improving harvesting operations · 2020. 2. 20. · other crops harvest transport supply chain e-t...

124
http://copa.uniandes.edu.co/ http://copa.uniandes.edu.co/ An analytics solution for harvesting operations in an oil palm plantation Jorge Leal, M.Sc. Mariana Escallón , M.Sc. Daniel Castillo-Gómez, M.Sc. Andrés Medaglia, Ph.D. Center for the Optimization and Applied Probability (COPA) Industrial Engineering Department Carlos Montenegro, Ph.D. Center for Orinoquia Studies (CEO) Universidad de los Andes (Colombia) 1 II International Conference on Agro BigData and Decision Support Systems in Agriculture 12-14 July 2018. Lleida (Spain)

Upload: others

Post on 29-Jan-2021

0 views

Category:

Documents


0 download

TRANSCRIPT

  • http://copa.uniandes.edu.co/http://copa.uniandes.edu.co/

    An analytics solution for harvesting operations in

    an oil palm plantation

    Jorge Leal, M.Sc.

    Mariana Escallón , M.Sc.

    Daniel Castillo-Gómez, M.Sc.

    Andrés Medaglia, Ph.D.

    Center for the Optimization and Applied Probability (COPA)

    Industrial Engineering Department

    Carlos Montenegro, Ph.D.

    Center for Orinoquia Studies (CEO)

    Universidad de los Andes (Colombia)

    1

    II International Conference on

    Agro BigData and Decision

    Support Systems in Agriculture12-14 July 2018. Lleida (Spain)

  • http://copa.uniandes.edu.co/ 2

    Agenda

    Introduction

    Project stages

    Results

  • http://copa.uniandes.edu.co/ 3

    Agenda

    Introduction

    Motivation

    Context

    Problem definition

    Literature review

  • http://copa.uniandes.edu.co/ 4

    Motivation

    *Fedepalma (2018).

    Introduction Project stages Results

    Palm oil

    Economic:

    By 2015, valued at USD 66 billion (global)

    Major job provider in Colombia (140,000)*

  • http://copa.uniandes.edu.co/ 5

    Motivation

    54%31%

    3%

    2% 2%

    8%

    Palm oil market

    Indonesia

    Malaysia

    Thailand

    Colombia

    Nigeria

    Others (23 countries)

    Introduction Project stages Results

    Fedepalma (2015); Euromonitor International (2018).

    Palm oil

    Economic:

    By 2015, valued at USD 66 billion (global)

    Major job provider in Colombia (140,000)*

  • http://copa.uniandes.edu.co/ 6

    Motivation

    Higher productivity in:

    • Malaysia – 26%

    • Indonesia – 23%

    Introduction Project stages Results

    Fedepalma (2015); Euromonitor International (2018).

    Palm oil

    Economic:

    By 2015, valued at USD 66 billion (global)

    Major job provider in Colombia (140,000)*

    54%31%

    3%

    2% 2%

    8%

    Palm oil market

    Indonesia

    Malaysia

    Thailand

    Colombia

    Nigeria

    Others (23 countries)

  • http://copa.uniandes.edu.co/ 7

    Motivation

    Main uses:

    Alimentary: cooking oil, margarine and ice cream

    Non-alimentary: biodiesel, soap and cosmetics

    Introduction Project stages Results

    Palm oil

  • http://copa.uniandes.edu.co/ 8

    Motivation

    Main uses:

    Alimentary: cooking oil, margarine and ice cream

    Non-alimentary: biodiesel, soap and cosmetics

    Environmental issues:

    Deforestation in Southeast Asia

    Plantations in flooded savannas as in Colombian

    Orinoquia have less impact in the ecosystem

    Introduction Project stages Results

    Palm oil

  • http://copa.uniandes.edu.co/ 9

    Agenda

    Introduction

    Motivation

    Context

    Problem definition

    Literature review

  • http://copa.uniandes.edu.co/ 10

    Context

    Introduction Project stages Results

  • http://copa.uniandes.edu.co/ 11

    Context

    Introduction Project stages Results

  • http://copa.uniandes.edu.co/ 12

    Context - La Ilusión plantation

    • 2,090 hectares

    Introduction Project stages Results

  • http://copa.uniandes.edu.co/ 13

    Context - La Ilusión plantation

    • 2,090 hectares

    • 87 land plots

    • Sowing years 2009, 2010 y 2011

    • 200 workers (direct and outsourced)

    • 100 km of cableway

    • 8 aerial tractors

    Introduction Project stages Results

    2009

    2010

    2011

  • http://copa.uniandes.edu.co/ 14

    Context - La Ilusión plantation

    Introduction Project stages Results

    Planting, fertilization

    and maintenance

    Harvest Transport Oil extraction

  • http://copa.uniandes.edu.co/ 15

    Context - La Ilusión plantation

    Introduction Project stages Results

    Planting, fertilization

    and maintenance

    Harvest Transport Oil extraction

  • http://copa.uniandes.edu.co/

    Planting, fertilization

    and maintenance

    Harvest Transport Oil extraction

    16

    Context - La Ilusión plantation

    Introduction Project stages Results

    8 20 days

    Buffalo

    Mechanized

    Harvest crew

  • http://copa.uniandes.edu.co/

    Planting, fertilization

    and maintenance

    Harvest Transport Oil extraction

    17

    Context - La Ilusión plantation

    Introduction Project stages Results

    • 30 containers per trip

    • 150 kg per container

    • 3 - 4.5 tons per trip

    8 aerial tractors

  • http://copa.uniandes.edu.co/

    Planting, fertilization

    and maintenance

    Harvest Transport Oil extraction

    18

    Context - La Ilusión plantation

    Introduction Project stages Results

    Cableway network

    • Main cable

    • Secondary cables

    • Tertiary cables

    • Stockpiling center

  • http://copa.uniandes.edu.co/ 19

    Business problem

    Introduction Project stages Results

    Average harvest cycle length: 19.6 days

  • http://copa.uniandes.edu.co/ 20

    Business problem

    How to visit the plantation to

    reduce the harvest cycle length?

