses

DendrimersDendrons

DendrimersDendrons

Nano-latexesNano-

latexes

DNA/RNADNA/RNA

PolymericMicelles

ProteinsProteins

VirusesViruses

Hard Particle Nano-compounds

Nano-Elements

H-1:H-1 H-2:H-1 H-3:H-1 H-4:H-1 H-5:H-1 H-6:H-1

H-2:H-2 H-3:H-2 H-4:H-2 H-5:H-2 H-6:H-2

H-2:H-3 H-3:H-3 H-4:H-3 H-5:H-3 H-6:H-3

H-2:H-4 H-3:H-4 H-4:H-4 H-5:H-4 H-6:H-4

H-2:H-5 H-3:H-5 H-4:H-5 H-5:H-5 H-6:H-5

H-2:H-6 H-3:H-6 4-H:H-6 H-5:H-6 H-6:H-6

Hard Particle Nano-compounds

Nano-Elements

H-1:H-1 H-2:H-1 H-3:H-1 H-4:H-1 H-5:H-1 H-6:H-1

H-2:H-2 H-3:H-2 H-4:H-2 H-5:H-2 H-6:H-2

H-2:H-3 H-3:H-3 H-4:H-3 H-5:H-3 H-6:H-3

H-2:H-4 H-3:H-4 H-4:H-4 H-5:H-4 H-6:H-4

H-2:H-5 H-3:H-5 H-4:H-5 H-5:H-5 H-6:H-5

H-2:H-6 H-3:H-6 4-H:H-6 H-5:H-6 H-6:H-6

Metal (M°) (Nanoclusters)

Metal (M°) (Nanoclusters)

Metal (Chalcogenide)(Nanocrystals)

Metal (Chalcogenide)(Nanocrystals)

Metal Oxide (Nanocrystals)Metal Oxide

(Nanocrystals)

CarbonNanotubes

CarbonNanotubes

Silica (Nanoparticles)

Silica (Nanoparticles)

FullerenesFullerenes

Metal (M°) (Nanoclusters)

Metal (M°) (Nanoclusters)

Metal (Chalcogenide)(Nanocrystals)

Metal (Chalcogenide)(Nanocrystals)

Metal Oxide (Nanocrystals)Metal Oxide

(Nanocrystals)Carbon

NanotubesCarbon

NanotubesSilica

(Nanoparticles)Silica

(Nanoparticles)FullerenesFullerenes

Nanomaterials Classification Roadmap

Criteria for Nano-Element Categories

• Discrete Collections of Atoms (N):(a) N = 103-109 atoms, (b) mass: 104-1010 daltons, (c) at least one dimensionis: 1-100 nm

• Discrete Reactive/Passive Nano-Modules (units) with Well Defined:(a) valency, (b) stoichiometries, (c) combining mass ratios -> to formnano-compounds

• Well Defined Chemical/Physical Features (CNDPs)(a) size, (b) shape, (c) surface chemistry, (d) flexibility (polarizabilty)

• Robust Enough for Routine Analytical Characterization

S.Y. Park, C. Mirkin et al., Nature, 451, 553-556 (2008).

Monodispersity Criteria:Atom-Like, 3-D Nano-cluster Super Lattices

Required >90% monodisperse gold

nanoclusters to obtain well defined

X-ray patterns

Metals Non-MetalsSoft MatterHard Matter

DendrimersDendrons

DendrimersDendrons

ProteinsProteins ViralCapsids RNA/DNANano-latexesNano-latexes Polymeric

MicellesPolymericMicelles

SOFT PARTICLE NANO-ELEMENT CATEGORIES

Metal (M°) (Nanoclusters)

Metal (Chalcogenide)(Nanocrystals)

Metal Oxide (Nanocrystals)

Silica (Nanoparticles) Fullerenes

HARD PARTICLE NANO-ELEMENT CATEGORIES

Carbon Nanotubes

Carbon Nanotubes

OrganicInorganic

Nano-Element Categories

(1-D)

(1-D)

H-1

S-1

H-2 H-3 H-4 H-5 H-6

S-2 S-3 S-4 S-5 S-6

(Provisional)

DendrimersDendrons

DendrimersDendrons

ProteinsProteins ViralCapsids RNA/DNANano-latexesNano-latexes Polymeric

MicellesPolymericMicelles

SOFT PARTICLE NANO-ELEMENT CATEGORIES

Metal (M°) (Nanoclusters)

