iii. multicore processors (5)

46
III. Multicore Processors (5) Dezső Sima Spring 2007 (Ver. 2.0) Dezső Sima, 2007

Upload: taya

Post on 14-Jan-2016

39 views

Category:

Documents


0 download

DESCRIPTION

III. Multicore Processors (5). Dezső Sima Spring 2007. (Ver. 2.0).  Dezső Sima, 2007. 10.3 IBM’s MC processors. 10.3.1 POWER line. 10.3.2 Cell BE. 10.3 IBM’s MC processors. 10.3.1 POWER line. POWER4. 180 nm. 10 /200 1. 130 nm. POWER4+. 11 /200 2. POWER5. 130 nm. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: III. Multicore Processors (5)

III. Multicore Processors (5)

Dezső Sima

Spring 2007

(Ver. 2.0) Dezső Sima, 2007

Page 2: III. Multicore Processors (5)

• 10.3.1 POWER line

• 10.3.2 Cell BE

10.3 IBM’s MC processors

Page 3: III. Multicore Processors (5)

10.3 IBM’s MC processors

• POWER4 180 nm10/2001• POWER4+ 130 nm11/2002

10.3.1 POWER line

• POWER5 130 nm 5/2004

• POWER5+ 90 nm10/2005• POWER6 65 nm2007

Page 4: III. Multicore Processors (5)

Figure: The evolution of IBM’s major RISC lines

92 93 94 95 96 97 98 999190 02 030100 04 058988

OS/400

Commercial computing

IMPI/48

AIX

Technical computing

PowerPC/32

PowerPC AS/64

PowerPC/64

POWER/32

A10 A30

A50 Pulsar SStar

601 604 604e

POWER POWER2

Power3

Power3-II

P2SC

AS/400 e-Server iSeries

RS/6000 e-Server pSeries

(Scalar CISC)

(~2.G. superscalar)

(~1.G. superscalar)

(3.G. superscalar)

(3.G. superscalar)

(1.-2.G. superscalar)

Upwards binary compatible extension

Transition

Derived from

Northstar SStar

POWER4 POWER5

PowerPC/64 ext.

PowerPC AS/64 ext.(1.G. superscalar)

PSC

AS/400-line

06 07

POWER4+ POWER5+

POWER6

10.3.1 Evolution of IBM’s major RISC lines

Page 5: III. Multicore Processors (5)

Figure : POWER4 chip logical view

Built-In-SelfTest

Service Processor

Power On Reset

Core interface Unit(crossbar)

Non-CacheableUnit

MultiChip Module

10.3.1 POWER4 (1)

Tendler, J.M., Dodson, S., Fields S., Le H., Sinharoy B.: Power4 System Microarchitecture,, IBM J. Res. & Dev. Vol. 46, No. 1, Jan. 2002, pp. 5-25,

http://www.research.ibm.com/journal/rd/461/tendler.pdf

Page 6: III. Multicore Processors (5)

Source: Power4 System Microarchitecture, Technical White Paper, 2001, IBM Corp., http://www-03.ibm.com/servers/eserver/pseries/hardware/whitepapers/power4.pdf

Figure: Logical view of the L3 controller

10.3.1 POWER4 (2)

Page 7: III. Multicore Processors (5)

Figure: The memory cotroller of the POWER4

Source: Power4 System Microarchitecture, Technical White Paper, 2001, IBM Corp., http://www-03.ibm.com/servers/eserver/pseries/hardware/whitepapers/power4.pdf

10.3.1 POWER4 (3)

Page 8: III. Multicore Processors (5)

Figure: I/O controller of the POWER4

Source: Power4 System Microarchitecture, Technical White Paper, 2001, IBM Corp., http://www-03.ibm.com/servers/eserver/pseries/hardware/whitepapers/power4.pdf

Fabric Controller

10.3.1 POWER4 (4)

Page 9: III. Multicore Processors (5)

Figure: POWER4 chip

Source: R. Kalla, B. Sinharoy, J. Tendler: Simultaneous Multi-threading Implementation in Power5 – IBM’s Next Generation POWER Microprocessor, 2003

http://www.hotchips.org/archives/hc15/3_Tue/11.ibm.pdf

10.3.1 POWER4 (5)

Page 10: III. Multicore Processors (5)

10.3.1 POWER4 (6)

Table: Main features of IBM’s dual-core POWER line

Off-chipMem. contr.