    Introduction Project stages Results

    HarvestTransport

    8 20 days

  • http://copa.uniandes.edu.co/ 21

    Business problem

    Introduction Project stages Results

    HarvestTransport

    8 20 days

    Reduce costs

    Optimize resource allocation

    Reduce uncertainty in task scheduling

    How to visit the plantation to

    reduce the harvest cycle length?

  • http://copa.uniandes.edu.co/ 22

    Agenda

    Introduction

    Motivation

    Context

    Problem definition

    Literature review

  • http://copa.uniandes.edu.co/

    Literature review

    23

    Oil palm

    Harvest Transport

    Gen

    eral

    ana

    lysi

    sLi

    near

    optim

    izat

    ion

    • Durán, Sierra & García (2004).

    Extraction potential.

    • Mosquera, Fontanilla & Donado

    (2008). Harvest studies for oil

    palm.

    • Mosquera et al. (2008).

    Harvest comparison, invidual or

    group.

    • Solah, Hitam & Borhan (2004).

    Cableway system for oil palm

    FFB evacuation.

    • Fontanilla & Castiblanco (2009).

    Cableway at the harvesting.

    • Fontanilla et al. (2010).

    Comparison between FFB

    evacuation systems.

    Adarme, Fontanilla & Arango (2011).

    General logistic model and single

    sourcing.

    García-Cáceres (2007). Tactical

    and operative optimization of

    the supply chain in the oil palm

    industry.

    Supply chain

    Fontanilla (2012). Stockpilling center location model for an oil palm

    plantation.

    Oth

    er Ademosun (1982). Location-allocation models for oil palm

    production (feasible set approach).

    Cableway

    Introduction Project stages Results

    Euler, Hoffmann, Fathoni, &

    Schwarze (2016). Exploring yield

    gaps in oil palm production

    systems.

    • Corley & Tinker (2016).

    The Oil Palm.

    • Murphy (2014). Oil palm

    crop challenges.

  • http://copa.uniandes.edu.co/

    • Plà-Aragonés

    (2015). Handbook

    of Operations

    Research in

    Agriculture and the

    Agri-Food Industry

    Literature review

    24

    Other crops

    Harvest Transport Supply chain

    Dis

    cret

    e-ev

    ent

    sim

    ulat

    ion

    • Yates (2014). Harvest, transport and processing of

    vegetables.

    • van der Vorst et al. (2000). Modelling and simulating

    multi-echelon food systems.

    • van der Vorst et al. (2009). Simulation modeling for

    food supply chain redesign.

    Heu

    ristic

    s

    Edwards et al. (2015). Tabu search task allocation in agriculture.

    • Ali et al. (2009). Infield logistics planning for crop-

    harvesting operations.

    • Caixeta-Filho (2006). Orange

    harvesting scheduling management:

    A case study. MIP optimal harvest

    for juice extraction and acidity level.

    Line

    ar

    optim

    izat

    ion

    • Amorim et al. (2012). Multi-objective integrated production

    and distribution planning of perishable products.

    • Jiao, Higgins, & Prestwidge (2005). An integrated

    statistical and optimization approach to increasing sugar

    production within a mill region.

    Introduction Project stages Results

    • Borodin et al. (2014). A

    quality risk management

    problem: Case of annual

    crop harvest scheduling.

  • http://copa.uniandes.edu.co/ 25

    Agenda

    Introduction

    Project stages

    Results

  • http://copa.uniandes.edu.co/ 26

    Project stages

    Introduction Project stages Results

    Harvest cycle

    model Q

    Transport allocation

    model D

    Discrete-event

    simulation W

    Resource allocation

    model W

    Ripeness

    cost

    function

    Yield

    forecast

    Q: Quarterly

    W: Weekly

    D: Daily

    Parameter estimation

  • http://copa.uniandes.edu.co/ 27

    Project stages

    Introduction Project stages Results

    Transport allocation

    model D

    Resource allocation

    model W

    Q: Quarterly

    W: Weekly

    D: Daily

    Harvest cycle

    model Q

  • http://copa.uniandes.edu.co/ 28

    Project stages

    Introduction Project stages Results

    Transport allocation

    model D

    Resource allocation

    model W

    Q: Quarterly

    W: Weekly

    D: Daily

    Harvest cycle

    model Q

    What day and how

    much fruit should be

    collected for each

    land plot?

    Strategical

  • http://copa.uniandes.edu.co/ 29

    Project stages

    Introduction Project stages Results

    Transport allocation

    model D

    Resource allocation

    model W

    Q: Quarterly

    W: Weekly

    D: Daily

    How to allocate

    harvest crews

    throughout the

    plantation?

    Tactical

    Harvest cycle

    model Q

    What day and how

    much fruit should be

    collected for each

    land plot?

    Strategical

  • http://copa.uniandes.edu.co/ 30

    Project stages

    Introduction Project stages Results

    Harvest cycle

    model Q

    Transport allocation

    model D

    Resource allocation

    model W

    Q: Quarterly

    W: Weekly

    D: Daily

    What are the aerial

    tractor routes for

    fruit evacuation?

    Operational

    How to allocate

    harvest crews

    throughout the

    plantation?

    Tactical

    What day and how

    much fruit should be

    collected for each

    land plot?

    Strategical

  • http://copa.uniandes.edu.co/ 31

    Project stages

    Introduction Project stages Results

    Feasible?

    Add constraints

    Amount (kg) of fresh fruit

    to be harvested each day

    Amount (kg) of fresh

    fruit to pick in each

    land plot each day

    Harvest cycle

    model Q

    Transport allocation

    model D

    Discrete-event

    simulation W

    Resource allocation

    model W

    Feasible?