Metal (Chalcogenide)(Nanocrystals)

Metal Oxide (Nanocrystals)

Silica (Nanoparticles) Fullerenes

HARD PARTICLE NANO-ELEMENT CATEGORIES

Carbon Nanotubes

Carbon Nanotubes

(Inorganic)

(Organic)

NanomaterialsSize: 1-100 nm# Atoms: 103-109 atomsMass: 104-1010 daltons

UndefinedStatistically Polydisperse

a) sizeb) mass

Hard Nanoparticle Categories

Soft Nanoparticle Categories

Category I Category II

Well DefinedMonodisperse

a) sizeb) mass

Atom Mimicry

J. of Nanoparticle Research, 11, 1251-1310 (2009).

Abbreviated Nanomaterials Classification Roadmap

DendrimersDendrons

DendrimersDendrons

ProteinsProteins ViralCapsids RNA/DNANano-latexesNano-latexes Polymeric

MicellesPolymericMicelles

SOFT PARTICLE NANO-ELEMENT CATEGORIES

Metal (M°) (Nanoclusters)

Metal (Chalcogenide)(Nanocrystals)

Metal Oxide (Nanocrystals)

Silica (Nanoparticles) Fullerenes

HARD PARTICLE NANO-ELEMENT CATEGORIES

Carbon Nanotubes

Carbon Nanotubes

III.Proposed Nano-Element

Categories

Nano-Element Categories

(1-D)

(1-D)

S-1

H-3 H-4 H-5 H-6

S-2 S-3 S-4 S-5 S-6

(Provisional)

DendrimersDendrons

DendrimersDendrons

ProteinsProteins ViralCapsids RNA/DNANano-latexesNano-latexes Polymeric

MicellesPolymericMicelles

SOFT PARTICLE NANO-ELEMENT CATEGORIES

Metal (M°) (Nanoclusters)

Metal (Chalcogenide)(Nanocrystals)

Metal Oxide (Nanocrystals)

Silica (Nanoparticles) Fullerenes

HARD PARTICLE NANO-ELEMENT CATEGORIES

Carbon Nanotubes

Carbon Nanotubes

(Synthetic Polymers) (Biological Polymers)

Metal (M°) (Nanoclusters)

Metal (Chalcogenide)(Nanocrystals)

Metal Oxide (Nanocrystals)

Silica (Nanoparticles) Fullerenes

HARD PARTICLE NANO-ELEMENT CATEGORIES

Carbon Nanotubes

Carbon Nanotubes

Metal (M°) (Nanoclusters)

Metal (Chalcogenide)(Nanocrystals)

Metal Oxide (Nanocrystals)

Silica (Nanoparticles) Fullerenes

HARD PARTICLE NANO-ELEMENT CATEGORIES

Carbon Nanotubes

Carbon Nanotubes

Metal (M°) (Nanoclusters)

Metal (Chalcogenide)(Nanocrystals)

Metal Oxide (Nanocrystals)

Silica (Nanoparticles) Fullerenes

HARD PARTICLE NANO-ELEMENT CATEGORIES

Carbon Nanotubes

Carbon Nanotubes

H-2H-1

He Ne Ar Kr XeHe Ne Ar Kr Xe

Picoscale Matter (Atoms)

Elements Exhibiting Noble Gas

Configurations

Electron shell levels: 1 2 3 4 5Electron shell levels: 1 2 3 4 5

Saturation values (n): 2 10 18 36 54Saturation values (n): 2 10 18 36 54Atomic weights: 4.00 20.17 39.94 83.80 131.30Atomic weights: 4.00 20.17 39.94 83.80 131.30

Shell Components n (Electrons)

.064 nm .138 nm .194 nm .220nm .260 nmDiameters: .064 nm .138 nm .194 nm .220nm .260 nmDiameters:

Hard Nano-Matter (Gold Nanoclusters)

Full-Shell “Magic Number”

Clusters

Atom shell levels: 1 2 3 4 5Atom shell levels: 1 2 3 4 5

Saturation values (n): 12 54 146 308 560Saturation values (n): 12 54 146 308 560Nano-cluster weights: 2560 10833 28953 60861 110495Nano-cluster weights: 2560 10833 28953 60861 110495

Shell Components n (Au Atoms)

