ies mechanical-engineering-paper-1-2002

15
www.examrace.com I u:.s- (oB.J) 2002 I oi lS [ c::==== M ::"'__ EC _ HANICAL ENGINE _E_ RI -::::: .tf ::: G =======::=l j 3 PAPER-I Wboc)l or the ro ii0\\1ng IS(are related tO meJl,Sorc the discharge a rectangular nulch'/ 213 Cd.. b .j2i H 1 2. 2f3 Cd. b .j2i H' "- 3 2/3 Cd b .fli -1. 213 Cd b .fi H 1 '' Select the eorrect answer usiug the cQdes gn• eu belo11 a. land 3 b 2 and3 c. 2 ruono d 4 Tbe critical value of Re) 'tlolds numbe r for transition from lnminar to turbu le-nt layer m external nows is taken as a. 231lil b. -10\111 c. 5x w' d 3> dl) 1 ' Tbe boundal)· layer Oow separates from the surface if a, = II and = (I b. do/dy = tl nod dp/dx > 0 c. du/dr = (I and dpfdx. < 11 d. 'fbe bound a!) layer tbtckness is zero The lnmiJJar boundRI) layer illickness, o at nny pomt .t l'or flo11 0\er a Jlut plate iS gh I!Jt by 0/x = 0.664 a b JRe. e. 1, 75 d. 5.(1 5. 6. 7 Volumetnc il ow mte Q, accelerauoo due to gravtty g. and bead I>J form a dimensionless g roup . whtch t Sg tl'en by a Q b. Jiii () c. J ;;H Q J A hllldel test is to be conducted in a water us ing a 1: 20 moel or • subnuuine. wbich is to tra1 el at a ·speed of 12 llm lh deep under sea surface. The 11 mer temperature in the lttnnel IS ma in tnmed. so tl1a1 its li nemati cs -, iscosity is hal.F that of sea water. At what speed tS the model test lo be conduc-ted to produce usel\rl data ror U1e prot otype? a 12 krnlh b 14() kmih c. 24 kmlh d, IZO l..m/h A model Lest rs to be . conducted fo r an under wat er srrucrure. 11hich is likely to be e.'posed to strong water currents. The signiJicanl forces are !mown to be dependent on structure geo mcu y. fluid l'elocity, fluid densilv and vtscosttv, fl uid depth · and acceleration due to grn1 1ty Choose from Ut e codes gi1en bel o" . which of the follo11' ng numbers must match for the model with tltat of the prototype 1 Mncb nuniber 2, Weber number 3 Fronde number -1- . Re y nolds number a 3 al one b I. 2. 3 and -1- c. l !Uld 2

Upload: thrinadh-chowdary-kapu

Post on 06-May-2015

353 views

Category:

Education


2 download

DESCRIPTION

IES Objective 2002

TRANSCRIPT

Page 1: Ies mechanical-engineering-paper-1-2002

www.examrace.com

I u :.s-(oB.J) 2002 I oi lS

[c::====M::"'__EC_HANICAL ENGINE_E_RI-:::::.tf:::G=======::=lj

3

PAPER-I

Wboc)l or the roii0\\1ng IS(are related tO meJl,Sorc the discharge b~ a rectangular nulch'/

213 Cd.. b .j2i H1

2. 2f3 Cd. b .j2i H'"-

3 2/3 Cd b .fli H~12

-1. 213 Cd b .fi H1''

Select the eorrect answer usiug the cQdes gn•eu belo11 a. land 3 b 2 and3 c. 2 ruono d 4 ~lone Tbe critical value of Re)' tlolds number for transition from lnminar to turbule-nt bound~<y layer m external nows is taken as a. 231lil

b. -10\111 c. 5x w' d 3>dl)1

'

Tbe boundal)· layer Oow separates from the surface if a, du/d~ = II and djJ{d~ = (I b. do/dy = tl nod dp/dx > 0 c. du/dr = (I and dpfdx. < 11 d. 'fbe bound a!) layer tbtckness is zero The lnmiJJar boundRI) layer illickness, o at nny pomt .t l'or flo11 0\er a Jlut plate iS gh•I!Jt by 0/x =

0.664

a ~Re,

b 1 .32~

JRe.

e. 1,75

~Re,

d. 5.(1

~

5.

6.

7

Volumetnc ilow mte Q, accelerauoo due to gravtty g. and bead I>J form a dimensionless group. whtch tSgtl'en by

a J~' Q

b. Jiii ()

c. J;;H Q

J ~!/H A hllldel test is to be conducted in a water lunn~l using a 1: 20 moel or • subnuuine. wbich is to tra1 el at a ·speed of 12 llmlh deep under sea surface. The 11 mer temperature in the lttnnel IS maintnmed. so tl1a1 its li nematics -, iscosity is hal.F that of sea water. At what speed tS the model test lo be conduc-ted to produce usel\rl data ror U1e prototype? a 12 krnlh b 14() kmih c. 24 kmlh d, IZO l..m/h A model Lest rs to be. conducted for an under water srrucrure. 11hich is likely to be e.'posed to strong water currents. The signiJicanl forces are !mown to be dependent on structure geomcuy. fluid l'elocity, fluid densilv and vtscosttv, fluid depth ·and acceleration due to grn11ty Choose from Ute codes gi1en belo" . which of the follo11' ng numbers must match for the model with tltat of the prototype 1 Mncb nuniber 2, Weber number 3 Fronde number -1-. Reynolds number a 3 alone b I. 2. 3 and -1-c. l !Uld 2

Page 2: Ies mechanical-engineering-paper-1-2002

www.examrace.com

8.

10.

II.

cL 3 1111d 4 Uurins •ub!lonio, udl•lmtic flow of!:''""" in pip<;$ with li:iction. ~~~ nnw prmx:rti~ 8" through p•rtlculot' mode of chllogcs. Match List I (FlO\\ prop111tie~) with List U (Mod<: of chang~) ond 5elec.l the correct an~wer; List! 1\. PnJssuo'O B. Dcmity

C. Tempcmtur" u. Velo.,ity

.u~• n l lnoll\do!l< in Jlu\~ dirtctfon 2. D<>::rcas .. with Jlow dire<!tiou

a, b.

d.

A

1

2 2

])

I 2 2

I

c 2 2

D 2 i 2 2

Wltlch of the tollowih sl1llements islare true In '''"" of orw-ditnl!nSional llo\\ of perfect gas through a converging• diverging noz.zle'l I, 'I he ·~it \'docity i$ nhvay~ IUpenlonic

?. the es.ot velocirr t'.lln be ~ubsonk or ~upenouic

3 If tho flO\\ is isc:ntropic, the .:>.it velocity "'"'' be sup,•unic

-t 1f Ute C>.Xist velocity is sup.rsonic, Uou .Oow musl bet rscnlropic

Sde<!l lite uom:ol auswm• usiug the codes given below!

a. 2 ond 4 b, 2. 3 ~nd .t c I.J:cnd4

'l 2 nlone In n nunna I ~ltod<.in • gas ._ The s fugnalion dotL•ity n:mams the

s~me on both sides of lho ~hock b. The slltgn;.tion density rcrnairu; lh¢

same on both sides of the shock c. 11tc ~IJOgn:ttiqn lcmpc:rolurc r>:m~i!t~

Ute sun!;; 011 bQUt $ides of Ut., ~h.oct-d. 11tc Mach number remain~ tlto same

0 11. botlt sides of tire •hock A notmnhboc.k "- Causes > db-ruption ond fO\'CrsoJ of

llow pollcrn

b. l\lay occut• only in • divo:rging p•ssogc

12.

l~.