    Add constraints

    Ripeness

    cost

    function

    Yield

    forecast

    Q: Quarterly

    W: Weekly

    D: Daily

    Parameter estimation

    Aerial

    tractor

    order

  • http://copa.uniandes.edu.co/ 32

    Project stages

    Introduction Project stages Results

    Amount (kg) of fresh fruit

    to be harvested each day

    Amount (kg) of fresh

    fruit to pick in each

    land plot each day

    Harvest cycle

    model Q

    Transport allocation

    model D

    Discrete-event

    simulation W

    Resource allocation

    model W

    Feasible?

    Add constraints

    Ripeness

    cost

    function

    Yield

    forecast

    Parameter estimation

    Feasible?

    Add constraints

    Q: Quarterly

    W: Weekly

    D: Daily

    Aerial

    tractor

    order

  • http://copa.uniandes.edu.co/ 33

    1. We assign a penalization for not visiting the palm on time

    FFB state

    Ripeness cost function

    Introduction Project stages Results

    Unripe Ripe Overripe Rotten

    < 8 days

    No fruitlets

    detachment

    8-12 days

    < 50% fruitlets

    detachment

    12-17 days

    >50% fruitlets

    detachment

    17-20 days

    Dehydrated

    bunch

  • http://copa.uniandes.edu.co/ 34

    Ripeness cost function

    Introduction Project stages Results

    Oil yield loss

    Higher

    harvesting

    time

  • http://copa.uniandes.edu.co/ 35

    Project stages

    Introduction Project stages Results

    Amount (kg) of fresh fruit

    to be harvested each day

    Amount (kg) of fresh

    fruit to pick in each

    land plot each day

    Harvest cycle

    model Q

    Transport allocation

    model D

    Discrete-event

    simulation W

    Resource allocation

    model W

    Feasible?

    Add constraints

    Ripeness

    cost

    function

    Yield

    forecast

    Parameter estimation

    Feasible?

    Add constraints

    Q: Quarterly

    W: Weekly

    D: Daily

    Aerial

    tractor

    order

  • http://copa.uniandes.edu.co/ 36

    Yield forecast

    Introduction Project stages Results

    1. Time series fitting and forecast

    Methodology

    Forecast for average yield zone 9 for short harvest cycle lengths

    0

    200

    400

    600

    800

    1000

    1200

    Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2

    2015 2016 2017 2018

    kg /

    ha

    Quarter

    Real

    Forecast

  • http://copa.uniandes.edu.co/

    0

    200

    400

    600

    800

    1000

    1200

    Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2

    2015 2016 2017 2018

    kg /

    ha

    Quarter

    Real

    Forecast

    37

    Yield forecast

    Introduction Project stages Results

    2. Variability for each land plot

    Methodology

    Forecast for average yield zone 9 for short harvest cycle lengths

    ln 𝑦9,𝑄2 , 𝜎2010

  • http://copa.uniandes.edu.co/ 38

    Yield forecast

    Introduction Project stages Results

    2. Variability for each land plot

    Methodology

    0

    200

    400

    600

    800

    1000

    1200

    Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2

    2015 2016 2017 2018

    kg /

    ha

    Quarter

    Real

    Forecast

    Forecast for average yield zone 9 for short harvest cycle lengths

    𝑦52′

    Simulation

    land plot 52

  • http://copa.uniandes.edu.co/ 39

    Yield forecast

    Introduction Project stages Results

    1. Quarterly average per zone (Holt-Winters) captures seasonality and long-term trend

    2. Monte Carlo simulation (particular value per land plot)

    3. Increase in production due to accumulation (harvest cycle length)

    • Polynomial regression

    Yield increase - land plot 52

    𝑓(𝑥) = 𝑦52′ 1 + 𝛽2𝑥

    2 + 𝛽3𝑥3

    750

    900

    1050

    1200

    1350

    1500

    0 2 4 6 8 10 12

    Yie

    ld (

    kg /

    ha)

    Days from optimal cycle length

  • http://copa.uniandes.edu.co/ 40

    Project stages

    Introduction Project stages Results

    Feasible?

    Add constraints

    Amount (kg) of fresh fruit

    to be harvested each day

    Amount (kg) of fresh

    fruit to pick in each

    land plot each day

    Harvest cycle

    model Q

    Transport allocation

    model D

    Discrete-event

    simulation W

    Resource allocation

    model W

    Feasible?

    Add constraints

    Ripeness

    cost

    function

    Yield

    forecast

    Parameter estimation

    Q: Quarterly

    W: Weekly

    D: Daily

    Aerial

    tractor

    order

  • http://copa.uniandes.edu.co/ 41

    Harvest cycle model

    When and how much fruit to collect from each land plot?

    Planning horizon: 3 months

    Objective: Reduce harvest cycle length

    Subject to:

    • Transport capacity

    • Daily labor time

    • Daily production capacity

    Introduction Project stages Results

    Q

  • http://copa.uniandes.edu.co/

    1 2 3 4 5 6 7 8 9 10

    42

    Harvest cycle model

    Aim

    X X XLand plot 1

    Days

    Introduction Project stages Results

    Q

  • http://copa.uniandes.edu.co/

    1 2 3 4 5 6 7 8 9 10

    43

    Harvest cycle model

    Aim

    Land plot 1

    Days

    Introduction Project stages Results

    Q

    X X X

    X X X

    X X X

    X X X

  • http://copa.uniandes.edu.co/

    1 2 3 4 5 6 7 8 9 10

    44

    Harvest cycle model

    Aim

    Land plot 1

    Days

    Introduction Project stages Results

    Q

    X X X

    X X X

    X X X

    X X X

  • http://copa.uniandes.edu.co/

    1 2 3 4 5 6 7 8 9 10

    45

    Harvest cycle model

    Aim

    X X XLand plot 1

    Days

    Introduction Project stages Results

    Q

    X X X

    X X XLand plot 2

    Land plot 3 X X X

  • http://copa.uniandes.edu.co/ 46

    Harvest cycle model

    Column generation

    Introduction Project stages Results

    Q

    Auxiliary

    problem

    Visit pattern

  • http://copa.uniandes.edu.co/ 47

    Harvest cycle model

    Column generation

    Introduction Project stages Results

    Q

    Master

    problem

    𝑥𝑝𝐻 ≥ 0

    Auxiliary

    problem

    End

    𝕨T

    𝕒𝑠𝑟𝑠 > 0

    Master

    problem

    𝑥𝑝𝐻 ∈ {0,1}

    Sí No

  • http://copa.uniandes.edu.co/

    Objective function

    max

    𝑖∈𝒯

    𝑗∈𝒯

    𝓁∈ℒ

    𝑦𝑖𝑗𝓁𝐻 𝑔 ∙ 𝛿𝑖𝑗𝓁 − 𝜍𝑖𝑗𝓁 − 𝕨

    T𝕒𝑠

    48

    Harvest cycle model

    Mathematical model

    Introduction Project stages Results

    QAuxiliary problem

    𝑟𝑠

  • http://copa.uniandes.edu.co/

    Objective function

    max

    𝑖∈𝒯

    𝑗∈𝒯

    𝓁∈ℒ

    𝑦𝑖𝑗𝓁𝐻 𝑔 ∙ 𝛿𝑖𝑗𝓁 − 𝜍𝑖𝑗𝓁 − 𝕨

    T𝕒𝑠

    49

    Harvest cycle model

    Mathematical model

    Introduction Project stages Results

    QAuxiliary problem

    Pattern usefulness

  • http://copa.uniandes.edu.co/ 50

    Harvest cycle model

    Mathematical model

    Introduction Project stages Results

    QAuxiliary problem

    Objective function

    max

    𝑖∈𝒯

    𝑗∈𝒯

    𝓁∈ℒ

    𝑦𝑖𝑗𝓁𝐻 𝑔 ∙ 𝛿𝑖𝑗𝓁 − 𝜍𝑖𝑗𝓁 − 𝕨

    T𝕒𝑠

    Problem linking

  • http://copa.uniandes.edu.co/ 51

    Harvest cycle model

    Mathematical model

    Introduction Project stages Results

    QAuxiliary problem

    Objective function

    max

    𝑖∈𝒯

    𝑗∈𝒯

    𝓁∈ℒ

    𝑦𝑖𝑗𝓁𝐻 𝑔 ∙ 𝛿𝑖𝑗𝓁 − 𝜍𝑖𝑗𝓁 − 𝕨

    T𝕒𝑠

    𝕒𝑠 =

    𝑗∈𝒯

    𝑦𝑠𝑗𝓁𝐻 ∀𝓁 ∈ ℒ ,

    𝑗∈𝒯

    𝓁∈ℒ

    𝑦𝑖𝑗𝓁𝐻 𝛿𝑖𝑗𝓁

    𝑘𝑡𝓁 ∀𝑖 ∈ 𝒯,

    𝑗∈𝒯

    𝓁∈ℒ

    𝑦𝑖𝑗𝓁𝐻 𝛿𝑖𝑗𝓁 ∀𝑖 ∈ 𝒯,

    𝕨T: dual variables from master problem constraints

    Pattern type

    Utilization of aerial tractors

    Amount of fruit collected

    Problem linking

  • http://copa.uniandes.edu.co/ 52

    Harvest cycle model

    Mathematical model

    Introduction Project stages Results

    QAuxiliary problem

    𝑠 𝑒Lan

    d p

    lots

    1

    2

    Days

  • http://copa.uniandes.edu.co/ 53

    Harvest cycle model

    Mathematical model

    Introduction Project stages Results

    QAuxiliary problem

    𝑠 𝑒Lan

    d p

    lots

    1

    2

    Days

    1,0 1,3 1,7 1,9

  • http://copa.uniandes.edu.co/ 54

    Harvest cycle model

    Mathematical model

    Introduction Project stages Results

    QAuxiliary problem

    𝑠 𝑒Lan

    d p

    lots

    1

    2

    Days

    1,0 1,3 1,7 1,9

    𝛿0,3,1

    𝛿3,7,1 𝛿7,9,1

  • http://copa.uniandes.edu.co/ 55

    Harvest cycle model

    Column generation

    Introduction Project stages Results

    Q

    Master

    problem

    Pattern selection

    for each land plot

  • http://copa.uniandes.edu.co/ 56

    Project stages

    Introduction Project stages Results

    Feasible?

    Add constraints

    Amount (kg) of fresh fruit

    to be harvested each day

    Amount (kg) of fresh

    fruit to pick in each

    land plot each day

    Harvest cycle

    model Q

    Transport allocation

    model D

    Discrete-event

    simulation W

    Resource allocation

    model W

    Feasible?

    Add constraints

    Ripeness

    cost

    function

    Yield

    forecast

    Q: Quarterly

    W: Weekly

    D: Daily

    Parameter estimation

    Aerial

    tractor

    order

  • http://copa.uniandes.edu.co/ 57

    Resource allocation model

    Introduction Project stages Results

    W How to arrange the land plots programmed in a timetable?

    Planning horizon: 1 week

    Objective: Minimize yield loss (earliness)

    Subject to:

    • Available personnel

    • Harvesting time for each land plot

    • Deadline per land plot

  • http://copa.uniandes.edu.co/ 58

    Resource allocation model

    Introduction Project stages Results

    WAim Harvest crew 1

    Time interval Day

    Start End M T W Th F S Su

    06:00 07:00

    07:00 08:00

    08:00 09:00

    09:00 10:00

    10:00 11:00

    11:00 12:00 Land plot 1

    13:00 14:00 Land plot 2

    14:00 15:00 Land plot 3

    15:00 16:00 Land plot 4

    Land plot 5

    Land plot 6

    Land plot 7

    Land plot 8

    Land plot 9

    Rest/travel time

  • http://copa.uniandes.edu.co/ 59

    Resource allocation model

    Introduction Project stages Results

    WAim Harvest crew 1

    Time interval Day

    Start End M T W Th F S Su

    06:00 07:00

    07:00 08:00

    08:00 09:00

    09:00 10:00

    10:00 11:00

    11:00 12:00 Land plot 1

    13:00 14:00 Land plot 2

    14:00 15:00 Land plot 3

    15:00 16:00 Land plot 4

    Land plot 5

    Harvest crew 2 Land plot 6

    Time interval Day Land plot 7

    Start End M T W Th F S Su Land plot 8

    06:00 07:00 Land plot 9

    07:00 08:00 Rest/travel time

    08:00 09:00

    09:00 10:00

    10:00 11:00

    11:00 12:00

    13:00 14:00

    14:00 15:00

    15:00 16:00

  • http://copa.uniandes.edu.co/ 60

    Resource allocation model

    Introduction Project stages Results

    WScheduling

    Machine-oriented

    Harvest crews Land plots to harvest

    time

    0 5 10 15 20 25

    M1 L2 L3

    M2 L1 L5

    M3 L28 L29

    M4 L14 L18

    M5 L21 L20

  • http://copa.uniandes.edu.co/

    Optimization

    61

    Resource allocation model

    Introduction Project stages Results

    𝑒∗𝑠∗

    1

    2

    1 2 3 ℒ

    1,1 1,2 1, |ℒ|1,3

    2,1 2, |ℒ|

    |ℳ|, 1 |ℳ|, 2 |ℳ|, |ℒ||ℳ|, 3

    Har

    vest

    cre

    ws

    Land plots

    ⋮ ⋮ ⋮ ⋮

    2,3

    Arcs 𝐴1 Arcs 𝐴2 Arcs 𝐴3

    Network structureSequence

    W

  • http://copa.uniandes.edu.co/

    Optimization

    62

    Resource allocation model

    Introduction Project stages Results

    𝑒∗𝑠∗

    1

    2

    1 2 3 ℒ

    1,1 1,2 1, |ℒ|1,3

    2,1 2, |ℒ|

    |ℳ|, 1 |ℳ|, 2 |ℳ|, |ℒ||ℳ|, 3

    Har

    vest

    cre

    ws

    Land plots

    ⋮ ⋮ ⋮ ⋮

    2,3

    Arcs 𝐴1 Arcs 𝐴2 Arcs 𝐴3

    Network structureSequence (example)

    W

  • http://copa.uniandes.edu.co/ 63

    Resource allocation model

    Introduction Project stages Results

    WMathematical model

    time

    0 5 10 15 20 25

    M1 L2 L3

    𝑡2𝑠 𝑡2

    𝑐𝑝12 𝑡3𝑠 𝑡3

    𝑐𝑝13

  • http://copa.uniandes.edu.co/ 64

    Resource allocation model

    Introduction Project stages Results

    WMathematical model

    time

    0 5 10 15 20 25

    M1 L2 L3

    𝑡2𝑐 𝑡3

    𝑠𝜏23

  • http://copa.uniandes.edu.co/ 65

    Resource allocation model

    Introduction Project stages Results

    WMathematical model

    time

    0 5 10 15 20 25

    M1 L2

    𝑡2𝑐 𝑑2𝑡2

    𝑒

  • http://copa.uniandes.edu.co/ 66

    Project stages

    Introduction Project stages Results

    Feasible?

    Add constraints

    Amount (kg) of fresh fruit

    to be harvested each day

    Amount (kg) of fresh

    fruit to pick in each

    land plot each day

    Harvest cycle

    model Q

    Transport allocation

    model D

    Discrete-event

    simulation W

    Resource allocation

    model W

    Feasible?

    Add constraints

    Ripeness

    cost

    function

    Yield

    forecast

    Q: Quarterly

    W: Weekly

    D: Daily

    Parameter estimation

    Aerial

    tractor

    order

  • http://copa.uniandes.edu.co/ 67

    Transport allocation model

    Introduction Project stages Results

    D

    Which should be the daily routes for the aerial tractors?

    Planning horizon: one day

    Objective: Collect all the estimated production

    Subject to:

    • Maximum pulling capacity

    • Daily operational time

  • http://copa.uniandes.edu.co/ 68

    Transport allocation model

    Introduction Project stages Results

    D

    Calculate number

    of trips per land

    plot

    Create route for

    unattended

    demand

    Assign routes to

    every aerial

    tractor

  • http://copa.uniandes.edu.co/

    Land

    plot

    Demand

    (kg)

    Number of

    trips

    Unattended

    demand (kg)

    L1 12,300 2.7 3,300

    L8 8,500 1.9 4,000

    L2 10,200 2.3 1,200

    69

    Transport allocation model

    Introduction Project stages Results

    D

    4,500 Kg

    Calculate number

    of trips per land

    plot

    Create route for

    unattended

    demand

    Assign routes to

    every aerial

    tractor

  • http://copa.uniandes.edu.co/

    Land

    plot

    Demand

    (kg)

    Number of

    trips

    Unattended

    demand (kg)