.864 nm 1.44 nm 2.02 nm 2.59 nm 3.17 nmDiameters: .864 nm 1.44 nm 2.02 nm 2.59 nm 3.17 nmDiameters:

Soft Nano-Matter(Dendrimers)

Saturated Monomer

Shells

Shell Componentsn (Monomers) Saturation values (n): 9 21 45 93 189Saturation values (n): 9 21 45 93 189

Nanostructure weights: 144 2414 5154 10632 21591Nanostructure weights: 144 2414 5154 10632 21591

Monomer shell levels: G=1 G=2 G=3 G=4 G=5Monomer shell levels: G=1 G=2 G=3 G=4 G=51.58 nm 2.2 nm 3.10 nm 4.0 nm 5.3 nmDiameters: 1.58 nm 2.2 nm 3.10 nm 4.0 nm 5.3 nmDiameters:

Comparison of Atoms with Hard and Soft Nanoparticles

D.A. Tomalia, J. of Nanoparticle Research, 11. 1251-1310 (2009)

IV.Nano-Elements to Nano-Compounds

and Assemblies

Well-Defined Materials

Atom Mimicry

Category I

Undefined MaterialsUndefined Materials

Category IIAtom-Based Structures/Assemblies

Nano-compounds

Nano-elementsHard

NanoparticlesSoft

Nanoparticles

Physico-Chemical

• Size• Shape• Surface Chemistry

• Interior Features• Flexibility/Polarizability• Architecture

Functional/Applications

• Photonic• Magnetic• Toxicology

• Electronic• Catalysis• Imaging

Nano-periodic Properites

Diameters: 1-100 nmMass: 104-1010 daltons# of Atoms: 103-109

Topology: 0-D and 1-D

Nanoclusters

GoldPalladiumSilver, etc.

H-1

Nano-Crystals

Metal-Non Metal (Groups 4A-7A Compounds)

AmorphousNanoparticles

SilcaNanoparticles

H-4

Non-Metals

Rigid Carbon Allotropes

1-D CarbonNanotubes

H-6

0-DFullerenes

H-5

MetalChalcogenides

H-2

Metal Oxides

H-3

Conductors Semi-Conductors

Semi-Metals

Metals(M°)

Synthetic

Dendrons/Dendrimers

S-1

Nanolatexes

S-2

Polymeric Micelles

S-3

Nanostructures/Particles

DNA/RNA

S-6

Biological

Viruses

S-5

Proteins

S-4

Insulators

Non-Metal Organic Structures

Soft/Hard Particle Nano-compounds

Nano-Elements

S-1:H-1 S-2:H-1 S-3:H-1 S-4:H-1 S-5:H-1 S-6:H-1

S-1:H-2 S-2:H-2 S-3:H-2 S-4:H-2 S-5:H-2 S-6:H-2

S-1:H-3 S-2:H-3 S-3:H-3 S-4:H-3 S-5:H-3 S-6:H-3

S-1:H-4 S-2:H-4 S-3:H-4 S-4:H-4 S-5:H-4 S-6:H-4

S-1:H-5 S-2:H-5 S-3:H-5 S-4:H-5 S-5:H-5 S-6:H-5

S-1:H-6 S-2:H-6 S-3:H-6 S-4:H-6 S-5:H-6 S-6:H-6

Soft/Hard Particle Nano-compounds

Nano-Elements

S-1:H-1 S-2:H-1 S-3:H-1 S-4:H-1 S-5:H-1 S-6:H-1

S-1:H-2 S-2:H-2 S-3:H-2 S-4:H-2 S-5:H-2 S-6:H-2

S-1:H-3 S-2:H-3 S-3:H-3 S-4:H-3 S-5:H-3 S-6:H-3

S-1:H-4 S-2:H-4 S-3:H-4 S-4:H-4 S-5:H-4 S-6:H-4

S-1:H-5 S-2:H-5 S-3:H-5 S-4:H-5 S-5:H-5 S-6:H-5

S-1:H-6 S-2:H-6 S-3:H-6 S-4:H-6 S-5:H-6 S-6:H-6

DendrimersDendrons

DendrimersDendrons

Metal (M°) (Nanoclusters)

Metal (M°) (Nanoclusters)

Metal (Chalcogenide)(Nanocrystals)

Metal (Chalcogenide)(Nanocrystals)

Nano-latexesNano-

latexes DNA/RNADNA/RNA

Metal Oxide (Nanocrystals)Metal Oxide

(Nanocrystals)

