imaging the local transport field of a bi se surface , a

1
Imaging the local transport field of a Bi Se surface 2 3 Acknowledgement References Contact · · · Sebastian Bauer +49 203 379 2558 [email protected] Dr. Christian Bobisch +49 203 379 2558 Prof. Dr. Rolf Möller +49 203 379 4220 [email protected] [email protected] S. Bauer, A. M. Bernhart, M. R. Kaspers, R. Möller, and C. A. Bobisch University of Duisburg-Essen, Faculty of Physics, Lotharstraße 1, Duisburg, Germany a) Motivation: transport in topological insulating surface states sketch of the STP experiment Chemical structure of Bi Se [4] 2 3 line scan through the Bi Se film 2 3 Theoretical band structure of the bulk and of the surface in Bi Se (calculations by Y. Xia et al. ) 2 3 [1] Results O 58.25 Preparation of the Bi Se sample 2 3 Scanning tunneling potentiometry (STP) [2] Outlook V q - + I t STM tip potentiometer contact tip contact tip V mod 1 3 2 I q surface conductor bulk two contact tips apply lateral current to the surface adjusting the potential between STM tip and sample I = 0 (dc-component vanishes) control of the tunneling distance using the ac component of I by modulating the tunneling voltage STP maps topography and potential simultaneously ® á ñ t t chemical structure of Bi Se films rhombohedral structure, can be referred to a hexagonal basis consists of quintuple layers, which are bond covalently within themselves and by van der Waals forces between each other preparation procedure according to Zhang et al. [3] first step: preparation of the Si(111)-( )R30°-Bi reconstruction Si(111)-(7 7) substrat (figure (a)) 3.6 nm Bi deposited at room temperature annealed to 450°C (ca. 20°C/min) Si(111)-( )R30°-Bi (figure (b)) second step: preparation of the Bi Se film coadsorption of Bi and Se with a deposition rate of 0.21 nm/min (Bi) and 0.31 nm/min (Se) the rates of Bi and Se are conform to an atomic ratio of 1:2 (excess of Se as compared to Bi Se bulk) film annealed to 120°C for 5 min Bi Se film (analyzed by LEED and STM) (figure (c)-(f)) nominal film thickness: 4.5 nm (4-5 quintuple layers) high film quality but unknown doping level lattice constant of Bi Se films: 0.41 nm (LEED) (reference [3]: 0.42 nm) height of the quintuple layer: 0.96 0.05 nm (STM) (reference [3]: 0.95 nm) substrate induced steps, Bi Se islands and domain boundaries 2 3 2 3 2 3 2 3 2 3 2 3 ® ® Ö3´Ö3 ® ´ ® ® Þ Ö3´Ö3 ® ® ® ® ® ® ® ± ® topological insulators represent a new class of materials: surface state protected from backscattering scanning tunneling microscopy (STM) to analyze the topographic and electronic structure of Bi Se on the atomic scale analysis of the local transport field with nm spatial resolution by scanning tunneling potentiometry (STP) current through surface states surface vs. bulk conductivity impact of surface defects to the lateral potential variation scattering of electrons at (surface) defects and adsorbates 2 3 ® ® ® ® Au tips as contact probes resistance scales logarithmic vs. tip distance: topography dominated by substrate induced steps applied current of 0.65 mA at 9.6 V electrochemical potential (local transport field) exhibits a gradient of about 43 V/cm (here) additional thermovoltage effects evaluation of the average current density (applied current of 0.54 mA at 9.1 V) electric field current density measurement of the electric field along the dashed line (see SEM image) integral of the current density along the line is equal to the total current average current density of 0.3 A/m ® µ ® ® ® current-to-voltage (IV) characteristic between the contact tips as a function of tip material contact geometry (e.g. metallic islands between contact tip and the Bi Se film) ® ® 2 3 variation of the film thickness / analysis of wedges bulk vs. surface conductivity finite size effects ® ® Resistance of the surface Bi Se 2 3 Potential imaging of the surface Bi Se 2 3 Analysis of transport properties Variation of the sample geometry Scatterers at the surface Bi Se 2 3 LEED pattern for the preparation steps Bi Se film 2 3 Si(111)-( )R30°-Bi Ö3 Ö3 ´ 30 eV Si(111)-(7 7) ´ (a) (f) (c) (e) (d) (b) 30 eV 30 eV [1] [2] [3] [4] H Y. Xia, et al., Nat. Phys. , 398 (2009) P. Muralt and D. Pohl, Appl. Phys. Lett. , 514, (1986) G. Zhang, et al., Appl. Phys. Lett. , 053114 (2009) . Zhang, et al., Nat. Phys. , 438 (2009) [5] F.Yang et al., Phys. Rev. Lett. , 016801 (2012) 5 48 95 5 109 Financial support is granted by the Deutsche Forschungsgemeinschaft (DFG) through the SFB 616 „Energy dissipation at surfaces“ 230 nm 32 nm topography at room temperature, I = 5 pA, U = 1V, 1.1x1.1 μ topography closeup at room temperature I = 5 pA, U = 1V, 160x160 nm² domain boundary 140 120 100 80 60 40 20 0 1.2 1 0.8 0.6 0.4 0.2 0 distance (nm) z (nm) quintuple step tip 1 (Au) tip 2 (Au) 24 μm 54 μm 464 μm 221 μm 105 μm 0 100 200 300 400 500 9 10 11 12 13 14 resistance (k ) W probe spacing (μm) logarithmic fit 280 nm 280 nm topography electrochemical potential 19 mV 0 mV two dimensional conductivity conducting sheet is thinner than probe spacing ® ® -600 -400 -200 0 200 400 600 10 20 30 40 50 60 distance (μm) Lorentzian fit tip 2 tip 1 STP tip electric field (V/cm) 1900μm 50 nm 50 nm 2 2 2 1 Bi Se 2 3 bulk 2 I q Bi Se 2 3 surface V q 2 1 Bi Se 2 3 bulk I q Bi Se 2 3 surface V q epitaxial metallic islands substrate thin film Bi Se 2 3 Bi Se bulk 2 3 substrate thin film Bi Se 2 3 decorated step non-magnetic atom surface defects (magnetic) organic molecules Bi layer [5] e - e - e - e - potential (μV) distance (μm) magnetic atom vacancy sub-surface impurities sub-surface defects domain boundary ternary layer laterally resolved potential / local transport field: ? ? ? e - e - e - substrate substrate induced step surface step Bi Se 2 3 material Bi Se 2 3 http://www.exp.physik.uni-duisburg- essen.de/moeller/uploads/media/ DPG_2013_Poster_BiSe.pdf averaged profile 1.4 1.2 1 0.8 0.6 0.4 0.2 0 6 4 2 0 distance (μm) potential (mV) http://www.exp.physik.uni-duisburg-essen.de/moeller/index.html