14.

I S.

2111 ll c. Is more severe than 1n obli(JUe shock d. M1ovc~ w itlt .t 1·elodty equal tu the

~·on ic: velocir~

f lUid flow machines are using the ptinciple of eith..-(tl ~upplyutll energy to

the lluid or ( iJ) extroctlna 011crgy from tiLe Ouid. Some fluid Dow machino. are a C1Jmb1n~lion Qf ll1Jlh ( i) and (ii) 'l'lte)' "re classified as •· Coon11regsms b. Hydr>ull.: turbines c. Torque eonv<:fler(l

d. Wind mills Consider the following olalentents• I Pelion wheel •~ a lansenti~l Jlow

impulse lurbin" 2. Francis turbine is ~111Xi3 now te:IC!ion

t:urbiuc 3.. l>:.opllln turbine is o mdiol Do11 rc:o~tion

torhinc Wltich 9f Ute ~bo1•e statetnenls isla:n: C<•rrtcl7

a. I and 3

IJ I 01lon~ c. 2 a lo ne

d . 3 a lone-

Mo tch List I {Aydt·~ulic Tvrb[ne) witlt U~t 11 ( Applicntinn Are;•) ;md .• dcct tllo com:ct ;IIB\"\•e.r=

List I A. Jltlton turbine l:l. l'rnncts- tutu me C. Kaplan turbine l.is1 II 1. Lolli' heacllurge di•charge 2. Medinm hcocl, mc:dittm 1lischarg~ 3. High head. low dis.:harge

A B C •. 2 3 b. 2 I ;; c, 3 I 2 d. 3 2 I Efficiency of f'clloo wbcol sbnll be onaltimum if the ratio nf jet velocicy to tangential velodly of' the wll..,l is a. 112 b. I

"· 2

Page 3: Ies mechanical-engineering-paper-1-2002

www.examrace.com

cL 4 16. "llle ma;Umum c.fficienc) 111 tb" c:o~<> of

Pelion "he:~; I is fong)c nl' de (lett ion orth~ jet = 180 - r~l

1- co;. p n. 2

l H ·os P b,

2 cusp

~. 2

1; wsp d. -1

17 lfl1 i• 1l1e bl:lld livatlable lo r • hydraulic. wrbine lhe power ~d~d and di$cl••rse I'C$pec(iveJy ,,re proponlo.no.l10

o1. Flv' , I1 '11.N''' h Jf'i',H '".H '~

.:. u w\/71'1,ff11

d. Hn,H~~>,H

18. ln Ute pbc1tomo:non of ~villllions. the chnracteri•tic Ouid property inl'olved os a. s-urfitce ten~ ion b. \ 'lsco$ily c. Bulk. Dll)dulus of.::lru;tidty d. \ ' opour jlr<ISSUf O

19. A pun111 runrung 3l 1000 ~{consumer~ lkW onJ gcnc:rntc,' head of 10m ofwat.:r. When it i• l!pc:rnted 'II 2000 RPM. il~ 1•oW<!r eonoumplimi .on(l h~ild ll~'t1CI'oled would b~

o. 4Ji\V. SO m ofwoter b. 6kW,20 111 ol'\\olot c.. 3 k\V. 30 m of\volcr

d. Sk\V. ~0 m uf" uter 20. A ctntri:fug•l pump gj\'t:s .tnn.'citnum

dlicieney wbcu it• blade. .1re ~~ 130Jtt forwlll'd b. Bend bo~l..·wnod c.. Strnight <L \Vav;: shaped

21. In utitUinJ! s.:aled utodds in lhe designing bf turbo mochiucs. which of tho following rel~lton~hips must be snriStiecl'l

''- ~-coroannt:_Q_= Clmsuonl NV' N'D'

22

.,. -~-

24.

25.

26.

H H h. 7::. - cun,t:mt~-.- =- .;<msf.nnt

D' v ff N D p H

e. - = const:w•·--- eo.nslllnl QH "' '-1'0'

NO'" Npli' d. -~-- == con~t:u\1:-- consla.nL

If"' If' I

Thr> correct sequcuc" of the c"utrifugal pump components through wbio;:h lh" Duid Oows 1s a. Impeller. SuetiQn J>ipe, ii)ot vnlue lind

~lrninor, Delhery pipe b. Pool ulue and :;trainer. ~udion pipe.

Impeller, Delivery pipe c. hnpelld'. Suction pipo. Del ivet')' pip.:.

foot-value !~trainer

d. Suction pipe. D1>lh•"ry pip~<. Ilnpcllcr, f!oo1 vol\'a :wd 3lroiner

A ccnlnrugal pump driven by a chrcetly coupled 3k.W motclr or 1450-rpm 8pc:ed, i$ t>I'Op<~ed to be eoonectcd to another rnc;tor of 29()()-rpm speed, Tile pi}\\OJ' or th<> motor should l.>e

•· ~~w b. 12kW c. 18kW

d. ~kW

A dr:tlltubi:> i. U!led in a l'® ction turbine • · To !!uidc 1\ntcr do\\nstrcom without

•plt.-hlns

b. To convener residual pn::~~urc energy onto Jdne~ic cnerflY

e. 'l'1> eonvc:11 r<:!<idual !<inehc energy into pres!!urc ~ergy

d. l'o streamliue the Dow in the tailrace A hydraulic pri:Ss fuls A rnm of 20 em dinmcter nnd ~ plunger of Scm dinn>•ter. The force required ot lhc plunger to lift • weight of 16 )()'' ]II ~hall l!e; n. 256 tO' N' b. G4 10• N e. 4 lOiN

d. I w• N Slowing down or boiler wah:r Is Uuo proc;oss lo o. Roducc ~~~ bo iler llfOS$W'l>

b. lne,..,..,sc ~'" ste<>m kmpc:taiU.t10 e. C9JIIt'Ol Ute ~olids concentrotloo in tbe

\t()iJCJ'\>'OI(:r

Page 4: Ies mechanical-engineering-paper-1-2002

www.examrace.com

1.7

28.

29.

30.

