illustrations the transfer function of linear systems

72
llustrations The Transfer Function of Linear Systems V 1 s () R 1 Cs Is () Z 1 s () R Z 2 s () 1 Cs V 2 s () 1 Cs Is () V 2 s () V 1 s () 1 Cs R 1 Cs Z 2 s () Z 1 s () Z 2 s ()

Post on 22-Dec-2015

217 views

Category:

Documents


0 download

TRANSCRIPT

Illustrations

The Transfer Function of Linear Systems

V1 s( ) R1

Cs

I s( ) Z1 s( ) R

Z2 s( )1

CsV2 s( )1

Cs

I s( )

V2 s( )

V1 s( )

1

Cs

R1

Cs

Z2 s( )

Z1 s( ) Z2 s( )

Illustrations

The Transfer Function of Linear Systems

Example 2.2

2ty t( )d

d

24

ty t( )d

d 3 y t( ) 2 r t( )

Initial Conditions: Y 0( ) 1ty 0( )d

d0 r t( ) 1

The Laplace transform yields:

s2 Y s( ) s y 0( ) 4 s Y s( ) y 0( )( ) 3Y s( ) 2 R s( )

Since R(s)=1/s and y(0)=1, we obtain:

Y s( )s 4( )

s2 4s 3 2

s s2 4s 3

The partial fraction expansion yields:

Y s( )

3

2

s 1( )

12

s 3( )

1s 1( )

1

3

s 3( )

2

3

s

Therefore the transient response is:

y t( )3

2e t

1

2e 3 t

1 e t 1

3e 3 t

2

3

The steady-state response is:

ty t( )lim

2

3

Illustrations

The Transfer Function of Linear Systems

i

o

i

o

i

o

Z

Z

V

V

R

R

IR

IR

V

V

1

2

1

2

Illustrations

The Transfer Function of Linear Systems

Illustrations

)/)(/1(/1/1

1

/1/1

/10

0

/1

0

00

/1

0

121121

1

21

1

1

22

2

2

1

21

1

12

2

1

1

1

vvRRRsCr

v

LssCR

R

v

v

Ls

v

sC

v

R

vv

R

vv

R

v

sC

vr

Illustrations

R

XFind

))((

1

R

X

))(()(

)(

)(

)(

)(

2

1122

12

1

2

1122

12

121212

211

12

112112

1112112

21

2

1

1

12

2

2

1

22

22112

222112

22

2

2

sbsbsbsMX

X

sbsbsbsMX

XXsbXsbsbsMXR

XsMRsXsXbsXb

xMRxxbxb

dt

xdMF

sb

sbksM

X

X

XsMsXsXbkX

xMxxbkxdt

xdMF

Illustrations

The Transfer Function of Linear Systems

Illustrations

The Transfer Function of Linear Systems

Illustrations

Kf if

Tm K1 Kf if t( ) ia t( )

field controled motor - Lapalce Transform

Tm s( ) K1 Kf Ia If s( )

Vf s( ) Rf Lf s If s( )

Tm s( ) TL s( ) Td s( )

TL s( ) J s2 s( ) b s s( )

rearranging equations

TL s( ) Tm s( ) Td s( )

Tm s( ) Km If s( )

If s( )Vf s( )

Rf Lf s

The Transfer Function of Linear Systems

Td s( ) 0

s( )

Vf s( )

Km

s J s b( ) Lf s Rf

Ia = constant, controlling using if

2

)(

JsBsTT

JBTTF

JsBwJswBwTT

wJBwTT

wJBwTT

wJJJT

dm

dm

dm

dm

dm

BsJs

k

sLRTI

Tm

v

I

vm

ffmff

f

f

2

1*

1*

1**

Illustrations

The Transfer Function of Linear Systems

Illustrations

The Transfer Function of Linear Systems

Illustrations

The Transfer Function of Linear Systems

Illustrations

The Transfer Function of Linear Systems

Illustrations

The Transfer Function of Linear Systems

V 2 s( )

V 1 s( )

1RCs

V 2 s( )

V 1 s( )RCs

Illustrations

The Transfer Function of Linear Systems

V 2 s( )

V 1 s( )

R 2 R 1 C s 1 R 1

V 2 s( )

V 1 s( )

R 1 C 1 s 1 R 2 C 2 s 1 R 1 C 2 s

Illustrations

The Transfer Function of Linear Systems

s( )

V f s( )

K m

s J s b( ) L f s R f

s( )

V a s( )

K m

s R a L a s J s b( ) K b K m

Illustrations

The Transfer Function of Linear Systems

Vo s( )

Vc s( )

K

Rc Rq

s c 1 s q 1

c

Lc

Rc

q

Lq

Rq

For the unloaded case:

id 0 c q

0.05s c 0.5s

V12 Vq V34 Vd

s( )

Vc s( )

Km

s s 1

J

b m( )

m = slope of linearized torque-speed curve (normally negative)

Illustrations

The Transfer Function of Linear SystemsY s( )

X s( )

K

s Ms B( )

KA kx

kp

B bA2

kp

kxx

gd

dkp

Pgd

dg g x P( ) flow

A = area of piston

Gear Ratio = n = N1/N2

N2 L N1 m

L n m

L n m

Illustrations

The Transfer Function of Linear Systems

V2 s( )

V1 s( )

R2

R

R2

R1 R2

R2

R

max

V2 s( ) ks 1 s( ) 2 s( ) V2 s( ) ks error s( )

ks

Vbattery

max

Illustrations

The Transfer Function of Linear Systems

V2 s( ) Kt s( ) Kt s s( )