L3

L21.44 MB/sharedSize/allocation

On-chipImplementation

32 MBSize

32 MB

Tags on-chip

SCM1/MCM2

115/125

Tags on-chip, data off-chip

1.3

174 mtrs

412 mm2

180 nm

10/2001

DC

POWER4

L3 size

L3 impl.

Power management

Dual threaded

Packaging

TDP [W]

Implementation

fc [GHz]

Nr. of transistors

Die size

Technology

Introduced

Dual/Quad-Core

POWER line

1 SMC: Single Chip Module2 MCM: Multi Chip Module3 DCM: Dual Chip Module

4 DCM: Dual Core Module5 QCM: Quad Core Module6 DPM: Dynamic Power Management

Page 11: III. Multicore Processors (5)

10.3.2 POWER4+ (1)

Figure: New features of the POWER5+

Source: Grassl C., „New IBM Components for HPCx”, Dec. 2003,http://www.hpcx.ac.uk/about/events/annual2003/Grassl.pdf

Page 12: III. Multicore Processors (5)

10.3.1 POWER4+ (2)

Table: Main features of IBM’s dual-core POWER line

On-chipOff-chipMem. contr.

L3

L21.5 MB/shared1.44 MB/sharedSize/allocation

On-chipOn-chipImplementation

32 MB32 MBSize

SCM1/MCM2

70

1.7

184 mtrs

380 mm2

130 nm

11/2002

DC

POWER4+

32 MB

Tags on-chip

SCM1/MCM2

115/125

Tags on-chip, data off-chip

1.3

174 mtrs

412 mm2

180 nm

10/2001

DC

POWER4

L3 size

L3 impl.

Power management

Dual threaded

Packaging

TDP [W]

Implementation

fc [GHz]

Nr. of transistors

Die size

Technology

Introduced

Dual/Quad-Core

POWER line

1 SMC: Single Chip Module2 MCM: Multi Chip Module3 DCM: Dual Chip Module

4 DCM: Dual Core Module5 QCM: Quad Core Module6 DPM: Dynamic Power Management

Page 13: III. Multicore Processors (5)

Figure 5.14: Contrasting POWER4 and POWER5 system structures

Source:Barney B., „IBM POWER Systems Overview”, Livermore Computing, 2006, http://www.llnl.gov/computing/tutorials/ibm_sp/

10.3.1 POWER5 (1)

Page 14: III. Multicore Processors (5)

Figure: Block diagram of the POWER5 (1)

Source:Barney B., „IBM POWER Systems Overview”, Livermore Computing, 2006, http://www.llnl.gov/computing/tutorials/ibm_sp/

10.3.1 POWER5 (2)

Page 15: III. Multicore Processors (5)

http://studies.ac.upc.edu/ETSETB/SEGPAR/microprocessors/power5%20(2)%20(mpr).pdf

Figure: Block diagram of the POWER5 (2)

10.3.1 POWER5 (3)

Page 16: III. Multicore Processors (5)

10.3.1 POWER5 (4)

Figure: Floorplan of the POWER5

Source: Shinharoy B., Kalla R.N., Tendler J.M., Eickenmeyer R.J., Joyner J.B., „POWER5 system microarchitecture,” IBM J. R&D, Vol. 49, No. 4/5, 2005, pp. 505-521

Page 17: III. Multicore Processors (5)

POWER4 POWER5

180 nm, 412 mm2 130 nm, 389 mm2 (enlarged)