<1. Control U1e clrum level A d~'~ce whicb is u~cd lo drain iJIT water rrom steam pipes without escape of steam i$ ~ullcd ~. Steam S~l)arator b. Steam o·~

c. Pressure reducing valve tL lnjccwr Match List I with List II and select lhe collect answer! Lis t I (Type MCoal) /1 . Lignite B. Ambr:acite C. 13ituminous D. Coke L.i~l II (Coal propt>rtics) I. At11ficial J'uel derived from coal 2. Cumains intlanunahle gas ( volat tie

nwucn and bums. witb flame 3 . Very hurd and high heating value 4. I Ligh ash comcnt and less volatile

maucr

c. d.

4

4

l3 J l

I 3

c 4 2 4 2

D I 3

3 I

Pressure reach<$ a value of absolute zero 14 At u tentpcraturtc or- 273 K

b. Under vncuum condition c. Allhe. ennh's cemre

tl. When moleculllf mnmentwll of' systcut becomes -zero

A reversible engine oper~te~ between t~mJler.lLur<'S 'r1 und 'I ~- 'llte cncrg) r~jecl~d by this engine is rcc.:ived by a second reversible engin<.' tU temperature Tl and r~jcctcd 10 a rt.'$c.rvoir at t"mpcmturc 'l'l· if the efficiencies of the engines are ~umc the-n the rdationshiJJ i'>ctweeo !' ,, l.r ~ud r, is given by

(7;+T, ) a' 1': = ~__,_,:-''-<-

2

ll. I!= J'r.' +T}

c. T:= ff. (T,+ 2T, )

d. T."--'--:-!.!.. • 2

3 1.

32.

1 ul 15 The heat llbsorbod or rejected during a polytmj:thi~ process i~ equal to

a. ( r - /I )''' X WtJrk t.louc r- t

b. -- xWork done (r-n) II I

e. ( r - n )~< Wort; don~ y-1

d. ( r -"l1 1< Work d11oc

r- t A system mmp1·ising of n pure subswnc~ executes r~versibly a cycle 1-2-3-4-1 consisting of two isentropic and two isothotic processes as shown in 1he Fig, I.

p

Fog. l V

Which one of 1bc Jill lowing is tile con-eeL representation of t.ltis cycle on the ICQlt>eratur~ - enln>py conrdioatcs'? n,

T

b.

·~. c.

d. T

'02 4 3

'------·

Page 5: Ies mechanical-engineering-paper-1-2002

www.examrace.com

33. WlUt increase of pressure, the latent heat of stream ~ Remains same b. Increases c. Decreases d. Behaves unpredicL1bly

Jq. Consider the following statements re.gatding th(' thronling pr01.·cs.~ of wet s team: I. The steam pressure .and temperature

tlccreusc but cnthnlny r~mai~s constant 2. Th~ steam pressure decreases, the

lCntp<>r~ture increases but entrop~· remains constant

J. '11•e entropy, specific vulu111e, and dryn~s frict11ion jncrenses

4. The entropy lncrenscs btot the vull1mc and drync'Ss fraction dec,·cases.

Which of the above smtcmenL~ all! correct? i!. I nncP b. lund) c. I and~ d. 2 and 4

35, Availability function fur11 closed system is expresst!d as: u. ~ ~ u +Pllv - T,s

b. ~ ; du • P,1dv-Tr1ds c. ~·du - p,, tlv-Tuds ll 4t ~ u +110v-To S

36. T ds equation can. be expressed as

~. Tds = C,,ilt+ TfJdt· k

b. 1ii,;"" C,, dt + : dv

Tk ~- nt.~=c w +-<~~<

' fJ 1'(1

d. Tci.< = C, cit l-Td" 37. A reversible bear cngin~ receivers 6 IJ of

hear from rhcnnal reservoir al tcmperawrt 800 K, and 8 kJ of heal trom tlnolher thennal r-eservoir at lemperar,ure 600 "'· il' il reje~ts heut w a third I henna I re<Seryoir ar tempcrawre I 00 K. 1hen the thermal eJlici~ncy of the engine i~ approxlnlotely equal to: !4 65%. b. 75%

3M.

39.

40.

4 l.

5 oi l~ c. 80% d. 85% The value of compl'l.-ssiblliry factor ror an ide11l gas may be I. Less or more than one 2. Equal to one 3. Zero 4 . Le.~~ than ?.e I1J

The correcr value (s) is/arc given b.v a. 1 and 2 b. I and4 c. 3' only d. I only Which one of Ute rollowfog func1ions representS the Clap<yron equarion pcnoiJ>ing to the chaoge of phase of a pure substance?

a. J(T.p,it,_ )

b. f(1'.p.lt., .•· ... )

C. t' (t, f>, I'M"'") tl. I (t.p.h01 ,.,, .,.,)

In ao air :slondard On a eye I e. r is the volume compression ratio And y is an ~iabaiic incle.~ (C,IC,). Ute air stl111dard effic1cncy r. gl ven by

I a. 1J = I - -­,.r - I

I b. 17 = 1-r' I

C, 1] = 1-1

1

d. 'J = l -....!

I.

Page 6: Ies mechanical-engineering-paper-1-2002

www.examrace.com

3.

·-The correct sequence of the given four cycles on T-s plane in Figure (I), (2), (3). (4) is a, Rankine. Ouo. Camnt and Diesel b. Rankine. Ono. Diesel and Camot e. OIL Ranktne. Diesel and Camot d. Ou-o. Rankine, Can1pt and Diesel

41. 1ltc main advanrnge of a reheat Kanklnc cyc.le ls "' Reduced moiswre coment in LiP. side

ofrurbine

b. h1CJ'ease eiTicieucy '-· Reduct•d load 0 11 condenser d, Reduced load on pump

43. The order or values of th~rmal efficiency of Otto. Diesel and Dloal cycle. when they have equal com~ression rn(io and heat r~jcoction. is ~ivcn by

a. 11, ... > 7] .... , > /)u,.,J

b. /}ilfrwl :> Tf(IIMl > T/uw.·1

c.. 1ZJJJ.4 > '1~~ > "'''*' d. IJ, ,,, > q...., > 1]_...1

44. In an air-Slandard Diesel cvcle, r is the compression ratio, p is tlo; fuel c~t-oll' rat io an!l y is the adial:>atlc indes (c,/C, ).

3. IJ = I ~ [ J _(P' - I)] rr' (P- 1)

b. [ 1 ,,, '- 1)] 1/ =1- yr'' ' (p- I)

c. ,, = 1 -r-~_J,J· - 1J] lrr ' p-l

d. IJ=I- [ I _(P"-'- 1)] yr' (p- l )

o of 15

-15. Stoichiometric 3lr-fucl ratio b)• volume for combustion nfmethnnt! in oiris:

46.

a. 15.: 1 b. 17. t6: 1

c. ll.S2: I d. 1058: 1 AutO ignitlon ti me for petrol-air mixwr~ Is minimum when th" rruio Ill' flctuul fuel-air rotio and chemically correct firel-air rorio is a. 0.8 b. 1.0 c. 1.2 d. I .S

-17. Consider lhe lollowing statements regnrdlng.knock rat·ing or Sl engiuefuels: I. I so-octane Is assigned a rrulng of zero­

ottane number 2. nonnal heptane is assigned a roting ol'

lmndreJ octane number 3. !so-octane is assigned a rating o1

hundred octane number 4. Normal hcpttme is a~sign~d a mting, or

zeoo octane number. Which of tlte above s tatements are c.orrect? a. I nnd2 b. land J c. 3and4 d. 4 and I

48. In spark ignitloo cngfue~ knuck.!n~ c w1 be reduced by; •

a. Increasing the compression ratio l>. Increasing the cooling water·

li.!'mpcraturl"

c, Retarding the spark adV>\{ICc d. Increasing thl! inlet nir t-emperature

-19, The te.ndency of knocki11g in Cl engine reduce!> by 8·. Hig)l self-ignltluro tempermurc pf fuel

Page 7: Ies mechanical-engineering-paper-1-2002

www.examrace.com

sn.