Upload: others

Post on 18-Dec-2021

0 views

Category:

Documents


0 download

TRANSCRIPT

Imaging the local transport fieldof a Bi Se surface2 3

Acknowledgement

References Contact

·

·

·

Sebastian Bauer+49 203 379 [email protected]

Dr. Christian Bobisch+49 203 379 2558

Prof. Dr. Rolf Möller+49 203 379 [email protected]

[email protected]

S. Bauer, A. M. Bernhart, M. R. Kaspers, R. Möller, and C. A. Bobisch

University of Duisburg-Essen, Faculty of Physics, Lotharstraße 1, Duisburg, Germany

a)

Motivation: transport in topological insulating surface states

sketch of the STP experiment

Chemical structure of Bi Se [4]2 3

line scan throughthe Bi Se film2 3

Theoretical band structure of the bulk and of the surface inBi Se (calculations by Y. Xia et al. )2 3 [1]

Results

O58.25

Preparation of the Bi Se sample2 3

Scanning tunneling potentiometry (STP)[2]

Outlook

Vq

-+

It

STM tip

potentiometer

contact tip contact tip

Vmod

1

3

2

Iq

surface conductor

bulk

two contact tips apply lateral current to thesurface

adjusting the potential between STM tip andsample

I = 0

(dc-component vanishes)

control of the tunneling distance using the accomponent of I by modulating the tunneling

voltage

STP maps topography and potentialsimultaneously

® á ñt

t

chemical structure of Bi Se films

rhombohedral structure, can be referred to a hexagonal basis

consists of quintuple layers, which are bond covalently withinthemselves and by van der Waals forces between each other

preparation procedure according to Zhang et al. [3]

first step: preparation of the Si(111)-( )R30°-Bi reconstruction

Si(111)-(7 7) substrat (figure (a))

3.6 nm Bi deposited at room temperature

annealed to 450°C (ca. 20°C/min)

Si(111)-( )R30°-Bi (figure (b))

second step: preparation of the Bi Se film

coadsorption of Bi and Se with a deposition rate of0.21 nm/min (Bi) and 0.31 nm/min (Se)

the rates of Bi and Se are conform to an atomic ratio of 1:2(excess of Se as compared to Bi Se bulk)

film annealed to 120°C for 5 min

Bi Se film (analyzed by LEED and STM) (figure (c)-(f))

nominal film thickness: 4.5 nm (4-5 quintuple layers)

high film quality but unknown doping level

lattice constant of Bi Se films: 0.41 nm (LEED)