    L1 12,300 2.7 3,300

    L8 8,500 1.9 4,000

    L2 10,200 2.3 1,200

    70

    Transport allocation model

    Introduction Project stages Results

    D

    4,500 Kg

    L8 L1

    L2

    Calculate number

    of trips per land

    plot

    Create route for

    unattended

    demand

    Assign routes to

    every aerial

    tractor

  • http://copa.uniandes.edu.co/ 71

    Transport allocation model

    Introduction Project stages Results

    D

    L1

    L2

    L1L8

    Route A Route CRoute B

    3 times 2 times

    Calculate number

    of trips per land

    plot

    Create route for

    unattended

    demand

    Assign routes to

    every aerial

    tractor

  • http://copa.uniandes.edu.co/ 72

    Transport allocation model

    Introduction Project stages Results

    D

  • http://copa.uniandes.edu.co/ 73

    Transport allocation model

    Introduction Project stages Results

    D

    Route A

    SPC

    AA AB 14A 11A 8A

    L8

    8A 11A 14A AB AA

    SPC

    L8

    Route A

    Calculate number

    of trips per land

    plot

    Create route for

    unattended

    demand

    Assign routes to

    every aerial

    tractor

  • http://copa.uniandes.edu.co/ 74

    Transport allocation model

    Introduction Project stages Results

    D

    Calculate number

    of trips per land

    plot

    Create route for

    unattended

    demand

    Assign routes to

    every aerial

    tractor

    Route-A

    Route-B

    Route-C

    On hold

  • http://copa.uniandes.edu.co/ 75

    Transport allocation model

    Introduction Project stages Results

    D

    Route-A

    Route-B

    Route-C

    Local search with

    swap moves

    Discrete-event

    simulation

    Calculate number

    of trips per land

    plot

    Create route for

    unattended

    demand

    Assign routes to

    every aerial

    tractor

    On hold

  • http://copa.uniandes.edu.co/ 76

    Transport allocation model

    Introduction Project stages Results

    D

    Route-A

    Route-B

    Route-C

    Discrete-event

    simulation

    Calculate number

    of trips per land

    plot

    Create route for

    unattended

    demand

    Assign routes to

    every aerial

    tractor

    On hold

    New sequence Time calculation

    Local search with

    swap moves

  • http://copa.uniandes.edu.co/ 77

    Project stages

    Introduction Project stages Results

    Feasible?

    Add constraints

    Amount (kg) of fresh fruit

    to be harvested each day

    Harvest cycle

    model Q

    Transport allocation

    model D

    Discrete-event

    simulation W

    Resource allocation

    model W

    Feasible?

    Add constraints

    Ripeness

    cost

    function

    Yield

    forecast

    Q: Quarterly

    W: Weekly

    D: Daily

    Parameter estimation

    Aerial

    tractor

    order

    Amount (kg) of fresh

    fruit to pick in each

    land plot each day

  • http://copa.uniandes.edu.co/ 78

    Discrete-event simulation

    Introduction Project stages Results

  • http://copa.uniandes.edu.co/ 79

    Discrete-event simulation

    Introduction Project stages Results

  • http://copa.uniandes.edu.co/

    Introduction Project stages

    80

    Discrete-event simulation

    General

    modeling

    Results

    Node types

    Intersection

    Land plot

    X

    X X

    X

    X

    FFB: Fresh fruit bunches

  • http://copa.uniandes.edu.co/

    Node types

    Intersection

    Land plot

    Introduction Project stages

    81

    Discrete-event simulation

    General

    modeling

    Results

    X

    X

    X

    X

    XX

    FFB: Fresh fruit bunches

  • http://copa.uniandes.edu.co/

    Introduction Project stages

    82

    Discrete-event simulation

    General

    modeling

    Results

    Node types

    Intersection

    Land plot

    Aerial tractor

    Transits through the network

    FFB: Fresh fruit bunches

  • http://copa.uniandes.edu.co/

    Introduction Project stages

    83

    Discrete-event simulation

    General

    modeling

    Results

    Node types

    Intersection

    Land plot

    Aerial tractor

    Transits through the network

    Stockpiling center

    FFB: Fresh fruit bunches

  • http://copa.uniandes.edu.co/

    Introduction Project stages

    84

    Discrete-event simulation

    General

    modeling

    Results

    Node types

    Intersection

    Land plot

    Aerial tractor

    Transits through the network

    Stockpiling center

    Entities

    Represent containers of FFB

    Transported by aerial tractors

    FFB: Fresh fruit bunches

  • http://copa.uniandes.edu.co/

    Introduction Project stages

    85

    Discrete-event simulation

    General

    modeling

    Aerial tractors

    Loading time

    Unloading time (workers in

    SPC)

    Time between failures

    Repair Time

    Uncertainty

    Scenarios

    Number of aerial tractors

    Results

    FFB: Fresh fruit bunches

  • http://copa.uniandes.edu.co/ 86

    Project stages

    Introduction Project stages Results

    Feasible?

    Add constraints

    Amount (kg) of fresh fruit

    to be harvested each day

    Harvest cycle

    model Q

    Transport allocation

    model D

    Discrete-event

    simulation W

    Resource allocation

    model W

    Feasible?

    Add constraints

    Ripeness

    cost

    function

    Yield

    forecast

    Q: Quarterly

    W: Weekly

    D: Daily

    Parameter estimation

    Aerial

    tractor

    order

    Amount (kg) of fresh

    fruit to pick in each

    land plot each day

  • http://copa.uniandes.edu.co/

    Introduction Project stages

    87

    Modeling

    logic

    Discrete-event simulation

    Results

    1 2 3 4 5 6 7

    Land

    plo

    ts

    X

    X

    … X …

    X

    X X

    Days

    Inputs

    Harvest cycle

    model

  • http://copa.uniandes.edu.co/

    Introduction Project stages

    88

    Modeling

    logic

    Discrete-event simulation

    Results

    1 2 3 4 5 6 7

    Land

    plo

    ts

    X

    X

    … X …

    X

    X X

    Days

    InputsLand

    plot

    Day 7

    L1 15 ton

    L2 -

    … -

    … 2.5 ton

    LX -

    .. -

    … 20 ton

    L86 -

    L87 10 ton

    Harvest cycle

    model

  • http://copa.uniandes.edu.co/

    Introduction Project stages

    89

    Modeling

    logic

    Discrete-event simulation

    Results

    Containers (daily)

  • http://copa.uniandes.edu.co/

    Containers in land plots

    Number of trips

    Route to land plot

    Introduction Project stages

    90

    Modeling

    logic

    Discrete-event simulation

    Results

  • http://copa.uniandes.edu.co/

    Containers in land plots

    Number of trips

    Route to land plot

    Shortest path between

    SPC and land plot

    How to avoid collisions?

