ii. modulation & coding. © tallal elshabrawy design goals of communication systems 1.maximize...

23
II. Modulation & Coding

Upload: ryann-dods

Post on 14-Dec-2015

215 views

Category:

Documents


0 download

TRANSCRIPT

II. Modulation & Coding

© Tallal Elshabrawy

Design Goals of Communication Systems

1. Maximize transmission bit rate

2. Minimize bit error probability

3. Minimize required transmission power

4. Minimize required system bandwidth

5. Minimize system complexity, computational load & system cost

6. Maximize system utilization

2

© Tallal Elshabrawy

Some Tradeoffs in M-PSK Modulaion

1 Trades off BER and Energy per Bit2 Trades off BER and Normalized Rate in b/s/Hz3 Trades off Normalized Rate in b/s/Hz and Energy per Bit

3

0 2 4 6 8 10 12 14 16 18

10-4

10-3

10-2

10-1

100

Eb/N0

Pb

BPSK,QPSK8 PSK16 PSK

1

2

3

m=4

m=3

m=1, 2

© Tallal Elshabrawy

Shannon-Hartley Capacity Theorem

C: System Capacity (bits/s)

W: Bandwidth of Communication (Hz)

S: Signal Power (Watt)

N: Noise Power (Watt)

4

2

SC W log 1

N

System Capacity for communication over of an AWGN Channel is given by:

© Tallal Elshabrawy

Shannon-Hartley Capacity Theorem

5

-10 0 10 20 30 40 50

1/8

1/4

1

2

4

8

16

SNR

Nor

mal

ized

Cha

nnel

Cap

acity

C/W

(b/

s/H

z)

Practical Systems

UnattainableRegion

© Tallal Elshabrawy

Shannon Capacity in terms of Eb/N0

Consider transmission of a symbol over an AWGN channel

6

CWlog21E

SR

S

N0W

SES

TS

ESR

S

NN0W

ESR

SmE

bR

SE

bC

C

Wlog

21 E

b

N0

C

W

© Tallal Elshabrawy

Shannon Limit

7

C

Wlog

21 E

b

N0

C

W

x

Eb

N0

log21 x

1Eb

N0

1

xlog

21 x

1Eb

N0

log21 x

1

x

x 0 1

x1 x e

Eb

N0

1

loge0.693 1.6dB

xEb

N0

C

W

Let

© Tallal Elshabrawy

Shannon Limit

-2 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40

1/4

1/2

1

2

4

8

16

1/8

1/16

Eb/N0

Mor

mal

ized

Cha

nnel

Cap

acity

b/s

/Hz

Shannon Limit=-1.6 dB

© Tallal Elshabrawy

Shannon Limit

No matter how much/how smart you decrease the rate by using channel coding, it is impossible to achieve communications with very low bit error rate if Eb/N0 falls below -1.6 dB

© Tallal Elshabrawy

-4 -2 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40

1/16

1/8

1/4

1/2

1

2

4

8

16

Shannon Limit

Shannon Limit=-1.6 dB

BPSK UncodedPb = 10-5

QPSK Uncoded Pb = 10-5

8 PSK UncodedPb=10-5

16 PSK UncodedPb=10-5

Room for improvement by channel coding

Norm

aliz

ed

Ch

an

nel C

ap

aci

ty b

/s/H

z

Eb/N0

© Tallal Elshabrawy

1/3 Repetition Code BPSK

Is this really purely a gain?No! We have lost one third of the information transmitted rate

11

0 1 2 3 4 5 6 7 8 9 1010

-6

10-5

10-4

10-3

10-2

10-1

Eb/N0

Pb

BPSK UncodedBPSK 1/3Repetition Code

Coding Gain= 3.2 dB

© Tallal Elshabrawy

0 1 2 3 4 5 6 7 8 9 1010

-6

10-5

10-4

10-3

10-2

10-1

Eb/N0

Pb

BPSK Uncoded8 PSK 1/3 Repitition Code

1/3 Repetition Code 8 PSK

12

Coding Gain= -0.5 dB

When we don’t sacrifice information rate 1/3 repetition codes did not help us

© Tallal Elshabrawy

The waveform generator converts binary data to voltage levels (1 V., -1 V.) The channel has an effect of altering the voltage that was transmitted Waveform detection performs a HARD DECISION by mapping received

voltage back to binary values based on decision zones

Channel

e

rv

Channel

Encoder

Waveform

Generator

Waveform

Detection

Channel

Decoder

Channel

v rx y

v = [v1 v2 … vi … vn]e = [e1 e2 … ei … en]r = [r1 r2 … ri … rn]x = [x1 x2 … xi … xn]y = [y1 y2 … yi … yn]

0 T

0 T

+1 V.

-1 V.

vivi=1

vi=0

xi

0yi>0

yi<0

ri=1

ri=0

ri+

zi]-∞, ∞[

yi

Hard Decision Decoding

© Tallal Elshabrawy

The waveform generator converts binary data to voltage levels (1 V., -1 V.) The channel has an effect of altering the voltage that was transmitted The input to the channel decoder is a vector of voltages rather than a vector

of binary values

Channel

e

rv

Channel

Encoder

Waveform

Generator

Channel

Decoder

Channel

v rx

v = [v1 v2 … vi … vn]e = [e1 e2 … ei … en]r = [r1 r2 … ri … rn]x = [x1 x2 … xi … xn]

0 T

0 T

+1 V.

