ih1611 halvledarkomponenter vt 2013, period 4

26
IH1611 Halvledarkomponenter VT 2013, period 4 Gunnar Malm [email protected] , 08-790 4332

Upload: lalasa

Post on 25-Feb-2016

19 views

Category:

Documents


1 download

DESCRIPTION

IH1611 Halvledarkomponenter VT 2013, period 4. Gunnar Malm [email protected] , 08-790 4332. Semiconductor procesing at KTH Electrum Laboratory. Stepper Lithography at KTH Electrum Laboratory. MOSFET made at KTH Integrated Devices and Circuits. Si wafer with INTEL’s XEON Processor . - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: IH1611 Halvledarkomponenter VT  2013, period 4

IH1611HalvledarkomponenterVT 2013, period 4Gunnar [email protected], 08-790 4332

Page 2: IH1611 Halvledarkomponenter VT  2013, period 4

Semiconductor procesing at KTH Electrum Laboratory

Stepper Lithography at KTH Electrum Laboratory

Si wafer with INTEL’s XEON Processor MOSFET made atKTH Integrated Devices and Circuits

Integrated Circuits (IC)

Page 3: IH1611 Halvledarkomponenter VT  2013, period 4

Course goalsThe overall goal of the course is that you should be able to describe the function of the pn-diode, the bipolar and the MOS transistor and how these three devices are used in applications. You should be able to derive and calculate the currents inside these devices and be able to analyse the internal state of the charge distribution, the electric field and the current density. In detail, after a successful completion of the course you will be able to:

1. qualitatively describe the electronic energy band structure of insulators, semiconductors and metals

2. calculate the electron and hole concentration in the conduction and valence band using Fermi-Dirac statistics and the energy band model.

3. describe the constituents of the current density in semiconductors and derive analytical expressions for the current density in the case of low-level injection, electron-hole recombination, externally applied voltage and external generation by light, using the drift-diffusion model.

4. describe the function of the pn-diode, the bipolar and the long channel MOS transistor.

5. analyse and calculate the internal electrostatics (electric charge, electric field and potential) of the pn-diode, the bipolar and the long channel MOS transistor.

6. derive and calculate the current density in the pn-diode, the bipolar and the long channel MOS transistor using the drift-diffusion model.

7. describe major process technologies, used to fabricate semiconductor devices and relate these to schematic cross-section drawings of devices.

8. extract device properties from electrical measurements of devices.9. perform oral and written presentation of the subject Semiconductor

Components.

Page 4: IH1611 Halvledarkomponenter VT  2013, period 4
Page 5: IH1611 Halvledarkomponenter VT  2013, period 4

Student recitationsThere are 6 student recitations in the course.At the first lectures 6 sheets containing 6 problems (totally 36 problems) are distributed. The sheets are numbered as S1, S2, S3, S4, S5 and S6. Before each student recitations the student should try to solve the 6 problems on the sheet related to the student recitation in question. The student should also prepare to present the solution on the board for the class.The level of difficulty of the problems on the student recitation corresponds to the written exam.

In detail a student recitation is organized as follows:1. At the beginning of the student recitation each student will

put a cross on a list to indicate which of the 6 problems he/she is prepared to present to the class

2. One student is randomly picked to present each problem.3. After the solution has been presented there is a discussion,

in which all students are expected to participat. Students are expected to give feedback on the presented solution and possibly provide alternative solutions.

4. When the discussion is finished a new student presents a solution to the next problem

5. When all 6 problems have been presented and discussed the student recitation ends.

The number of crosses a student has on the list indicates how many problem the student has solved. The total number of problems is 36. To be allowed to attend the written exam the student has to acquire a minimum of 20 crosses after the 6 student recitations.

Page 6: IH1611 Halvledarkomponenter VT  2013, period 4

Laboratory work, seminars and report Course lab includes a laboratory exercise in groups of four students. The place of the lab is in the Electrum building, elevator C, level 4. Labs will be scheduled by signup in the Daisy portal. During two hours measurement data are collected under the guidance of a lab assistant. After the lab, each student independently determines device parameters from measurements. Each student receives an individual assignment and will write an individual lab report that presents the measurements, the extraction procedure and the results. Method, results and conclusions must be clearly outlined. Results should be commented on regarding accuracy and students are expected to reflect on the relationship between measurements and theory. Results should be reported with well-structured diagrams, graphs and tables. A good lab report should be clear, as well as linguistically well-written. The first seminar deals with extraction procedure and with report writing.