Kt constant

V2 s( )

V1 s( )

ka

s 1

Ro = output resistanceCo = output capacitance

Ro Co 1s

and is often negligible for controller amplifier

Illustrations

The Transfer Function of Linear Systems

T s( )

q s( )

1

Ct s Q S1

R

T To Te = temperature difference due to thermal process

Ct = thermal capacitance= fluid flow rate = constant= specific heat of water= thermal resistance of insulation= rate of heat flow of heating element

QSRt

q s( )

xo t( ) y t( ) xin t( )

Xo s( )

Xin s( )

s2

s2 b

M

sk

M

For low frequency oscillations, where n

Xo j Xin j

2

k

M

Illustrations

The Transfer Function of Linear Systems

x r

converts radial motion to linear motion

Illustrations

Block Diagram Models

Illustrations

Block Diagram Models

Illustrations

Block Diagram Models

Original Diagram Equivalent Diagram

Original Diagram Equivalent Diagram

Illustrations

Block Diagram Models

Original Diagram Equivalent Diagram

Original Diagram Equivalent Diagram

Illustrations

Block Diagram Models

Original Diagram Equivalent Diagram

Original Diagram Equivalent Diagram

Illustrations

Block Diagram Models

GH

G

R

Y

YGYHR

1

)(

Illustrations

Block Diagram Models

Example 2.7

431322432131

4321

43)1)2)2)4/()1)3(((((

GGHGGHGGGGH

GGGG

R

Y

YGGYHGHGYGYHR

..)21(1( LiLjLkiLjLLL

PD

R

Y

Illustrations

Block Diagram Models Example 2.7

Illustrations

Signal-Flow Graph Models

For complex systems, the block diagram method can become difficult to complete. By using the signal-flow graph model, the reduction procedure (used in the block diagram method) is not necessary to determine the relationship between system variables.

Illustrations

Signal-Flow Graph Models

Y1 s( ) G11 s( ) R1 s( ) G12 s( ) R2 s( )

Y2 s( ) G21 s( ) R1 s( ) G22 s( ) R2 s( )

Illustrations

Signal-Flow Graph Models

a11 x1 a12 x2 r1 x1

a21 x1 a22 x2 r2 x2

Illustrations

Signal-Flow Graph Models

Example 2.8

Y s( )

R s( )

G 1 G 2 G 3 G 4 1 L 3 L 4 G 5 G 6 G 7 G 8 1 L 1 L 2

1 L 1 L 2 L 3 L 4 L 1 L 3 L 1 L 4 L 2 L 3 L 2 L 4

..)21(1( LiLjLkiLjLLL

PD

R

Y

Illustrations

Signal-Flow Graph Models

Example 2.10

db

ab

dd

aa

TGGks

GV

GGks

GG

TT

VV

21

2

21

21

1

1

1

1

Illustrations

Illustrations

Signal-Flow Graph Models

Y s( )

R s( )

P1 P2 2 P3

P1 G1 G2 G3 G4 G5 G6 P2 G1 G2 G7 G6 P3 G1 G2 G3 G4 G8

1 L1 L2 L3 L4 L5 L6 L7 L8 L5 L7 L5 L4 L3 L4

1 3 1 2 1 L5 1 G4 H4

Illustrations

Design Examples

Illustrations

Speed control of an electric traction motor.

Design Examples

Illustrations

Design Examples

Illustrations

Design Examples

Illustrations

Design Examples

Illustrations

Design Examples

Illustrations

The Simulation of Systems Using MATLAB

Illustrations

The Simulation of Systems Using MATLAB

Illustrations

The Simulation of Systems Using MATLAB

Illustrations

The Simulation of Systems Using MATLAB

Illustrations

The Simulation of Systems Using MATLAB

Illustrations

The Simulation of Systems Using MATLAB

Illustrations

The Simulation of Systems Using MATLAB

Illustrations

The Simulation of Systems Using MATLAB

Illustrations

The Simulation of Systems Using MATLAB

Illustrations

The Simulation of Systems Using MATLAB

Illustrations

The Simulation of Systems Using MATLAB

Illustrations

The Simulation of Systems Using MATLAB

Illustrations

The Simulation of Systems Using MATLAB

Illustrations

The Simulation of Systems Using MATLAB

Illustrations

The Simulation of Systems Using MATLAB

Illustrations

The Simulation of Systems Using MATLAB

Illustrations

error

The Simulation of Systems Using MATLAB

Sys1 = sysh2 / sysg4

Illustrations

The Simulation of Systems Using MATLAB

Illustrations

error

The Simulation of Systems Using MATLAB

Num4=[0.1];

Illustrations

The Simulation of Systems Using MATLAB

Illustrations

The Simulation of Systems Using MATLAB

Illustrations

Sequential Design Example: Disk Drive Read System

Illustrations

Sequential Design Example: Disk Drive Read System

Illustrations

=

Sequential Design Example: Disk Drive Read System

Illustrations

P2.11

Illustrations

1

L c s R c

Vc

Ic

K1

1

L q s R q

Vq

K2

K3-Vb

+Vd

Km

Id

1

L d L a s R d R a

Tm

1

J s b

1

s

P2.11

Illustrations

Illustrations

http://www.jhu.edu/%7Esignals/sensitivity/index.htm

Illustrations

http://www.jhu.edu/%7Esignals/