5L

51.

53.

b. Dccrca$1: i~ jack-et watcr tcmpcrnturc c. Injection of luel just before TDC d. Decrease in itljection pressure Consider the lUll owing. StatementS relevant to the iguitioo sysL<m of sr engitte; I. Too small a dweU angl~ 11ill lend Ill

U1.: burning of c<mdcnstr imJ contat' t points.

2. Too small u dwell ungle will r~sult in misfiring.

3. Too large n dwell angle will result in burning, of rcmdenscr and c<>nroct poinL~

-1. Too large a dwell angle will result in mlsJi.rins.

V1~1ich of the above ·statements are correct? a. I and 1 b, 2and3 c. 3 and 4 d. 4and I rhe volutnetrie e:fficieuc) of a well designed S.L engine is in tho mngt nl' ~- 41l"A.- 50% h. SCJ% - 60'lla

•. 60% 70% d. 70% - 9(1%

lAtin I 0 f!ld• II.I:Mw i~to~"-nl!lo -

VariatiOn ul' ~pccinc fuel con,11mpt i~>n with fi.t~ l -air mtio lbr ~rk ignitinn enJ;inc is represemcd hy which of the carves sbomt above? a. Curve I h. Curve 1 c. Curve 3 d. Curve 4 F,lr a jet propul~ion. unit, j,kally the rntlC) ot' compressor v.ork nnd ntrhine work. i~ (1, 2 b. c. Not reJated to each oU1er d. Unpredicu1ble

7 ol 15 54. /1 0.5 m ~lick plano wall 1m.~ its 1\Wl

surfaces ltept at 3UO"C und 2uo•c Them1al conductiVity of the wall varies I inenr~y with tomperaltln' and its values at JOO•c nnd 200"C an:> 15 WlmK anll 15 W/mK. respectively. Then the .steady ltont Owt ~trough Ute wuU i.~ a. R kW/m~ b. 5 kW/tn1

c. 4 kW/nt2

d. 3kW/ru2

55. A 320 em hi~h vertical pip" ot 150 •c wall tcmpcratttre i~ in a mom 1vith still air at 1o•c. Tbi,~ pipe supplies heat at the mteor 8 k\V imo the· room air b~ natw·al convcct:iun. Asswning lamillltf: tluw. the height of tlw nipe n"eded tu supply I k W "nly is

56.

58.

a. 10 em b. 20 em c. 40 em

d. 80 em The avernge Nusselt tUIJllber ill lruuiuat natural conv<'iltion ti·ot!l u vertioul wall ul I So•c with stlll air ;,L 20"C is round Itt be 48. lfthe wall tempernlltre bt'comes Jo•c. all Other pammeters l'emaining same. U1e average Nussl'J ts nUnther wfl l be a. ~

b. 16

c. 14 d. 32 A lluid o1' th~rmal c.onuuctlvity l .OW/m·K flows in fully developed now wftll Reynolds nambt'r or 1500 Lbiou:ih 3 p1pe of cliametcr 10 em. The h~ut transler coeffici~nt for uniJbnn hcaJ flu~ an(! uui forn1 wall tempermore boundar)' eunditions nrc, rcsrecti vtl~

w a. ;l(/.57 uml4-3.64 - l ­

mK rv

b. -'13.64 and 36.37 - ,­Ill' K

w c. 43.64- 1 - for both the cases

mli.' w

d. 36:57- ,- 1\Jr both l~e cases nrK

l'"'o l3rge P'lr'.tllel grey plaks wilh a small gap. exchange radiation ttl the rate of 1000 W/m2 when tlld r ~mrulsslvitk.s ur.: 0.5

Page 8: Ies mechanical-engineering-paper-1-2002

www.examrace.com

59.

each. By coating one pfotc. its eml!~i\·e l$ tcdu~ed to 0.2.5. Tcmpeuturcs remain unch3ngtd. The ne\1 rdlc i>f heot c.\:c!Jange ~bnll become

~ 500 W/1111 1' ·GOO \\' im: .:.. 700Wim'

J" 800\\110: Twu Jon~ Jlnru llcl plolu~ of Saltlc emissive O.S Mb maintained al diffcrCtll IOlf\J>CTfiiUTe.<! nnd have flldintitm he-11 e.xchnnge between lhem, 11ie mdi:~Jion .;hiold of ;,rnissivo o.25 plnood in. U1tt middle will reduce roclintion heot c.~ehuuge (0

"· 11:2. 11, 114

""' 3110 d. 3/ S

60 1\btch L~t T 1~'lth U~l ll and ~elect the

61.

correct ;m<;wer;

Llst I (Type 11f r:odi<Jtion) A. Blnck body B. (jn:y hody C. Spacolnr D, Diffuse

l .ist D (C'hnr •ctcristic-) I Emillsive docs rot depend ou

wavelength 2. Mirror H~e rell.:¢1illn 3. Zero re!l eerivity -1 Intensity •arne in al l dn'e\llions

A ll C D u. 2 I 3 •t

" 3 .) 2 c. d.

2 3

Mnt.oh List l (Type of )leal transfer) with l. ist II (Governing dimensionles• parnrneler) and select Ll1e correct answer:

J.i~l I' A, Pl)re<:d l:(mwct ion a Nnturul oo:nvection t". Comt>ined free and rorced convection D. IJnsteady conduction with conv..:tion

al surf.,cc

l'.i•l II 1 Reynold'!, (;rJShlll' 3nd Prnndtl numl>er

62.

63.

64.