CarbonNanotubes

CarbonNanotubes

PolymericMicelles ProteinsProteins VirusesViruses

Silica (Nanoparticles)

Silica (Nanoparticles)

FullerenesFullerenes

Soft Particle Nano-compounds

Nano-Elements

S-1:S-1 S-2:S-1 S-3:S-1 S-4:S-1 S-5:S-1 S-6:S-1

S-2:S-2 S-3:S-2 S-4:S-2 S-5:S-2 S-6:S-2

S-2:S-3 S-3:S-3 S-4:S-3 S-5:S-3 S-6:S-3

S-2:S-4 S-3:S-4 S-4:S-4 S-5:S-4 S-6:S-4

S-2:S-5 S-3:S-5 S-4:S-5 S-5:S-5 S-6:S-5

S-2:S-6 S-3:S-6 S-4:S-6 S-5:S-6 S-6:S-6

Soft Particle Nano-compounds

Nano-Elements

S-1:S-1 S-2:S-1 S-3:S-1 S-4:S-1 S-5:S-1 S-6:S-1

S-2:S-2 S-3:S-2 S-4:S-2 S-5:S-2 S-6:S-2

S-2:S-3 S-3:S-3 S-4:S-3 S-5:S-3 S-6:S-3

S-2:S-4 S-3:S-4 S-4:S-4 S-5:S-4 S-6:S-4

S-2:S-5 S-3:S-5 S-4:S-5 S-5:S-5 S-6:S-5

S-2:S-6 S-3:S-6 S-4:S-6 S-5:S-6 S-6:S-6

DendrimersDendrons

DendrimersDendrons

Nano-latexesNano-

latexes DNA/RNADNA/RNAPolymericMicelles ProteinsProteins VirusesViruses

DendrimersDendrons

DendrimersDendrons

Nano-latexesNano-

latexes

DNA/RNADNA/RNA

PolymericMicelles

ProteinsProteins

VirusesViruses

Hard Particle Nano-compounds

Nano-Elements

H-1:H-1 H-2:H-1 H-3:H-1 H-4:H-1 H-5:H-1 H-6:H-1

H-2:H-2 H-3:H-2 H-4:H-2 H-5:H-2 H-6:H-2

H-2:H-3 H-3:H-3 H-4:H-3 H-5:H-3 H-6:H-3

H-2:H-4 H-3:H-4 H-4:H-4 H-5:H-4 H-6:H-4

H-2:H-5 H-3:H-5 H-4:H-5 H-5:H-5 H-6:H-5

H-2:H-6 H-3:H-6 4-H:H-6 H-5:H-6 H-6:H-6

Hard Particle Nano-compounds

Nano-Elements

H-1:H-1 H-2:H-1 H-3:H-1 H-4:H-1 H-5:H-1 H-6:H-1

H-2:H-2 H-3:H-2 H-4:H-2 H-5:H-2 H-6:H-2

H-2:H-3 H-3:H-3 H-4:H-3 H-5:H-3 H-6:H-3

H-2:H-4 H-3:H-4 H-4:H-4 H-5:H-4 H-6:H-4

H-2:H-5 H-3:H-5 H-4:H-5 H-5:H-5 H-6:H-5

H-2:H-6 H-3:H-6 4-H:H-6 H-5:H-6 H-6:H-6

Metal (M°) (Nanoclusters)

Metal (M°) (Nanoclusters)

Metal (Chalcogenide)(Nanocrystals)

Metal (Chalcogenide)(Nanocrystals)

Metal Oxide (Nanocrystals)Metal Oxide

(Nanocrystals)

CarbonNanotubes

CarbonNanotubes

Silica (Nanoparticles)

Silica (Nanoparticles)

FullerenesFullerenes

Metal (M°) (Nanoclusters)

Metal (M°) (Nanoclusters)

Metal (Chalcogenide)(Nanocrystals)

Metal (Chalcogenide)(Nanocrystals)

Metal Oxide (Nanocrystals)Metal Oxide

(Nanocrystals)Carbon

NanotubesCarbon

NanotubesSilica

(Nanoparticles)Silica

(Nanoparticles)FullerenesFullerenes

Nanomaterials Classification Roadmap

GenerationsSurface Groups (Z)