-1 V.

vivi=1

vi=0

xi +

zi]-∞, ∞[

ri

Soft Decision Decoding

© Tallal Elshabrawy

Hard Decision- Each received bit is detected individually- If the voltage is greater than 0 detected bit is 1- If the voltage is smaller than 0 detected bit is 0- Detection information of neighbor bits within the same codeword is

lost

Channel

e

rv

Channel

Encoder

Waveform

Generator

Waveform

Detection

Channel

Decoder

Channel

0 0 0

ry

v = [v1 v2 … vi … vn]e = [e1 e2 … ei … en]r = [r1 r2 … ri … rn]x = [x1 x2 … xi … xn]y = [y1 y2 … yi … yn]

0 -1 -1 -1 0.1 -0.9 0.1 1 0 1 1

Hard Decision: Example 1/3 Repetition Code BPSK

© Tallal Elshabrawy

Soft Decision- If the accumulated voltage within the codeword is greater than 0

detected bit is 1- If the accumulated voltage within the codeword is smaller than 0

detected bit is 0- Information of neighbor bits within the same codeword contributes to

the channel decoding process

Channel

e

rv

Channel

Encoder

Waveform

Generator

Channel

Decoder

Channel

0 0 0

r

v = [v1 v2 … vi … vn]e = [e1 e2 … ei … en]r = [r1 r2 … ri … rn]x = [x1 x2 … xi … xn]y = [y1 y2 … yi … yn]

0 -1 -1 -1 0.1 -0.9 0.1 0

Accumulated Voltage = 0.1-0.9+0.1=-0.7<0

Soft Decision: Example 1/3 Repetition Code BPSK

© Tallal Elshabrawy

1/3 Repetition Code BPSK Soft Decision

{ }1,0b∈Channel Coding

(1/3 Repetition Code)

c 000,111Waveform

Representation

b b b b b bs E , E , E , E , E , E

Channel

]n,n,n[=n 321

Soft DecisionDecoding

r*b

Uncoded0

b

0

bCode.pRe3/1

0

b

NE

=N3E3

=NE

Important Note

© Tallal Elshabrawy

BER Performance Soft Decision 1/3 Repetition Code BPSK

Select b*=0 if

Note that r0 r1 and r2 are independent and identically distributed. In other words

Therefore

Similarly

f R b 0 f R b 1

0 1 2 0 1 2f r r r b 0 f r r r b 1

2i b

2

r E

2σi 2

1f r b 0 e

2πσ

2i b

2

3 r E2

2σi 2

i 0

1f r b 0 e

2πσ

2i b

2

3 r E2

2σi 2

i 0

1f r b 1 e

2πσ

© Tallal Elshabrawy

Select b*=0 if

( ) ( )1=bRf>0=bRf

2 2

i b i b

2 2

3 3r E r E2 2

2σ 2σ

2 2i 0 i 0

1 1e e

2πσ 2πσ

2 22 2i b i b

2 2i 0 i 0

r + E r E

2σ 2σ

2 22 2

i b i bi 0 i 0

r + E r E

2 2

i b i b

2 2

r E r E2 2

2σ 2σ

i 0 i 0

ln e ln e

2

ii 0

r 0

BER Performance Soft Decision 1/3 Repetition Code BPSK

© Tallal Elshabrawy

where

BER Performance Soft Decision 1/3 Repetition Code BPSK 2

ii 0

Pr error b = 0 = Pr r > 0 b = 0

2

b ii 0

Pr error b = 0 = Pr E n 0

bPr error b = 0 = Pr n 3 E

2

ii 0

n n

n is Gaussian distributed with mean 0 and variance 3N0/2

b

0

3 EPr error b = 0 = Q

3N / 2

b

0

3E1Pr error b 0 erfc

2 N

2

i bi 0

Pr error b = 0 = Pr n 3 E

© Tallal Elshabrawy

Hard Vs Soft Decision: 1/3 Repetition Code BPSK

0 1 2 3 4 5 6 7 8 9 1010

-6

10-5

10-4

10-3

10-2

10-1

100

Eb/N0

Pb

BPSK UncodedBPSK 1/3 Repitition Code Hard DecisionBPSK 1/3 Repetition Code Soft Decision

Coding Gain= 4.7 dB

© Tallal Elshabrawy

1/3 Repetition Code 8 PSK Hard Decision

22

0 1 2 3 4 5 6 7 8 9 1010

-6

10-5

10-4

10-3

10-2

10-1

100

Eb /N0

Pb

BPSK Uncoded8PSK 1/3 Repetition Code Hard Decision8PSK 1/3 Repetition Code Soft Decision

Coding Gain= 1.5 dB

© Tallal Elshabrawy

-4 -2 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40

1/16

1/8

1/4

1/2

1

2

4

8

16

Shannon Limit and BER Performance

23

Shannon Limit=-1.6 dB

BPSK UncodedPb = 10-5

QPSK Uncoded Pb =

10-5

8 PSK UncodedPb=10-5

16 PSK UncodedPb=10-5

BPSK 1/3 Rep. Code Hard Decision

Pb = 10-5

BPSK 1/3 Rep. Code Sodt Decision

Pb = 10-5

Norm

aliz

ed

Ch

an

nel C

ap

aci

ty b

/s/H

z

Eb/N0

1/3

8PSK 1/3 Rep. Code Hard Decision

Pb = 10-5

8PSK 1/3 Rep. Code Soft DecisionPb = 10-5