Sol ll 2. Reyno(~ and Prandll number 3. PouricrmodnhL< :md Bioi numh.:r 4. Pmndtl number tmd Gr3Shof number

A JJ c D

•• 2 1 ~ 3

b. 3 4 2 ~. 2 4 3 d. .3 l 4 l Tltc insuhm:d Lip lcmperlllurd of • rec(J!ngulnc lougiludinnJ tin having :m tro:ell~ (O'·er ambient) l'oot !emperaturo of 00 is

a. 00 tnu.b ( 1/11)

b o. sin h(ml)

¢, 90 1lmh( mi}

(ml)

d. o. co;~ It ( "'' J

Cons ider Lbo following !tl lcmcJtL>i pertaining to brge h.cnt lmnsfer rnl~ using l'io>: L Fins should be u•ed on the side where

heat tn•nste. coefficient i1 su1lltl

l . Lon[! and th1o~ lin~ i hould be used 3. !)hurt and tl>in fins should he u.•cJ 4. l1termnl conduetivit}' of fin m>lerial

should bd lnrge Which of 111~ abo\'~ ~IDU:monts are .:orn:er/ a. L 2 aud 3

b. I. 2anJ ~

c. 2 • .3 ""J 4-d. I, :'1 and4 Using lhemul-el""tri""' l nnalog) in heat lmnsft:r. malcb List l (EI«:Lrical qoantiti~~~ with List ll f fhcrmnl qunntiliC!) nnd 8clocl the-corre;:t •n"ver: List t A. Vohnge B. Current C. Rc:sisfun~e

0. c~pilcitonce Lisrll

1. 'l'herm~l r~!li~tn.ncc

2. Tlumn~l CDpncity 3. J!cnt now

Page 9: Ies mechanical-engineering-paper-1-2002

www.examrace.com

65.

()7.

68.

('

I D 4

b. 4 l 3 2 ~ 2 l 3 4 tL. 4 3 I 2 P10ndtl uuu1her of u llowin!! lluid !.•-c~• Lc:r th.1n unity i rnli~otcs (h•t hydrl)(lynnlt1ic lwumlary foyer tluc'-'niO<$ is ~. GreAter d1nn tltermol hounJnry layer

thick!".,;$ 1\ Equal lQ Lltermol buundiiJ')' layer

lhictneu c.. Grootor thou bydrodyu.:uulc boundary

.Ioyer thlckness d. [ndepcndent or 11•erm•l BI>Undll!1

l.,nyer Thicknell.< A $lllndard ~apo11r ~mpression rtl'rigerotinn .:y.!.l<: consists 01 the l'i•llowina -1 thc,•mod~uantk pn,;cc.,,e.• in ~eqnenco;

u. llotherm~ exp311Sion. i.JI!nlJ'opioo comp...,.sion. L\oth<:rmol compression anti istnlropic e.-cp.:uL~ion

h ~·onstanl pressure h~l oddilirm. iscnJropk l:l>tnf!I'CS!ion, conslanl pressure heal rojoclion and isentropic expan~ion

c. Constant P""'Bure h""l odditiort, isen.tropic. coml)t'es$lon, consbnL lli'C$Stu'e htat r<:jeQlion and l.i~opie cxp:msion

d. ls~lhennol c.xpamion. o.:onsll!nt p~•un: h.:al o~diticm. i;otht rmol ~Jmpres:-.ion and con~L1nl ptt:$aUtc:: 1 • . tc~lJ'oJbehon

Sub cQoling hc31. <.'~:change~· i• 0.'1(!(1 in u rcfrigcrotion cycle. The enlhnlpi~ ol o.:onden•~r outlet ~nd ev~poratur uutlel ;~re 78 •nd 182 IU/k,g respectively. l'he cn~ulpy ol outlot of isc11ltopie compt.:ssor is 230 kJikg ctnd cntJtnlpy of sub C<IOied liquid is 6l! kJ/kg. the C\>P <lflhecycle is ~. ~.2.5 h. 2.16

c. ~.ll

'L 3.5 Mntch Li~t l with l, i•t: n •ntl •elect th" currect an~wer l.i:n I (Rel'rigrr~tion cqu ipnumt)

69.

70.

71.

I) or IS A. He.melically $C:•led compn:,;;or B. Semi-hennitieally s~alcd compresNQr C. Open type C()mpn:ssor D, Ex:pansi<ll! device List 11 (Ch aractorislic)

l. C•pilllll'y lllbc

2. Dcltl• uompressor auil moto1 cudused in n <holt or costing

3 Bolh comprc;ssor nnd motor enclosed In a shd l or ea~mg W1th • removnble cylinder cover

-1. Drlvlng motor or enclosed mu shlU or c<l!ing and .:oJlJl<cted to tho ! hall driving the conrprcs~or

A a c .n i,,

c.

d. 2 3

2

2 1

'11tc rolio of lh~ clcaranco volwu~ lo lh<> displocemcnl \'a lume qf • lt12 reciproo:nting compressor 1s 0.1)5 Spo:cilic volume ol inlet and outlet or O.:Onlp~or lU"C 0.04 and 0.02 m3 kg n:spc.:Livcly. Volumetric efficiency of the compressor is •. '>5.()•• "· ~7 s~ .. c. 38.0"• d. l\).0''• Consider U~e follow·ing •lolomcnts in relation 10 • convergent-divergent sleam no:aJe operating. under choked oonditious: I. In the convergent ponton steam

v~Jocil)' is less ~l>n sonie velocity 2 ln the eQnvoraeot portlun ~to:•rn

velocity ~ gre.:•l"" Uton ~onic vclochy 3. In Un: llivof!!CIIt 1111rti0n the • team

vel«)city 1.~ lesa rhr•n !ionic vel01;.ity 4. l n the diVcQ!ent portion the $team

vo:loefty i.~ !ll'c::tlcr lhon ~omc vdociLy Whiob of the above <Wemenll! ~.re com:et'l a. I and 3

b. I and 4 c. 2 and 3 d, land 4 For m:ll<imnm clt<charge through • conver&ent u07zle the pressure ra.tio rn pt should be (where n is tho lsonlt'l>pie <:xpnnsion index)

Page 10: Ies mechanical-engineering-paper-1-2002

www.examrace.com72,

73

74

75,

a. (,:I );_ h, ( 2 ) ; ,

II + J

' ~ ( "~~ r

Q ( II~ I )~ l"or n rcactinn wr~inc "ilh dcgrc~ of reucainn equal 10 "'~"- ( V is lhl\ :~bsolute saenm velocily o1 inlet and a 1s lhc Sf\glc mnde hy it to lhe anngenl on lh~ whcel) lhc cl'licoency is maximum 1111nr 1hc hladc $pci;d 18 cqual1o a /.:nsiA / 2 b. :!I cos a c. I cos~ a d. !' cosO' Mm~h Li~'l I Wilh LISI IJ ond sei«L the correcl unswer Lis t I (Equipmrn t) A. Amicipnwry gear B. Lnb}'rinlh C luvcncd T-naochmcm D. Dcnertttor Lislll (Applic•tion ur<'11) I Scnling sysl<'tll 2. Sloam power plan! 3. 1 urbme govcrnmg syst~m 4. Bludcs

A B C D a. ~ 2 3 h 3 I ~ 2 c. 4 I 3 2 a 3 2 4 rhc pressure nse i11 th~ Impeller or contl'ilitgul Clll11Pf•S$Or i; achicwd by a l)ccrt:nsc m volume 11nd dil'f\•s•on

ncuon

b. Ccmrifugal 11ctioo und docr'-'113<! in volume

c, 'I he ccmrUi.tgal and dll-l\oslon achon d. C'cntrifugnl. And push-pull atrt1on Compar"J tollXial compct-ssttrs ccutri fugal compressors are mor'c sultublt fur