MWMw/Mn

Total # of Aufbau Monomers

Z = 3 6 12 24 48 96

0 1 2 3 4 53 6 12 24 48 963 9 21 45 93 189

359 1044 2414 5154 10632 215911.005 1.011 1.036 1.07 1.113 1.131

0 1 2 3 4 53 6 12 24 48 963 9 21 45 93 189

359 1044 2414 5154 10632 215911.005 1.011 1.036 1.07 1.113 1.131

Hard Nanoparticles Soft NanoparticlesDendrimersGold Nano-Clusters

(Dendrimer)x Nano-Compounds(Gold Nano-Cluster)x Nano-Compounds

C. Mirkin et al., J. Am. Chem. Soc,120, 12674, (1998). D.A.Tomalia, et al., Adv. Mater.,12,(11), 796,(2000).

DNA Connector

Nano-Compound Morphologies

B. Xu, et al., Accounts of Chemical Res., 42 (8) 1097 (2009)

Nano-Elements

S-1:S-1 S-2:S-1 S-3:S-1 S-4:S-1 S-5:S-1 S-6:S-1

S-2:S-2 S-3:S-2 S-4:S-2 S-5:S-2 S-6:S-2

S-2:S-3 S-3:S-3 S-4:S-3 S-5:S-3 S-6:S-3

S-2:S-4 S-3:S-4 S-4:S-4 S-5:S-4 S-6:S-4

S-2:S-5 S-3:S-5 S-4:S-5 S-5:S-5 S-6:S-5

S-2:S-6 S-3:S-6 S-4:S-6 S-5:S-6 S-6:S-6

Nano-Elements

S-1:S-1 S-2:S-1 S-3:S-1 S-4:S-1 S-5:S-1 S-6:S-1

S-2:S-2 S-3:S-2 S-4:S-2 S-5:S-2 S-6:S-2

S-2:S-3 S-3:S-3 S-4:S-3 S-5:S-3 S-6:S-3

S-2:S-4 S-3:S-4 S-4:S-4 S-5:S-4 S-6:S-4

S-2:S-5 S-3:S-5 S-4:S-5 S-5:S-5 S-6:S-5

S-2:S-6 S-3:S-6 S-4:S-6 S-5:S-6 S-6:S-6

DendrimersDendrons

DendrimersDendrons

Nano-latexesNano-

latexes DNA/RNADNA/RNAPolymericMicelles

PolymericMicelles ProteinsProteins Viral

Capsids

DendrimersDendrons

DendrimersDendrons

Nano-latexesNano-

latexes

DNA/RNADNA/RNA

PolymericMicelles

PolymericMicelles

ProteinsProteins

Viral Capsids

-S-S--S-S-

-S-S- -S-S--S-S--S-S-

-S-S- -S-S-

Soft Nanoparticle Compounds

Dendrimer-Cluster Compounds

Tomalia, et al.Adv. Mater. (2000)

IgG-Dendrimer Compounds(Stratus®)SiemensGermany

DNA-Dendrimer Compounds(Superfect®)Qiagen, Ger.

HIV-Virus-Dendrimer

Compounds(VivaGel®)

Starpharma, AU

Tobacco Mosaic Virus Compound

Protein Sub-Units

Self-Assembly of Nanoscale Wedges

Viral Capsids

DendronsDendrimers

J.G. Rudick, V. Percec, Accounts of Chemical Research, 41,(12), 1641-1652 (2008)First Demonstration of Quasi-Equivalence with Synthetic Nanostructures

ss-RNA:Protein Sub-unit [S-6:(S-4)2130] Core-Shell Nano-Compound

Diameter: 18 nm Length: 300 nm Helical Symmetry

Subunits: 2130; 158 amino acids/sub-unit

ss-RNA: 1; 6400 nucleotide units/ss-RNA

Tobacco Mosaic Virus

P.J.G. Butler, A. Klug, Sci. Amer. 239 (5) 62-69, (1978); (Nobel- !982)

Nano-Compound Stoichiometry:

2130x-Protein Subunits [S-4];1x-ssRNA [S-6]

[S-6]

[S-4]Shell

Core

Mansfield-Tomalia-Rakesh Equation

When: r1/r2 > 1.20D.A. Tomalia, et al., J. Chem. Phys. 105 (8), 3245 (1996).

Spheroidal Valency Defined by Nano-Sterics

2

Nmax =

2!

"3

r1

r2

+ 1

2

Nmax =

2!