10.3.1 POWER5 (6)

Figure: Contrasting the floor plans of the POWER4 and POWER5 dies

Shinharoy B., Kalla R.N., Tendler J.M., Eickenmeyer R.J., Joyner J.B., „POWER5 system microarchitecture,” IBM J. R&D, Vol. 49, No. 4/5, 2005, pp. 505-521

Sources: R. Kalla, B. Sinharoy, J. Tendler: Simultaneous Multi-threading Implementation in Power5 – IBM’s Next Generation POWER Microprocessor, 2003http://www.hotchips.org/archives/hc15/3_Tue/11.ibm.pdf

Page 18: III. Multicore Processors (5)

Figure: Packaging alternatives of the POWER4/5 processors

Source: Partridge R. and Ghatpande S., IBM Introduces POWER5+ and Quad-Core Modules in System p5,” Tech Trends Monthly, Nov./Dec. 2005,

POWER5+Dual-Core Module

10.3.1 POWER5 (7)

Page 19: III. Multicore Processors (5)

POWER4 MCM Photo 32-way System Showing 4 MCMs and L3 Cache

                                     

                                          

                                    

Figure: Quad–Chip POWER4 module (MCM) and a 32-way POWER4 system

Source:Barney B., „IBM POWER Systems Overview”, Livermore Computing, 2006, http://www.llnl.gov/computing/tutorials/ibm_sp/

10.3.1 POWER5 (8)

Page 20: III. Multicore Processors (5)

Source:Barney B., „IBM POWER Systems Overview”, Livermore Computing, 2006, http://www.llnl.gov/computing/tutorials/ibm_sp/

Figure: Interpretation of Dual-Chip Modules (DCMs) and Multi-Chip Modules (MCM) of the POWER5

10.3.1 POWER5 (9)

Page 21: III. Multicore Processors (5)

Source:Barney B., „IBM POWER Systems Overview”, Livermore Computing, 2006, http://www.llnl.gov/computing/tutorials/ibm_sp/

Figure: Photos of Dual-Chip Modules (DCMs) and Multi-Chip Modules (MCM) of the POWER5

10.3.1 POWER5 (10)

Page 22: III. Multicore Processors (5)

Source: Kalla R., „IBM’s POWER5 Microprocessor Design and Methodology,” 2003,www-csl.csres.utexas.edu/users/billmark/teach/cs352-05-spring/lectures/Lecture22-RonKallaIBM.pdf

Figure: The Multi-chip module of the POWER5

10.3.1 POWER5 (11)

Page 23: III. Multicore Processors (5)

10.3.1 POWER5 (12)

Table: Main features of IBM’s dual-core POWER line

On-chipOn-chipOff-chipMem. contr.

L3

L21.9 MB/shared1.5 MB/shared1.44 MB/sharedSize/allocation

On-chipOn-chipOn-chipImplementation

36 MB32 MB32 MBSize

36 MB

Tags on-chip

DPM6

DCM3/MCM2

80 (est)

1.65/1.9

276 mtrs

389 mm2

130 nm

5/2004

DC

POWER5

SCM1/MCM2

70

1.7

184 mtrs

380 mm2

130 nm

11/2002

DC

POWER4+

32 MB

Tags on-chip

SCM1/MCM2

115/125

Tags on-chip, data off-chip

1.3

174 mtrs

412 mm2

180 nm

10/2001

DC

POWER4

L3 size

L3 impl.

Power management

Dual threaded

Packaging

TDP [W]

Implementation

fc [GHz]

Nr. of transistors

Die size

Technology

Introduced

Dual/Quad-Core

POWER line

1 SMC: Single Chip Module2 MCM: Multi Chip Module3 DCM: Dual Chip Module

4 DCM: Dual Core Module5 QCM: Quad Core Module6 DPM: Dynamic Power Management

Page 24: III. Multicore Processors (5)

Source: Vetter S. et al., IBM System p5 Quad-Core Module Based on POWER5+ Technology,” Redbooks paper, IBM Corp. 2006, http://www.redbooks.ibm.com/redpapers/pdfs/redp4150.pdf