76

n

7H

79

80

"- lligh heod, to" now rm~

b. Low heod. ''"" Oow mti! o, Low bead. b1gb flow rale

d. High heod. high llow rutc

11Jutl5

Smiling Qf bludes in 3\ial- OIJW compressor is aha ph~nomenou of a, A or s lrCllm hloclnng the passal!c b. Moti()n of nlr at sonic velocity c Unslead) . periodic and rever.ed ilow d Air s1eom not able to follow the blnde

contour

lo 11 reaotioli b,ubin~ the hc111 tlrop is l'ix~d blade is ~ kJ/I(.g uud the IO!nl heat! t.lniJ1 pet ~tngc is 20 kJ/kg, The degree of rcautil"ll is a .. 40% b. 61i.7°'o C'. 60% d 25% 'l11e inlet und cxtl ' 'elodly diagrams of o turb(J much inc rOtulor ore shOwn

•• •• T he mrbo mnclun~ IS

a. A 11 11.-tiru cvoupri!SS\Ir with l1ackward curved bJj]do:..~

b, II rndiul compressor with bnck\vnrd C"Urved !>lodes

e- A rudiul compri!SSor "itll lbrwurd ~"'.trved )llades

J An n.\iul compr~ssor willo lo f\\ntd curved blades

In an axoru How C()lllpr~ssor 11, = cxi1 11ngl~ from saalor

p, = Inkt nng,te 10 ro1or

ai = illkl angl~ to suuor

fJ1 - ouUetMgl~ lrom roaor The COitdilinn 10 hQve 11 50% degree of reaction is

3. a,= {1,

b cr,-n, c. cr1 = {J) Md tJ, " a, d cr1 ~a') and !11 ~ f), Bray1on t}'tle with in finite j111er oooling ond rch<aring stages would npproxlmule a.

Page 11: Ies mechanical-engineering-paper-1-2002

www.examrace.com

• Stidin~ cydc b Ericsson C) de c. OUo cyclll d. All:.inson cy~lc

81. Assertion (A),; l!fficicn~ of • Mcrsiblc engine opcrnting bctwcf:n temperntun: lim lis 'I a itnd I z 1~ n-3Xlmum Reason (R): Wlicienej• 01 a Mt:r>1bl~ cni!IJ1e i• g.n:.>lcr th•n lhal of Jot

rm."' cniblc engine.

.._ Bolb • \ ~nd R .re "'"' •nd R io du• .:Om:cl <:\'J)lo~liM c>f f\

b. Both • \ "nd R are ltuc but R " ~I>T the correct e.~pl3nati!ln of A

c ,\ &S In~<• bul R i< 1:1loe d A IS fabe but R IN llll9o

8'2. '\ss<>rlinn (e\1: Spc:<:ilic hoot "' Clln.":mt f'I'<:.';Sun: for an id<::~lg;.s IH JI\\~Yl Ji,f~IJ:r Uibnlhe specific he.>t ol\Xlrllllllol I'Olumc.

Rea.\011 (R): Heal addc-.1 Jl consbnl I olumc ., not utilt7cd fl)r dorng an} e~~l ..-ork.

• Bolli A ~nd R arc lruc and R 1:1 the coll'l>:t eJq>lonoliun ot' A

h Both A and R ""' lru~ hUI It i• Nf )'I' [b., <:on'e<!I •:~.)J ianaticm of A

c. A"' iHw but R ,. fal•c <l A L!l 1'411c hut R is fillsc

8;l ~ ... IIOI! ( .\); 111c pcrfumJanee of • >inq1l<: IUnktnc C) clc u ootoeruiti~e 10 lbc: ctr,...,cnC}' oftbe feed pump R~ason (R): The nCI "orir mtin us pr:u:li~allt unit} fQr a !<on!. inc: c>clc:.

a, Both A ~nd R ore true and R ., lhe con,ct eJq>lnnnt.ion nr r\

b Botb A nod R aN uu~ but R is NOT Ut~ com.'<:! u.xplnnntlou of A

e. A i.> ltlli: but R i.~ tali~ ll A 01 Jibe but R is fJise

84. .\»erllou (A): i\ pinll" n<>l.tlc i. employed to mi.~ the fuel proper!} ~"" \\ ~h the slo11 air movcmo:ntll\·ailable With the m:rny t1pcm combltstion chaml'<!lll in ('I engines. n~•u.on (R)I 'fl1c mixing of fu~l and akls s=tly ulftctecl by the nnturo of lhu ak movement in the combu~bon chamber or 0 .mgines.

a Bolb A and R arc true •od R is the co~t c.~l~l!on of A

llofl5 b Bolh A •nd R are ltue l>ut R i> NOT

the CO<n'Ct expl•nJttOn of A

c ~ ~ trw: hut R •• f•l•c: d ;\ rs false but R i• false

~5. 1\-.ertion (A): Heal lrnn<fgr nt high l.:mpcnture is domlr~oted hy radiotion , .. u,~r tlllitl con\1\.'<ltiun. Rcusrut (R ): Radiahon d1,11tnd. on fourth 1>0\va- of tempcn~lurc \\hi I«: c:onvcc:tion

depends on urut J>O" er

a Bolb A and R are true and R i, the com:et o:-qllo~~:~tinn nr A

h. Both A •nd R ore true hul R is f';()l

the cumoct c:xplonoloon uf A

c. A is tru~ but R 1S folso: d. A i~ false but lU$ l'n '""

llu. "-'s~rlloo (A): II t< not poss•ble to d~'tomnino 1:2, ITO in • -'<lUotor flo\\ l~<>al

exchanger with equ•l heat copactly r:rteo of hOI •ocl enid nuxi<

!{""~'"" (R): Becau.c lh~ temperature diiTeu:oc-c is 01nriant alung the lc:nsll• of the IICI!l ~ebang«

11. B<>th A and R oro lJ\10 and R "' the: cllfi'<:Ct e.xpi~Miion of II

h. Bolb A •nd R nrc tru~ hut R is NOT lhe correct e.xplannlion or ,\

c. A is true but R IS J'al~c

d. .\ IS fake but R is t111~e 87, \~'"'lion (A): In • littu•d·lo-g., hdl

~::~changer liM on; pro• idcd on the gas Sid.:.

RL'll>Oil ffi): nrc 8•• """'" I .... ll~Cnnol rcoiJtancc: than liquul.

u. JJoUt A and R oN lruo and R Is Urc correct explon.1l lon or 1\

I> l!olh A ond R are trllc but I{ " NtJT the <:orrecl explanation of A

c. A i<1rue but R IS fal•e

d A ,. fake but R is fol>e 811. \S'Ierlinn (A): i\ h)dr.ruhc ram·~ a dC\·tce

tBcd hl leO ~<otcr frmn d«p •»lb. Re:l•ou {R): llydraulti! 11101 1\IJri..> un tit<> 111 Ul"iplo of" >Ia lwmurcf.