    Introduction Project stages

    91

    Modeling

    logic

    Discrete-event simulation

    Results

  • http://copa.uniandes.edu.co/

    Introduction Project stages

    92

    Modeling

    logic

    Discrete-event simulation

    Results

    Containers in land plots

    Number of trips

    Route to land plot

    Shortest path between

    SPC and land plot

    How to avoid collisions?

  • http://copa.uniandes.edu.co/

    Introduction Project stages

    93

    Modeling

    logic

    Discrete-event simulation

    Results

    Containers in land plots

    Number of trips

    Route to land plot

    Shortest path between

    SPC and land plot

    How to avoid collisions?

  • http://copa.uniandes.edu.co/

    Branch system

    Branch: subset of nodes and paths

    Introduction Project stages

    94

    Discrete-event simulation

    Results

  • http://copa.uniandes.edu.co/

    Introduction Project stages

    95

    Discrete-event simulation

    Results

    X

    XX

    X

    X

    XX

    X

    X27

    3736

    32

    35

    34

    33

    Branch system

    Branch: subset of nodes and paths

  • http://copa.uniandes.edu.co/

    Introduction Project stages

    96

    Discrete-event simulation

    Results

    X

    X

    X

    X44

    43

    38

    Branch system

    Branch: subset of nodes and paths

  • http://copa.uniandes.edu.co/

    Introduction Project stages

    97

    Discrete-event simulation

    Results

    X

    X

    X

    X

    46

    39

    48

    Branch system

    Branch: subset of nodes and paths

  • http://copa.uniandes.edu.co/

    Branch system

    Branch: subset of nodes and paths

    Assumptions

    Only one aerial tractor per branch

    Aerial tractors may park in the origin of a

    branch

    Aerial tractors parked do not block the path

    Introduction Project stages

    98

    Discrete-event simulation

    Results

  • http://copa.uniandes.edu.co/

    Branch system

    Branch: subset of nodes and paths

    Assumptions

    Only one aerial tractor per branch

    Aerial tractors may park in the origin of a

    branch

    Aerial tractors parked do not block the path

    Introduction Project stages

    99

    Discrete-event simulation

    Results

  • http://copa.uniandes.edu.co/

    Branch system

    Branch: subset of nodes and paths

    Assumptions

    Only one aerial tractor per branch

    Aerial tractors may park in the origin of a

    branch

    Aerial tractors parked do not block the path

    Introduction Project stages

    100

    Discrete-event simulation

    Results

  • http://copa.uniandes.edu.co/

    Introduction Project stages

    101

    Modeling

    logic

    Discrete-event simulation

    Results

    Containers in land plots

    Number of trips

    Route to land plot

  • http://copa.uniandes.edu.co/ 102

    Agenda

    Introduction

    Project stages

    Results

  • http://copa.uniandes.edu.co/ 103

    Results

    Introduction Project stages Results

    Feasible?

    Add constraints

    Amount (kg) of fresh fruit

    to be harvested each day

    Amount (kg) of fresh

    fruit to pick in each

    land plot each day

    Harvest cycle

    model Q

    Transport allocation

    model D

    Discrete-event

    simulation W

    Resource allocation

    model W

    Feasible?

    Add constraints

    Ripeness

    cost

    function

    Yield

    forecast

    Parameter estimation

    Q: Quarterly

    W: Weekly

    D: Daily

    Aerial

    tractor

    order

  • http://copa.uniandes.edu.co/ 104

    Results

    Introduction Project stages Trabajo en cursoIntroduction Project stages Results

    Average harvest cycle length: 8.3 days8 tractors

    Land

    plo

    ts

    Day in the quarter(days)

  • http://copa.uniandes.edu.co/ 105

    Results

    Introduction Project stages Trabajo en cursoIntroduction Project stages Results

    Tons collected per day

    8 tractors

    Day

    FF

    B (

    ton)

    0

    50

    100

    150

    200

    20 40 60 80

    (days)

  • http://copa.uniandes.edu.co/ 106

    Results

    Introduction Project stages Trabajo en cursoIntroduction Project stages Results

    8 tractors

    Land

    plo

    ts

    Day in the quarter

    Average harvest cycle length: 10.9 days

    (days)

  • http://copa.uniandes.edu.co/ 107

    Results

    Introduction Project stages Trabajo en cursoIntroduction Project stages Results

    Tons collected per day

    8 tractors

    Day

    0

    50

    100

    150

    20 40 60 80

    FF

    B (

    ton)

    (days)

  • http://copa.uniandes.edu.co/

    Results

    108

    Introduction Project stages Trabajo en cursoIntroduction Project stages Results

    Feasible?

    Add constraints

    Amount (kg) of fresh fruit

    to be harvested each day

    Amount (kg) of fresh

    fruit to pick in each

    land plot each day

    Harvest cycle

    model Q

    Transport allocation

    model D

    Discrete-event

    simulation W

    Resource allocation

    model W

    Feasible?

    Add constraints

    Ripeness

    cost

    function

    Yield

    forecast

    Q: Quarterly

    W: Weekly

    D: Daily

    Parameter estimation

    Aerial

    tractor

    order

  • http://copa.uniandes.edu.co/

    Results

    110

    Introduction Project stages Trabajo en cursoIntroduction Project stages Results

    min

    𝑗∈𝐽

    𝑤𝑗𝑡𝑗𝑒

    Earliness (hours)

  • http://copa.uniandes.edu.co/

    Results

    112

    Introduction Project stages Trabajo en cursoIntroduction Project stages Results

    min

    𝑗∈𝐽

    𝑡𝑗𝑒

    Earliness (hours)

  • http://copa.uniandes.edu.co/

    Results

    113

    min

    𝑗∈𝐽

    𝑡𝑗𝑒

    min

    𝑗∈𝐽

    𝑤𝑗𝑡𝑗𝑒

    0%

    10%

    20%

    30%

    40%

    50%

    60%

    70%

    80%

    90%

    100%

    1 2 3 4 5 6 7 8 9

    Util

    izat

    ion

    Harvest crew

    0%

    10%

    20%

    30%

    40%

    50%

    60%

    70%

    80%

    90%

    100%

    1 2 3 4 5 6 7 8 9

    Util

    izat

    ion

    Harvest crew

  • http://copa.uniandes.edu.co/ 114

    Project stages

    Introduction Project stages Results

    Feasible?