The laboratory report should be sent by email to the course responsible in PDF before the first deadline stated in the schedule at the end of this course-PM.

The laboratory report will be tested for plagiarism of the course responsible. All students will receive an email with three laboratory reports. These should be read and about half a page constructive feedback must be prepared before the feedback seminar. The written feedback should be brought in two copies (one to their peers and one to the course responsible) to the feedback seminar (date and time is given in the schedule at the end of this course-PM). At the feedback seminar each student will give (to their peers) and receive (from their peers) feedback on their reports. After the seminar students can improve their reports and the final report should be sent in to the course responsible before the second deadline stated in the schedule at the end of this course-PM.

Page 7: IH1611 Halvledarkomponenter VT  2013, period 4
Page 8: IH1611 Halvledarkomponenter VT  2013, period 4
Page 9: IH1611 Halvledarkomponenter VT  2013, period 4

Teachers and additional informationCourse responsibleAssociate Professor, Docent. Gunnar Malm, 08-790 4332, School of ICT, Integrated Devices and Circuits, Electrum C4 (Kista)

Teachers and lab assistantTo be announced

Examiner Associate Professor, Docent. Gunnar Malm, 08-790 4332, School of ICT, Integrated Devices and Circuits, Electrum C4 (Kista)

Course prerequisitesElectromagnetic theory and Applied Physics or Physics I

Course literatureModern Semiconductor Devices for Integrated Circuits, Chenming Calvin Hu, 2010, Pearson Education , ISBN-10: 0-13-700668-3.

 

Page 10: IH1611 Halvledarkomponenter VT  2013, period 4

Schedule and Reading Instructions The Laboratory session is not scheduled signup will be in Daisy. L=Lecture, S=Student recitation, Sem=Seminar, I=Individually meet a teacher, T=Tentamen,

Activity Date Time Place Content Reading Instruction

L1 20/ 3 10-12 531 Course-PM, Bond model, Energy Band model, Fermi-Dirac distribution function

Ch. 1.1-1.9, 1.11, 2.1-2.2

L2 21/ 3 10-12 533 Energy Band model, no and po, Drift Current Ch. 1.1-1.9, 1.11, 2.1-2.2

L3 26/ 3 10-12 533 Diffusion currents Generation/ Recombination

Ch. 2.3-2.9

S1 27/ 3 13-15 431 Student recitation 1 Online S1 L4 28/ 3 10-12 533 Process Technology ‘Förbered kapitel 3, en

tävling med pris kommer att baseras på detta material’ Guest Lecture to be decided

Ch. 3

Sem 8/ 4 10-12 431 Extraction of properties from measurement data. What is a good written report?

L5 10/ 4 12-14 531 PN-diode: Electrostatics Ch. 4.1-4.5 S2 12/ 4 13-15 431 Student recitation S2 L6 16/ 4 10-12 531 PN-diode: Drift and Diffusion currents Ch. 4.6-4.9 L7 18/ 4 10-12 531 PN: Schottky contacts Ch. 4.16-4.22 S3 19/ 4 13-15 431 Student recitation S3 L8 23/ 4 10-12 531 PN: Solar cells, LEDs and Diode Lasers Ch. 4.12-4.15 L9 25/ 4 13-15 539 MOS Capacitor. Electrostatics Ch. 5.1-5.6 S4 26/ 4 13-15 431 Student recitation S4 L10 29/ 4 13-15 539 MOSFET: Electrostatics and drain current Ch. 6.1-6.2,

6.4-6.6 L11 2/ 5 10-12 533 MOSFET: Mobility and CMOS inverter Ch. 6.3 and

6.7 Deadline TBD First version of lab report submitted in BILDA

S5 3/ 5 13-15 431 Student recitation S5

L12 7/ 5 10-12 539 Bipolar Transistor Ch. 8.1-8.4 Sem 8/ 5 10-12 431 Peer-review seminar on Laboratory report.

Bring your feedback in two copies, one to the teacher and one to your peer.

Deadline TBD Final version of lab report submitted in BILDA

L13 14/ 5 10-12 539 Bipolar Transistor Ch. 8.5 S6 15/ 5 10-12 431 Student recitation S6 L14 17/ 5 10-12 531 Repetition T 21/ 5 13-18 431, 439 Tentamen

Page 11: IH1611 Halvledarkomponenter VT  2013, period 4

Vad är en halvledare?