"3

r1

r2

+ 1

2

12

Gold Nano-Clusters

r1 = radius of core dendrimerr2 = radius of shell dendrimer

Nmax= Total theoretical number of shell-like spheroids withradius r2 that can be ideally parked around core spheroidwith radius r1

Core Reagent

Shell Reagent(Excess)

Dendrimers

Core –Shell Tecto(dendrimers)

-(NH2)n + -(CO2H)m

(1)Self Assembly (Equilibration)

(2)Covalent Bond

Formation

-(CO2H)m

Core-Shell Tecto(dendrimers): Saturated Shell Models

S. Uppuluri, D.R. Swanson, L.T. Piehler, J. Li, G.L. Hagnauer, D.A. Tomalia Adv. Mater. 2000, 12(11) 796-800

Non-autoreactive

D.A. Tomalia, et al., Langmuir, 18, 3127-3133 (2002).

Structure Controlled (Flexibility) Compressibility of Dendrimers

G7/G5G9 [G9]n

OH

OHOH

OH

OH

OH

OHHOHO

HO

HO

HO

HO OHOH

OH

OHOHHO

HOHO

HO

HOHO

PP

P

PP

P

P

P

QD

GySiO2GyGyGySiO2

Nano-Elements

S-1:H-1 S-2:H-1 S-3:H-1 S-4:H-1 S-5:H-1 S-6:H-1

S-1:H-2 S-2:H-2 S-3:H-2 S-4:H-2 S-5:H-2 S-6:H-2

S-1:H-3 S-2:H-3 S-3:H-3 S-4:H-3 S-5:H-3 S-6:H-3

S-1:H-4 S-2:H-4 S-3:H-4 S-4:H-4 S-5:H-4 S-6:H-4

S-1:H-5 S-2:H-5 S-3:H-5 S-4:H-5 S-5:H-5 S-6:H-5

S-1:H-6 S-2:H-6 S-3:H-6 S-4:H-6 S-5:H-6 S-6:H-6

Nano-Elements

S-1:H-1 S-2:H-1 S-3:H-1 S-4:H-1 S-5:H-1 S-6:H-1

S-1:H-2 S-2:H-2 S-3:H-2 S-4:H-2 S-5:H-2 S-6:H-2

S-1:H-3 S-2:H-3 S-3:H-3 S-4:H-3 S-5:H-3 S-6:H-3

S-1:H-4 S-2:H-4 S-3:H-4 S-4:H-4 S-5:H-4 S-6:H-4

S-1:H-5 S-2:H-5 S-3:H-5 S-4:H-5 S-5:H-5 S-6:H-5

S-1:H-6 S-2:H-6 S-3:H-6 S-4:H-6 S-5:H-6 S-6:H-6

DendrimersDendrons

DendrimersDendrons

Metal (M°) (Nanoclusters)

Metal (M°) (Nanoclusters)

Metal (Chalcogenide)(Nanocrystals)

Metal (Chalcogenide)(Nanocrystals)

Nano-latexesNano-

latexes DNA/RNADNA/RNA

Metal Oxide (Nanocrystals)Metal Oxide

(Nanocrystals)

CarbonNanotubes

CarbonNanotubes

Cross-linkedPolymericMicelles

Cross-linkedPolymericMicelles

ProteinsProteins VirusesViruses

Silica (Nanoparticles)

Silica (Nanoparticles)

FullerenesFullerenes

Soft/Hard Nanoparticle Compounds

Mirkin, et al.Nature, (2008)

Wiesner, et al.,Chem. Mater.

(2007)

Tomalia et.al.J. Luminescence

(2005)

Jensen, et al.Nano Lett. (2005) Rotello, et al.

J.A.C.S. (2005)

X. Tu, et al.,Nature (2009)

P. Alivisatos, et al, Angew. Chem. Int. Ed., 38 (12) 1808-1812 (1999).

Gold Nanocluster: DNA - [H-1:S-6]; Heterodimer Type Nano-Compound Series

Dendrimer Core

Nano-Compound Stoichiometry:

1x-[G4];(PAMAM)32x-C60

Fullerene Shell

A.W. Jensen, D. Mohanty, D.A. Tomalia, et al. Nano Letters, 5(6), 1171-1173 (2005).