Figure: Block diagram of the POWER5+

10.3.1 POWER5+ (1)

Page 25: III. Multicore Processors (5)

Figure: Dual-Core Modules (DCMs) and Quad-Core Modules (QCM) of the POWER5+

Source: Vetter S. et al., IBM System p5 Quad-Core Module Based on POWER5+ Technology,” Redbooks paper, IBM Corp. 2006, http://www.redbooks.ibm.com/redpapers/pdfs/redp4150.pdf

10.3.1 POWER5+ (2)

Page 26: III. Multicore Processors (5)

10.3.1 POWER5+ (3)

Table: Main features of IBM’s dual-core POWER line

On-chipOn-chipOn-chipOff-chipMem. contr.

L3

L21.9 MB/shared1.9 MB/shared1.5 MB/shared1.44 MB/sharedSize/allocation

On-chipOn-chipOn-chipOn-chipImplementation

36 MB36 MB32 MB32 MBSize

36 MB

Tags on-chip

DPM6

DCM3/MCM2

80 (est)

1.65/1.9

276 mtrs

389 mm2

130 nm

5/2004

DC

POWER5

SCM1/MCM2

70

1.7

184 mtrs

380 mm2

130 nm

11/2002

DC

POWER4+

32 MB

Tags on-chip

SCM1/MCM2

115/125

Tags on-chip, data off-chip

1.3

174 mtrs

412 mm2

180 nm

10/2001

DC

POWER4

36 MB

Tags on-chip

DPM6

DCM4/QCM5

70

1.92

276 mtrs

230 mm2

90 nm

10/2005

DC

POWER5+

L3 size

L3 impl.

Power management

Dual threaded

Packaging

TDP [W]

Implementation

fc [GHz]

Nr. of transistors

Die size

Technology

Introduced

Dual/Quad-Core

POWER line

10.3

1 SMC: Single Chip Module2 MCM: Multi Chip Module3 DCM: Dual Chip Module

4 DCM: Dual Core Module5 QCM: Quad Core Module6 DPM: Dynamic Power Management

Page 27: III. Multicore Processors (5)

POWER6 POWER5+

Figure: Contrasting the block diagrams of the POWER5 and POWER6 processors

Source: Kanter D., „IBM Previews the Power6,” Oct. 2006, [email protected]

Hardware support of decimal arithmetic

10.3.1 POWER6 (1)

Page 28: III. Multicore Processors (5)

10.3.1 POWER6 (2)

Table: Main features of IBM’s dual-core POWER line

On-chipOn-chipOn-chipOff-chipMem. contr.

L3

L22*4 MB/private1.9 MB/shared1.9 MB/shared1.5 MB/shared1.44 MB/sharedSize/allocation

On-chipOn-chipOn-chipOn-chipOn-chipImplementation

64 MB?36 MB36 MB32 MB32 MBSize

36 MB

Tags on-chip

DPM6

DCM3/MCM2

80 (est)

1.65/1.9

276 mtrs

389 mm2

130 nm

5/2004

DC

POWER5

SCM1/MCM2

70

1.7

184 mtrs

380 mm2

130 nm

11/2002

DC

POWER4+

32 MB

Tags on-chip

SCM1/MCM2

115/125

Tags on-chip, data off-chip

1.3

174 mtrs

412 mm2

180 nm

10/2001

DC

POWER4

36 MB

Tags on-chip

DPM6

DCM4/QCM5

70

1.92

276 mtrs

230 mm2

90 nm

10/2005

DC

POWER5+

32 MBL3 size

Tags on-chipL3 impl.

n.a.Power management

Dual threaded

n.a.Packaging

~100TDP [W]

Implementation

4-5fc [GHz]

750 mtrsNr. of transistors

341 mm2Die size

65 nmTechnology

2007Introduced

DCDual/Quad-Core

POWER6POWER line

1 SMC: Single Chip Module2 MCM: Multi Chip Module3 DCM: Dual Chip Module

4 DCM: Dual Core Module5 QCM: Quad Core Module6 DPM: Dynamic Power Management

Page 29: III. Multicore Processors (5)