• Ämnen i det periodiska systemet med rätt elektroniska egenskaper, bestäms av gruppen (valenstalet)

• Kisel (Si) absolut vanligast

Page 12: IH1611 Halvledarkomponenter VT  2013, period 4

Elektron-bindningar• Jonisk/kovalent/metallisk• Halvledare har medelbra förmåga att leda ström

och ledningsförmågan kan enkelt varieras

Page 13: IH1611 Halvledarkomponenter VT  2013, period 4

Ledningsförmåga hos material

Page 14: IH1611 Halvledarkomponenter VT  2013, period 4

Grupperna III, IV och V

+5+3 +4

10.82 12.01 14.008 Boron Carbon Nitrogen5 B 6 C 7 N

III IV V

26.97 28.09 31.02 Aluminum Silicon Phosphorus13 Al 14 Si 15 P

69.72 72.60 74.91 Gallium Germanium Arsenic31 Ga 32 Ge 33 As

114.8 118.7 121.8 Indium Tin Antimony49 In 50 Sn 51 Sb

• Grundämneshalvledare i periodiska systemets kolumn IV

• Sammansatta ofta kombination av III och V, ex. GaAs, InP

Page 15: IH1611 Halvledarkomponenter VT  2013, period 4

Halvledare är kristaller

• Diamantstruktur (Si) betyder att atomerna är regelbundet placerade med kubisk symmetri (men mer komplicerat än så)

Page 16: IH1611 Halvledarkomponenter VT  2013, period 4

Si

• Kisel har kovalent bindning och diamantstruktur• Varje atom har bindning till fyra grannar• GaAs har samma struktur men varannan atom• Ga och As

Page 17: IH1611 Halvledarkomponenter VT  2013, period 4

T = 0 K

(a)

+4 +4

+4

+4+4 +4

+4+4

bonds

+4

valenceelectrons

covalent

+4 +4

+4

+4+4 +4

+4+4

free

+4

electron

hole

(b)

T > 0 K

Atom i period 4 har fyra valenselektroner och binds till fyra grannarEn del elektroner frigörs m.h.a. termisk energi och tom plats blir hål

Page 18: IH1611 Halvledarkomponenter VT  2013, period 4

+4 +4

+4+4 +4

+4

+4+4

+4 +4

+4+4 +4

+4

+4+4

electron

Electric Field

+4

hole+4

freeelectron

+4 +4

+4+4 +4

+4

+4+4

+4 +4

+4+4 +4

+4

+4+4

electron

Electric Field

+4

hole+4

+4 +4

+4+4 +4

+4

+4+4

+4 +4

+4+4 +4

+4

+4+4

electron

Electric Field

+4

hole+4

Fria elektroner kan röra sig i elektriskt fält och ge ström Även hål (tomma platser) rör sig i elektriskt fält.Elektron hoppar från grannatom till tom plats

Page 19: IH1611 Halvledarkomponenter VT  2013, period 4

• En kisel kristall är dopad med 1016 cm-3 bor atomer. Vad är n0 och p0?

A) n0=1016 cm-3 , p0=1010 cm-3

B) n0=104 cm-3 , p0=1016 cm-3

C) n0=1016 cm-3 , p0=104 cm-3

D) n0=0 cm-3 , p0=1016 cm-3

Hur säker är du på ditt svar?- Jag gissar- Jag är rätt säker- Jag vet att jag har rätt

Page 20: IH1611 Halvledarkomponenter VT  2013, period 4
Page 21: IH1611 Halvledarkomponenter VT  2013, period 4
Page 22: IH1611 Halvledarkomponenter VT  2013, period 4
Page 23: IH1611 Halvledarkomponenter VT  2013, period 4
Page 24: IH1611 Halvledarkomponenter VT  2013, period 4

• I ett hypotetiskt system finns 3 energinivåer. Varje nivå kan endast vara besatt av en elektron. Hur många elektroner är det i systemet?

A: 3 B: ∞ C: 1 D: 2

Hur säker är du på ditt svar?- Jag gissar- Jag är rätt säker- Jag vet att jag har rätt

Page 25: IH1611 Halvledarkomponenter VT  2013, period 4
Page 26: IH1611 Halvledarkomponenter VT  2013, period 4

Activity Date Time Place Content Reading Instruction

L1 27/ 3 13-15 Sal D Course-PM, Bond model, Energy Band model, Fermi-Dirac distribution function

L2 28/ 3 10-12 Sal D Energy Band model, no and po, Drift Current

Ch. 1.1-1.9, 1.11, 2.1-2.2