Core-Shell Architecture of Dendrimer-Fullerene Nano-Compound

G=4PAMAM

-(NH2)64 + 32

Yield: 89%

12 h, 25°(pyridine)

“Proposed Reaction Mechanism”

[S-1:H-5] Nano-Compound

X. Tu, S. Manohar, A Jagota and M. Zheng, Nature, 2009, 460, 250

Barrel Shaped, SWNT:DNA -[H-6:S-6]; Core-Shell Type Nano-Compound Series

Core-Shell; [H-6:S-6] Type Nano-Compounds

DNA; [S-6]

SWNT; [S-6]

Nano-Compound Synthesis, Yields and Purities

Nanoscale Atom Mimicry

Hard Nanoparticle Categories

Soft Nanoparticle Categories

Nano-elements

Intrinsic Properties

Functional/ApplicationProperties

Nano-compounds

Nano-Periodic Property Patterns

Using Traditional “First Principles”

DendrimersDendrons

DendrimersDendrons

ProteinsProteins ViralCapsids RNA/DNANano-latexesNano-latexes Polymeric

MicellesPolymericMicelles

SOFT PARTICLE NANO-ELEMENT CATEGORIES

Metal (M°) (Nanoclusters)

Metal (Chalcogenide)(Nanocrystals)

Metal Oxide (Nanocrystals)

Silica (Nanoparticles) Fullerenes

HARD PARTICLE NANO-ELEMENT CATEGORIES

Carbon Nanotubes

Carbon Nanotubes

D.A. Tomalia, J. of Nanoparticle Research, 11. 1251-1310 (2009)

Nano-Periodic Property Patterns for a Series of [H-6:S-6] Nano-Compounds

Optical Absorption Spectra versus SWNT (n,m) Chirality

X. Tu, S. Manohar, A Jagota and M. Zheng, Nature, 2009, 460, 250

DNA; [S-6]SWNT; [H-6]

V.Nano-Periodic Property Patterns

He Ne Ar Kr XeHe Ne Ar Kr Xe

Picoscale Matter (Atoms)

Elements Exhibiting Noble Gas

Configurations

Electron shell levels: 1 2 3 4 5Electron shell levels: 1 2 3 4 5

Saturation values (n): 2 10 18 36 54Saturation values (n): 2 10 18 36 54Atomic weights: 4.00 20.17 39.94 83.80 131.30Atomic weights: 4.00 20.17 39.94 83.80 131.30

Shell Components n (Electrons)

.064 nm .138 nm .194 nm .220nm .260 nmDiameters: .064 nm .138 nm .194 nm .220nm .260 nmDiameters:

Hard Nano-Matter (Gold Nanoclusters)

Full-Shell “Magic Number”

Clusters

Atom shell levels: 1 2 3 4 5Atom shell levels: 1 2 3 4 5

Saturation values (n): 12 54 146 308 560Saturation values (n): 12 54 146 308 560Nano-cluster weights: 2560 10833 28953 60861 110495Nano-cluster weights: 2560 10833 28953 60861 110495

Shell Components n (Au Atoms)

.864 nm 1.44 nm 2.02 nm 2.59 nm 3.17 nmDiameters: .864 nm 1.44 nm 2.02 nm 2.59 nm 3.17 nmDiameters:

Soft Nano-Matter(Dendrimers)

Saturated Monomer

Shells

Shell Componentsn (Monomers) Saturation values (n): 9 21 45 93 189Saturation values (n): 9 21 45 93 189

Nanostructure weights: 144 2414 5154 10632 21591Nanostructure weights: 144 2414 5154 10632 21591

Monomer shell levels: G=1 G=2 G=3 G=4 G=5Monomer shell levels: G=1 G=2 G=3 G=4 G=51.58 nm 2.2 nm 3.10 nm 4.0 nm 5.3 nmDiameters: 1.58 nm 2.2 nm 3.10 nm 4.0 nm 5.3 nmDiameters:

Comparison of Atoms with Hard and Soft Nanoparticles

D.A. Tomalia, J. of Nanoparticle Research, 11. 1251-1310 (2009)

Gold Cluster- [H-1];Type Nano-Elements(Melting Points vs. Nano Sizes)

MeltingPoints

K.J. Klabunde, Nanoscale Materials in Chemistry, J. Wiley & Sons, NY, 2001.