10.3 IBM’s MC processors

• Cell BE 90 nm2/2006

10.3.2 Cell BE

Page 30: III. Multicore Processors (5)

Hofstee H. P., „Cell today and tomorrow,” 2005, http://www.stanford.edu/class/ee380/Abstracts/Cell_060222.pdf

Sources: Brochard L., A Cell History,” Cell Workshop, April, 2006 http://www.irisa.fr/orap/Constructeurs/Cell/Cell%20Short%20Intro%20Luigi.pdf

Figure: The history and development cost of the Cell BE

10.3.2 Cell BE (1)

Page 31: III. Multicore Processors (5)

AUC: Atomic Update Cache

BIC: Bus Interface Contr.

EIB: Element Interface Bus

LS: Local Store of 256 KB

MFC: Memory Flow Controller

MIC: Memory Interface Contr.

PPE: Power Processing Element

PXU: POWER Execution Unit

SMF: Synergistic Memory Flow

Unit

SPU: Synergistic Processor Unit

SXU: Synergistic Execution Unit

XDR: Rambus DRAM

Source: Gshwind M., „Chip Multiprocessing and the Cell BE,” ACM Computing Frontiers, 2006, http://beatys1.mscd.edu/compfront//2006/cf06-gschwind.pdf

Figure: Block diagram of the Cell BE

10.3.2 Cell BE (2)

Page 32: III. Multicore Processors (5)

PPE: dual-threaded > 200 GFLOPS (SP) > 20 GFLOPS (DP) > 25 GB/s memory BW > 75 GB/s I/O BW > 300 GB/s EIB BW fc > 4 GHz (lab)

publib.boulder.ibm.com/.../stgv1r0/topic/com.ibm.iea.cbe/cbe/1.0/Overview/L1T1H1_02_CellOverview.pdf Source: IBM „Cell Broadband Engine Overview,” Course Code L1T1H1-02, Mai 2006

Figure: Main design parameters of the Cell BE

10.3.2 Cell BE (3)

Design parameters of the Cell BE:

Page 33: III. Multicore Processors (5)

Figure 5.16: Cell SPE architecture

Source: Blachford N.: „Cell Architecture Explained Version 2”, http://www.blachford.info/computer/Cell/Cell1_v2.html

10.3.2 Cell BE (4)

Page 34: III. Multicore Processors (5)

Source: Gshwind M., „Chip Multiprocessing and the Cell BE,” ACM Computing Frontiers, 2006, http://beatys1.mscd.edu/compfront//2006/cf06-gschwind.pdf

Figure: Block diagram of the SPE

10.3.2 Cell BE (5)

Page 35: III. Multicore Processors (5)

Source: Gshwind M., „Chip Multiprocessing and the Cell BE,” ACM Computing Frontiers, 2006, http://beatys1.mscd.edu/compfront//2006/cf06-gschwind.pdf

Figure: Pipeline stages of the Cell BE

10.3.2 Cell BE (6)

Page 36: III. Multicore Processors (5)

Source: Gshwind M., „Chip Multiprocessing and the Cell BE,” ACM Computing Frontiers, 2006, http://beatys1.mscd.edu/compfront//2006/cf06-gschwind.pdf

Figure: Floor plan of a single SPE

10.3.2 Cell BE (7)

Page 37: III. Multicore Processors (5)

Source: Keable C., „And we also have hardware...” 17th Machine Evaluation Workshop, Dec. 2006, http://www.cse.clrc.ac.uk/disco/mew17/talks/Keable_IBM_MEW17.pdf

Principle of operation of the Element Interface Bus (EIB)

10.3.2 Cell BE (8)

Page 38: III. Multicore Processors (5)

Source: Gshwind M., „Chip Multiprocessing and the Cell BE,” ACM Computing Frontiers, 2006, http://beatys1.mscd.edu/compfront//2006/cf06-gschwind.pdf