"· Both A and R ., • lmo and R Is lb" CO.....,[ ""plonnllon or A

b. Both A Jnd R ore ltue bul R it NOT the corred explonotinn of 1\

c A IS ~lml R .. f•l•c d • \ is fal•e but R i• false

Page 12: Ies mechanical-engineering-paper-1-2002

www.examrace.com

89

'XI.

91

!J2.

Assertion (A): COP t.>fhe.•r pump ill mQfc rhnn lhe C'OP e>fits refrigeratorver.;ion. Reusnn 1~): Pumping of ht:tl <'><tuin:s lc.<;• wo~k re)uth•c tn exlroctiQII of heal limo Ote tv.apurutor, a. Both A ~no R ore lnl<> llnU R h .!he

correct awlonation orA

1!. Both A ~nd R ore lnlc bw R is NOl' I he col'l'llCt ~>:<planation of A

c. A r< true but R tS false cl A ilo f'10 t.c but R iK f.• t~e 1\sserrion (,\ ): ln gcner3l, vls<X)~iry in l i<tUid~ mcreas.:• and in l!••es it lloorcasc~ 11.i1h ri3e in lcmpcruturo. lteasou (R): Viscosity is CIIIL.<ed b) intcrrmolc!euiM fom:s of cohesion 11nd duo to lransfer of molcculnr momenlum betwee11 nuid layers; nf which in liquids U...fol'lller ltlld iu g;.ses the lat.~• conltibutc the major p0rllowords vW:o.Uty. o. Both A nnd R or<: tnt" and R "' tho

correct ~lnnat ion of A

b, .Both .1\ and R are !rile hm R is NOT the ~orrect explan~tlon 111 A

CL A is 1!111l hut R i< fltlse (L A is 1\tls.c but R is tlllsc: As5cr1ion (A): Slreom lines are draw11 in lh~> 001\ field sucb !hat at a gh·"" instanr of time they oro potpcndiculor to lh" direction of .Dow al every point in the nnw field {{<'ason (R); Equalioo for a ~tre;~m lin.,. In n two dimensional Oow is g.vcn by V~dy - V1 dx 0. :1.. BoOJ J\ ond R nle lru~ null R i~ !be

el)rrecl "-'<Jllanolion of A b. Bulb 1\ •nd ~ are 1roc bot R is NOT

the c<!Tl'Ccl. e;<p)anatlcm nf A c. A is true but R Is fa!Ae cL A L;; f11l<e hut R is fa Is~ ~\ss<'rlion tN: The m••• flow 111te.lhmogh • cmnpressor for various rel'rige.'llnl• al S!Utu: h::ntpc:r:&lW'.: :uld l)rr:~§UI'C ffi proportional to their mole>!ulnr wei.ghts. Rcu•uu (R): A~c11r'din~ In A•·u~~~~~~-. In\\ ~II ga~e;; hnvc ••m~ number of m(!l<:~~ in a giv~n volume • I same: rri::'<surc: ilnd ltmti<'T~Iure.

11. B<nlo A lllld R nrc true nnd R "' the <<lnllct CXJ>Ionutiou nf A

!1~.

95.

96.

J ~ol l , b. Bodt A n11d R ~re lrue bQl R ~ NOT

Ute correct expl~nalion of A <:, A ill true but R i< f3l<c d. A is false bu1 R is fnlse A«erlion (t\): R.onk.ine efficiency would approach Carnal cycle eOioicncy L' • providing u s.,-i.:s of ,..,g,'tler:ttive feed ho:tting. Rouson (L~): Wlth rcgonc.ralivo foed h""hJI!!:. expantion through lh;: hq·bine approachc:s an is<>111rot>it: proces$.

:o, Bo01 A and R un: 1/llC nnd R i< l)1e uvrre<t<=lqllott.nion of A

b. Both A •od R oro true but R is NOT the cvrrecl e~pl:oo•tion ur 1\

c. A is lnlc but R is false

d. . \ill fal!io but R is folsc Ass~rlloo (,\ ): 'llic sp<lcifie spocd. of • f>ellon turbine is low

Rcn.•oll (H): Pelton turbine works under a high he10d 11nd han(lles 1011 ilischarge. "· Roth t\ and R ore 1rue and R i~ lhc

<'lllll'CI e~rlanutlun or A. b. Bo01 A aud R nre lrue bul R is NOT

lhe eortccl cxplttJJation of A

c. A is l.tmo but R ~ fa b .. d. A is f•lsc bul k ;, f•lse TI11: scnoill~ hulh <)J' the lhermu~llltlc c!lpansiou v•lve is located ul 01e •· J1"tit oJ'!I1~ cv•porator h. Inlet ufthc c.:vuporolm c. E. '<it nf !he cvn<krucl

d. b~"'L of the couden.<er E.'(J)crim.mtul ntl.:a>UIImlcnlll on a rofrigorotion ~yslcm indicolc lhot t'3lc of h.,.t extro~tion by lhe evaporator rate of heal. reJ.:~:til'lu in the: condenser and rate ul' helll ruj.x:tioll by ll1e eotupl'c'Ssor body to cn'l'ironmcni ru:c 711 k\V. !lO kW ond 5 1;\\' respectivel)'• l'he power input (in k\\1) n;qutrcd t11 upcrntc lh~ ~yst~m i~ a,. l5 b. 20 c. 2S d. 75 Ozone depletion by Cfn occurs by bn:akdown of a. Chlorine a tOt~• from rcf·ngcrunt l)y t IV

rudiatio~ and ren~tio/1 wilb oz:on~ in tr\lpo•pherc

Page 13: Ies mechanical-engineering-paper-1-2002

www.examrace.com

b. J'Juorfne atoms from rcftigcrant by L'V rallialion ~nd ..:action '•ith ozan• In lrOIII'"phore

.:.. r hlurinc aU!m$ from reJiig~•.,.n l l>y I ·v J'l1diatiou and J'..,.cfion with ozon~ In ~11'111~~ph""'

d. F luo1ino atoms from refrigerant by lJV 1'3d_i:nion 3Jtd rlj!ac-tiQrt wlth ozqne In straU>spbere

98. t- la.~umun poosible COP of .. rolar :.bsorplion rcfiigernJion system wiUt gtneutor (.:mperntun: of 36() K. obsorber temperatura of ~00 1-. condenser letllflCtaturo of .300 K and ewporotof teri1peruturc of270 K i$ n. Q

b. 6 C-, ...,

d. 1..5 9'J. ln """~ A. moist air b adfabail . .:.-.11)

$3turJtcd and in case B. mol.st air is i•obaric nllv •atoroted. The sni\Jrnlion temperatrm:i in "iiS~ A and B ar<:­r<:Sp«:Livol y a. Dry bulb lcm~OfaUUc "'"I Wet bulb

tcmpc:raluro b Dew roint tcmper:Uun: uu<l Wtl bulb

tempetulur~

c. Wet bulb tempcramre nml tlow point temper•tunr

d. \Vel bu lb lernper.ot11re ond dry bulb temperatuN

100. ln a system: Melllbolic rate M. work done by mon \V. rnl~ of con1'octn 'o:. rodiatiye and evopol'lllil·c heot lo~ses = Q and raie of heat s torage = S. 'lnen heat ~xohun!>e betw~eu u1an and bh unvlroumant is given by n. M t W - Q • S b. M w - Q s c. M • W Q - S d. M - W Q S

IU L. Por coo lilt! nod dcbumMify mg uf ull!l:ltur.,l~ moist nil' it must b~ possod i)ver :1 coil .11 a temper:.sture ,,, (If ~tli~l~•tic s:ontnnion. of incoming

$lrc:nm b. Whtch •s lowor tba.n tlte dew ·point of

incorning stream .:. Which Ueo: betw~:en dry bulb and "et

bulb tempenture

10~

104.