(reference [3]: 0.42 nm)

height of the quintuple layer: 0.96 0.05 nm (STM)(reference [3]: 0.95 nm)

substrate induced steps, Bi Se islands and domain boundaries

2 3

2 3

2 3

2 3

2 3

2 3

®®

Ö3´Ö3® ´®®

Þ Ö3´Ö3

®

®

®

®®®

® ±

®

topological insulators represent a new classof materials: surface state protected frombackscattering

scanning tunneling microscopy (STM) toanalyze the topographic and electronicstructure of Bi Se on the atomic scale

analysis of the local transport field withnm spatial resolution by scanning tunnelingpotentiometry (STP)

current through surface states

surface vs. bulk conductivity

impact of surface defects to thelateral potential variation

scattering of electrons at (surface)defects and adsorbates

2 3

®®®

®�

Au tips as contact probes

resistance scales logarithmic vs. tip distance:

topography dominated by substrate inducedsteps

applied current of 0.65 mA at 9.6 V

electrochemical potential (local transport field)exhibits a gradient of about 43 V/cm (here)

additional thermovoltage effects

evaluation of the average current density(applied current of 0.54 mA at 9.1 V)

electric field current density

measurement of the electric field along thedashed line (see SEM image)

integral of the current density along the lineis equal to the total current

average current density of 0.3 A/m

® µ®

®

®

� current-to-voltage (IV) characteristic betweenthe contact tips as a function of

tip material

contact geometry (e.g. metallic islandsbetween contact tip and the Bi Se film)

®®

2 3

� variation of the film thickness / analysis of

wedges bulk vs. surface conductivity

finite size effects

®®

Resistance of the surfaceBi Se2 3

Potential imaging of the surfaceBi Se2 3

Analysis of transport properties

Variation of the sample geometry

Scatterers at the surfaceBi Se2 3

LEED pattern for the preparation steps

Bi Se film2 3

Si(111)-( )R30°-BiÖ3 Ö3´

30 eV

Si(111)-(7 7)´

(a) (f)

(c)

(e)(d)

(b)

30 eV

30 eV

[1][2][3][4] H

Y. Xia, et al., Nat. Phys. , 398 (2009)P. Muralt and D. Pohl, Appl. Phys. Lett. , 514, (1986)G. Zhang, et al., Appl. Phys. Lett. , 053114 (2009)

. Zhang, et al., Nat. Phys. , 438 (2009)[5] F. Yang et al., Phys. Rev. Lett. , 016801 (2012)

548

955

109

Financial support is granted by the Deutsche Forschungsgemeinschaft(DFG) through the SFB 616 „Energy dissipation at surfaces“

230 nm 32 nm

topography at room temperature,I = 5 pA, U = 1V, 1.1x1.1 m²μ

topography closeup at room temperatureI = 5 pA, U = 1V, 160x160 nm²

domain boundary

140120100806040200

1.2

1

0.8

0.6

0.4

0.2

0

distance (nm)

z (

nm

)

quintuplestep

tip 1 (Au)

tip2

(Au)

24 µm 54 µm 464 µm221 µm105 µm

0 100 200 300 400 500

9

10

11

12

13

14

resis

tance (

k)

W

probe spacing (µm)

logarithmic fit

280 nm 280 nm

topography electrochemical potential

19 mV 0 mV

two dimensional conductivity

conducting sheet is thinner than probe spacing

®®

-600 -400 -200 0 200 400 60010

20

30

40

50

60

distance (µm)

Lorentzian fit

tip 2

tip 1

STP tip

ele

ctr

ic fie

ld (

V/c

m)

1900µm

50 nm 50 nm

2 2 21

Bi Se2 3 bulk

2

Iq

Bi Se2 3 surface

Vq

21

Bi Se2 3 bulk

Iq

Bi Se2 3 surface

Vq

epitaxialmetallicislands

substrate

thin filmBi Se2 3

Bi Se bulk2 3 substrate

thin filmBi Se2 3

decorated stepnon-magnetic atom

surfacedefects

(magnetic) organic molecules

Bi layer [5]

e-

e-

e-

e-

pote

ntial (µ

V) distance (µm)

magnetic atom

vacancysub-surfaceimpurities

sub-surfacedefects

domainboundary

ternarylayer

laterally resolvedpotential /local transportfield:

? ? ?

e-e

-

e-

substrate

substrateinduced

stepsurfacestep

Bi Se2 3 material

Bi Se2 3

http://www.exp.physik.uni-duisburg-essen.de/moeller/uploads/media/

DPG_2013_Poster_BiSe.pdf

averaged profile

1.41.210.80.60.40.20

6

4

2

0

distance (µm)

pote

ntial (m

V)

http://www.exp.physik.uni-duisburg-essen.de/moeller/index.html