Shells: 1 2 3 4 5 6Total Atoms: 13 55 147 309 561 1415

Surface Area/Head Group (Z)

Intrinsic Viscosity (η)

Density (d)

Refractive Index

G = 0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0

PAMAM Dendrimer Generation

Dendrimer; [S-1]-Type Nano-Elements (Nano-Periodic Properties of Dendrimers)

D. A. Tomalia, W.A. Goddard, et al, Angew. Chem. Int. Ed. Engl., 29, 138, (1990).

Nano-Periodic Trends of [S-1]-Type Nano-Elements (Dendrons)

J.G. Rudick, V. Percec, Accounts of Chemical Research, 41,(12), 1641-1652 (2008)

(Size, Shape, Surface Chemistry Driven Self Assembly Patterns)

Primary Dendron/Dendrimer

Structures

TertiaryDendrimer Structures

Quaternary Dendrimer Assemblies

Size Shape Surface Chemistry

SelfAssembly

(Tertiary) Supramolecular

Dendrimers

(Quaternary)Dendrimer Assemblies

Percec’s Nano-Periodic Self-Assembly Table

(Primary) Dendron

Structures

V. Percec, et al., J. Am. Chem. Soc., 131, 17500, (2009).

VI. Conclusions - The Future

Conclusions• First Steps have been taken to unify and define Nanoscience

based on traditional chemistry “first principles.”

• Hard (Inorganic) and Soft (Organic) Nanoparticle Element Categories have been proposed.

• Many Nano-Compound/Assembly examples presently exist in the literature.

• Synthetic Organic and Inorganic Nano-Chemistries have emerged and are well documented.

• The first examples of Nano-Periodic Tables for predicting intrinsic nano physico-chemical properties based on CNDP’s have appeared- , V. Percec, et al., J. Am. Chem. Soc., 131, 17500, (2009).

(1 nm)

(100 nm)

Atoms (Elements) (Periodic Table)

Simple Compounds (HCl, H2O, NH3, CH4)

Sub-nano Modules (Aliphatic, Aromatic)

Functional Groups(-CO2H, -NH2, -OH)

Complex Compounds(Palytoxin, C60)

Nanoscale Modules(Proteins, DNA, RNA)

Bio-assemblies(Viruses, Ribosomes)

Biological Cells

Simple Organisms (Bacteria)

Organisms (Plants, Animals)

Complex Organisms (Humans)

Complexity Staircase

Organic ChemistryInorganic Chemistry

Polymer Chemistry

Polypeptide Chemistry

Nanoscale Atom Mimicry

Hard NanoparticleCategories

Soft NanoparticleCategories

Nano-elements

Physico-Chemical Properties

Functional/ApplicationProperties

Nano-compounds

Nano-periodic Property Patterns

Metal (M°) (Nanoclusters)

Metal (Chalcogenide)(Nanocrystals)

Metal Oxide (Nanocrystals)

Silica (Nanoparticles) Fullerenes

Hard Particle Nano-Element Categories

Carbon Nanotubes

Carbon Nanotubes

H-1 H-2 H-3 H-4 H-5 H-6

DendrimersDendrons

DendrimersDendrons

ProteinsProteins VirusesViruses RNA/DNANano-latexesNano-latexes PolymericMicelles

Soft Particle Nano-Element Categories

S-1 S-2 S-3 S-4 S-5 S-6

Atoms

Monomers

Synthetic Inorganic Nano-Chemistry

Soft Nano-Elements

Nano-Periodicity

Quantized Building Blocks

The Future

Synthetic Organic Nano-Chemistry

Hard Nano-Elements

IN QUEST OF A SYSTEMATIC FRAMEWORK FOR UNIFYING AND DEFINING

NANOSCIENCE

A 21st Century Paradigm for Nanoscience

A 19th Century Paradigm for Traditional Chemistry

D. Mendeleev’s Periodic Table (1869)

J. Dalton (1808)

Natural Physico-Chemical Laws

We are not advocating corruption or changes in the gospel! We are

merely proposing some new hymns--new

thinking.

Acknowledgements

Nanotechnology Characterization Laboratory (NCL), National Cancer Institute, National Institute of Health

National Science Foundation (NSF)

All the Plenary Speakers (NSF-CMU Workshop) (2007)

Prof. Jorn Christensen (Univ. of Copenhagen)

Dr. M. Roco (NSF) for inspiration and encouragement

“The spirit of this perspective is not to disrupt any natural physico-chemical laws, but to encourage new and different thinking.

This is a works in progress! Much more remains to be done.”

Donald A. Tomalia

J. Nanoparticle Res., 11, 1251-1310,(2009)