Figure: The Element Interface Bus EIB)

10.3.2 Cell BE (9)

Page 39: III. Multicore Processors (5)

Figure: The Synergistic Memory Flow unit (SMF)

Source: Gshwind M., „Chip Multiprocessing and the Cell BE,” ACM Computing Frontiers, 2006, http://beatys1.mscd.edu/compfront//2006/cf06-gschwind.pdf

10.3.2 Cell BE (10)

Page 40: III. Multicore Processors (5)

Source: Gshwind M., „Chip Multiprocessing and the Cell BE,” ACM Computing Frontiers, 2006, http://beatys1.mscd.edu/compfront//2006/cf06-gschwind.pdf

Figure: Floor plan of the Cell BE processor

235 mm2

241 mtrs

10.3.2 Cell BE (11)

Page 41: III. Multicore Processors (5)

10.3.2 Cell BE (12)

Table: Main features of the IBM’s Cell BE

L3

On-chipMemory controller

Ring basedInterconnection network

Up to 75 MB/sI/O bandwidth

PPE: 2-waySPE:

Multithreading

95 W @ 3GHzTDP [W]

25 GB/sMemory bandwidth

PPE: 512 KBSPE: 256 KB Local Store (128*128 bit)

L2

3.0/3.2fc [GHz]

234 mtrsNr. of transistors

221 mm2Die size

90 nmTechnology

9/2006 (in the QS20 BladeCenter)Introduction

PPE: 64-bit RISCSPE: Dual-issue 32-bit SIMD with 128 bit capability

Cores

PowerPC 2.02Architecture

Heterogeneous1xPPE, 8*SPE

Implementation

Cell BESeries

Page 42: III. Multicore Processors (5)

Source: Brochard L., A Cell History,” Cell Workshop, April, 2006 http://www.irisa.fr/orap/Constructeurs/Cell/Cell%20Short%20Intro%20Luigi.pdf

Figure: Cell BE Blade Roadmap

10.3.2 Cell BE (13)

Page 43: III. Multicore Processors (5)

Source: Hofstee H. P., „Real-time Superconputing and Technology for Games and Entertainment,” 2006, http://www.cercs.gatech.edu/docs/SC06_Cell_111606.pdf

Figure: Roadmap of the Cell BE

10.3.2 Cell BE (14)

Page 44: III. Multicore Processors (5)

10.3 Literature (1)

POWER4, POWER4+

Grassl C., „New IBM Components for HPCx”, Dec. 2003,http://www.hpcx.ac.uk/about/events/annual2003/Grassl.pdf

Barney B., „IBM POWER Systems Overview”, Livermore Computing, 2006, http://www.llnl.gov/computing/tutorials/ibm_sp/

DeMone P., „Sizing Up the Super Heavyweights,” Real Word Technologies, Sept. 2004, http://h21007.www2.hp.com/dspp/files/unprotected/Itanium/sizingsuperheavys.pdf

Krevell K., „IBM’s POWER4 Unveiling Continuues”, Microprocessor Report, Nov. 20. 2000, pp- 1-4

Tendler, J.M., Dodson, S., Fields S., Le H., Sinharoy B.: Power4 System Microarchitecture, IBM Server, Technical White Paper, October 2001

http://www-03.ibm.coom/servers/eserver/pseries/hardware/whitepapers/power4.pdf

POWER5, POWER5+

Grassl C., „New IBM Components for HPCx”, Dec. 2003,http://www.hpcx.ac.uk/about/events/annual2003/Grassl.pdf

Barney B., „IBM POWER Systems Overview”, Livermore Computing, 2006, http://www.llnl.gov/computing/tutorials/ibm_sp/

DeMone P., „Sizing Up the Super Heavyweights,” Real Word Technologies, Sept. 2004, http://h21007.www2.hp.com/dspp/files/unprotected/Itanium/sizingsuperheavys.pdf