    Add constraints

    Amount (kg) of fresh fruit

    to be harvested each day

    Amount (kg) of fresh

    fruit to pick in each

    land plot each day

    Harvest cycle

    model Q

    Transport allocation

    model D

    Discrete-event

    simulation W

    Resource allocation

    model W

    Feasible?

    Add constraints

    Ripeness

    cost

    function

    Yield

    forecast

    Q: Quarterly

    W: Weekly

    D: Daily

    Parameter estimation

    Aerial

    tractor

    order

  • http://copa.uniandes.edu.co/ 115

    Results - transport

    Introduction Project stages Trabajo en cursoIntroduction Project stages Results

    Tons collected8 tractors

    day 7day 1 day 3

    SPCSPCSPC

  • http://copa.uniandes.edu.co/ 116

    Results - transport

    Introduction Project stages Trabajo en cursoIntroduction Project stages Results

    8 tractors

    1st trip for aerial tractor i

    2nd trip for aerial tractor i

    3rd trip for aerial tractor i

    4th trip for aerial tractor i

    Aerial tractor 1

    Aerial tractor 2

    Aerial tractor 3

    Aerial tractor 4

    Aerial tractor 5

    Aerial tractor 6

    Aerial tractor 7

    Aerial tractor 8

  • http://copa.uniandes.edu.co/ 117

    Results - transport

    Introduction Project stages Trabajo en cursoIntroduction Project stages Results

    Routes for aerial tractor 6

    Land plots visited

  • http://copa.uniandes.edu.co/ 118

    Project stages

    Introduction Project stages Results

    Feasible?

    Add constraints

    Amount (kg) of fresh fruit

    to be harvested each day

    Harvest cycle

    model Q

    Transport allocation

    model D

    Discrete-event

    simulation W

    Resource allocation

    model W

    Feasible?

    Add constraints

    Ripeness

    cost

    function

    Yield

    forecast

    Q: Quarterly

    W: Weekly

    D: Daily

    Parameter estimation

    Aerial

    tractor

    order

    Amount (kg) of fresh

    fruit to pick in each

    land plot each day

  • http://copa.uniandes.edu.co/ 119

    Introduction Project stages Trabajo en cursoIntroduction Project stages Results

    -20%

    -15%

    -10%

    -5%

    0%

    5%

    10%

    15%

    20%

    25%

    30%

    5 6 7 8 9 10 11Cha

    nge

    Amount of aerial tractors

    Tiempo jornal Mallas/hora

    10 hours 60 containers/hour

    Results – uncertainty

    Working day Containers/hour

  • http://copa.uniandes.edu.co/ 120

    Introduction Project stages Trabajo en cursoIntroduction Project stages Results

    0,99%

    0,10%

    -20%

    -15%

    -10%

    -5%

    0%

    5%

    10%

    15%

    20%

    25%

    30%

    5 6 7 8 9 10 11Cha

    nge

    Amount of aerial tractors

    Tiempo jornal Mallas/hora

    Results – uncertainty

    10 hours 60 containers/hour

    Working day Containers/hour

  • http://copa.uniandes.edu.co/ 121

    Introduction Project stages Trabajo en cursoIntroduction Project stages Results

    18,45%

    -11,37%

    -20%

    -15%

    -10%

    -5%

    0%

    5%

    10%

    15%

    20%

    25%

    30%

    5 6 7 8 9 10 11Cha

    nge

    Amount of aerial tractors

    Tiempo jornal Mallas/hora

    Results – uncertainty

    10 hours 60 containers/hour

    Working day Containers/hour

  • http://copa.uniandes.edu.co/ 122

    Introduction Project stages Trabajo en cursoIntroduction Project stages Results

    -3,26%

    16,04%

    -20%

    -15%

    -10%

    -5%

    0%

    5%

    10%

    15%

    20%

    25%

    30%

    5 6 7 8 9 10 11Cha

    nge

    Amount of aerial tractors

    Tiempo jornal Mallas/hora

    Results – uncertainty

    10 hours 60 containers/hour

    Working day Containers/hour

  • http://copa.uniandes.edu.co/ 123

    Introduction Project stages Trabajo en cursoIntroduction Project stages Results

    Results – uncertainty

    60%

    65%

    70%

    75%

    80%

    85%

    90%

    5 6 7 8 9 10 11

    Util

    izat

    ion

    Amount of aerial tractors

    -20%

    -10%

    0%

    10%

    20%

    30%

    5 6 7 8 9 10 11Cha

    nge

    Amount of aerial tractors

    Tiempo jornal Mallas/horaWorking day Containers/hour

  • http://copa.uniandes.edu.co/

    Conclusions

    • We showed the potential of reducing the harvest cycle length from

    19.6 days to 8.3 days.

    • We highlighted the benefits of combining harvest and transport

    planning.

    • We measured the impact on the fruit evacuation metrics under failure

    scenarios.

    • We delivered results in a visual interactive interface to facilitate

    decision-making at the plantation.

    124

  • http://copa.uniandes.edu.co/ 125

    Thank you!

    {m.escallon240, d.castillo1879, ja.leal222, andres.medaglia, copa}@uniandes.edu.co

    http://copa.uniandes.edu.co

    [email protected]

    http://ceo.uniandes.edu.co

    COPA CEO

    http://copa.uniandes.edu.co/https://ceo.uniandes.edu.co/

  • http://copa.uniandes.edu.co/

    Future work

    • Implement the planning in the plantation.

    • Adjust parameters if necessary.

    • Incorporate other activities from the plantation.

    • Integrate the models in a single computational tool that enables

    parameter modifications, model execution and result visualization.

    126