Kalla R., „IBM’s POWER5 Microprocessor Design and Methodology,” 2003,www-csl.csres.utexas.edu/users/billmark/teach/cs352-05-spring/lectures/Lecture22-RonKallaIBM.pdf

Tendler, J.M., Dodson, S., Fields S., Le H., Sinharoy B.: Power4 System Microarchitecture,, IBM J. Res. & Dev. Vol. 46, No. 1, Jan. 2002, pp. 5-25,

http://www.research.ibm.com/journal/rd/461/tendler.pdf

Page 45: III. Multicore Processors (5)

Kalla R., Sinharoy B., Tendler J.: Simultaneous Multi-threading Implementation in Power5 – IBM’s Next Generation POWER Microprocessor, 2003

http://www.hotchips.org/archives/hc15/3_Tue/11.ibm.pdf

Krevell K., „POWER5 Tops on Bandwidth”, Microprocessor Report, Dec. 2003http://studies.ac.upc.edu/ETSETB/SEGPAR/microprocessors/power5%20(2)%20(mpr).pdf

Shinharoy B., Kalla R.N., Tendler J.M., Eickenmeyer R.J., Joyner J.B., „POWER5 system microarchitecture,” IBM J. R&D, Vol. 49, No. 4/5, 2005, pp. 505-521

Kanter D., „IBM Previews the Power6,” Oct. 2006, [email protected]

Vetter S. et al., IBM System p5 Quad-Core Module Based on POWER5+ Technology,” Redbooks paper, IBM Corp. 2006, http://www.redbooks.ibm.com/redpapers/pdfs/redp4150.pdf

POWER6

POWER5, POWER5+ (cont.)

Cell BE

Brochard L., A Cell History,” Cell Workshop, April, 2006 http://www.irisa.fr/orap/Constructeurs/Cell/Cell%20Short%20Intro%20Luigi.pdf

Gshwind M., „Chip Multiprocessing and the Cell BE,” ACM Computing Frontiers, 2006, http://beatys1.mscd.edu/compfront//2006/cf06-gschwind.pdf

Blachford N.: „Cell Architecture Explained Version 2”, http://www.blachford.info/computer/Cell/Cell1_v2.html

Day M. and Hofstee P., „Hardware and Software Architectures for the Cell Broadband Engine processor, ”CODES, Sept. 2006, http://www.casesconference.org/cases2005/pdf/Cell-tutorial.pdf

10.3 Literature (2)

Page 46: III. Multicore Processors (5)

10.3 Literature (3)

Cell BE (cont.)

Keable C., „And we also have hardware...” 17th Machine Evaluation Workshop, Dec. 2006, http://www.cse.clrc.ac.uk/disco/mew17/talks/Keable_IBM_MEW17.pdf

Hofstee H. P., „Real-time Superconputing and Technology for Games and Entertainment,” 2006, http://www.cercs.gatech.edu/docs/SC06_Cell_111606.pdf

Solie, D., „Technology Trends Presentation,” Power Symposium, Aug. 2006, http://www-03.ibm.com/procurement/proweb.nsf/objectdocswebview/ file14+-+darryl+solie+-+ibm+power+symposium+presentation/$file/ 14+-+darryl+solie-ibm-power+symposium+presentation+v2.pdf

- „Cell Broadband Engine processor – based systems,” White Paper, IBM Corp., 2006

Krewell K., „Cell Moves Into The Limelight,” Microprocessor Report, Febr. 14 2005, pp. 1-9

Gschwind M., Hofstee H. P., Flachs B. K., Hophkins M., Watanabe Y., Yamazaki T „Synergistic Processing in Cell's Multicore Architecture,” IEEE Micro, Vol. 26, No. 2, 2006, pp. 10-24

Krolak D., „Unleashing the Cell Broadband Engine Processor,” MPR Fall Proc. Forum, Nov. 2005, http://www-128.ibm.com/developerworks/power/library/pa-fpfeib/?ca=dgr-lnxwCellConnects