105.

13 uf ll d. Wruch If~ between Will bulb and de\Y

point temperature Qf Incoming stream ,,. l•t<:nl hen! roatl in ~n .Judltorium ~~ ZS~~ c>rtJtt S<lltsil/l.cdt<:Ul lttod, Titto value of ~ansible ltebt f•~l~t· (S U 1'"1 i• ct(Wl llo •. 0.25 b. 0.5 c. 0.8 d. 1.0 F1•r 311 office: building tbe owdour do!!ign conditions ure ~soc dbtnnd lt~miclity rntio of 0.0 15. 11te indoor design condition~ are 25"C' dbt and 0.01 humidity rntio. 1'hc supply air stato l.!i l5°C Jht und 0Jl07 huruidity rotio. U' llt" sappl}' air !liol\ mh>;, I()M m1'min ltml rresh :.ir flQw r•te i~ m' 1min. rnQIIJ s<:Jlsiblc aod• I'(IQm lat011l h~od luads nrtl.. ~pcctively a. 408 kW a.uu 400 k \\'

b. 408 k. w J.Dd 150 k\1 t:. 204-k\V and 400 k\\-11. 2<UkWaod 150kW' l-\)drost;Jti~ l•w 111' prcs$ure. is given llli

· - i)p f i't = pg h. ilp t f: - 0

c. c1p e: ~ :

d. ilp I i": e (.'nn•iont

In a ·pipe-flow pr;o,;surc is to ~e measured ~r" particular cros•-sedilln using I he most 3!1Ptopriale ittstruutenL Mnlclt List I (Exp~t"d pro;sure range) with List II (Appropriate me.1suring devrce) and <elcat the com:clnnswer: t.lst I A. Stead)• llow with •mall positive gauge

p r~:s..u rc B, Stc11uy llo1• With stnnU ntgative. ~nd

pO'!il.ive !!Allj!C> pi'C$ur.:

C. Stcody llow widt hi!Jh guuge P"'"'"'" D. LTostdldy flO\\ 11ldt Ouo:tuoling

pn:ssuro

Li•1 IT l. Bourdon r>rCS•ure gouge 2. Prc:ssuro tronsduO<."f 3. Simple pic:zomd.t•·

~. U-lub.s lilllnom..t.ur

"\. B C D 3 2 1

Page 14: Ies mechanical-engineering-paper-1-2002

www.examrace.com

11}(1,

107.

lOS

I OIJ.

b. c. d.

l J I

4 ~

2

3 l

3 rhe llllpillllf) t•ise bJ 20"(.' ill olean gillS!; tu~ or I mm diameter containing 11 m~r Is appr'o~;motcly

a. 15 nun h. 50 mm c. 20 lnlll

d Jtl11tm Pres>ure drop ol' ll'lll~r llowin~ throuith u 11ip.: (dtn_~it) 1000 k~(ln1) l)ctwccn twn pomts tS mcasllflld by usi11g u vertitlll U­tub~ mnnomet~r Manometer uses a lfquld >~ith densit)' 200() kg/m1 Th~ difTc"'TlCC fn height of man metric Hquid in the two limbs of tbc maoomctc~ is observed to be I 0 em the pr~ssu.re drop bel ween the two pomls ts:

n, 98.1 l'lillll b 9~ I Ntm' c I W>2 Nltttl d. 19620 N/m~ Match l.lst I "ith Ltst lJ aod sd cct the correct unswcr. Lbl I (Stubility)

A Smblc equillbnum of u tloating body U. Stnblc cquilibnum ut' u submerg_ctl

body C Unstuble equdibriwn of u Doming

body 0 \Jnstnblc l.>quilibri~m or a submerged

blld)' Li~l U (Cuatll tlons)

I Ccmr~> or buoyancy bclo11 tlt~ ccnl-re ofgr!Mty

2. M~t centre above !he .:entr~ of Jlffi\ it}' J . Ccntill of'buoxru•cy abol'c the centre of

gr.lVt\)

-1 Met cent re below the cemre t>f &11lvity A B C D

lL 4 3 2

b 1 3 ~

c. 4 2 3 d. 2 4 3

A dam tS havmg n cur.·cd surfrtce ll.~

shown to the figure,

I I()

Ill

112

t J ol 15

• The height of the water retam~iJ b) the darn is 20 nt dcnsit) uf wuu:r is 1000 kglm' Assuming g ·II) 9.81 mls', U1e horizomal forl-e atmng 1111 the dam per unit length is a. I. 962>< I fl1N b_ 2>d0~ c. 1.962>. 1 O'N

d 3,924~ tO"N The vclodt) potential uf tt velod ty licld 1S

g•ven hy ¢' = .Y1 - ·y' + rxmsl its menrn function will be g1vcn by: 11. - 4-y + constant b. t-2X) ~ constant c. - 2>.')' + !{.\) tl. - 2 2~') + liyl A s trcnmhne tS n line a Which is along the path ilfthe particle 1>. Wllich ls ahvays patalld to tltc Jnaiu

uirecdtm or now c. 1\long which Ute£1.1 1!. no llo\1' d On which tangent drown 111 any poan1

give., the direction of~clllclty Mwdt Ltst I with List II a11d ~elect lbe correct nnswer: Lb t I (F:xH mplc) A. l-lo11 tn n stru1ght long pipe with

varying Do11 rate B Flow of gas through tltc nll7.zlc of 11 jet

engine c Flu\\ or water lhmogh Ute 1tose of II

fire tightmg JlUrnp 0. P"low in u rivc.r during tidill bole

l,ist II (Type rrf now) I. Uniform, sl~:ldy

2. Non-uotfonn steady ~ Unifonn, unsteady 4. Non-un ifonn unSC<~dy

II B c a. 4 3 b 3 2 I c. 2 3

D 2 4 ~

Page 15: Ies mechanical-engineering-paper-1-2002

www.examrace.com

Jl.t

us

1L .> ~ 2 Mntcb LiJt 1 (Type of fluid) with T. iSI IJ (V:m:otion nf aheM •tress) im~ St(ec( th~ corrcc;~ answer List I A. Ideal fluid B Newtooi"3n lln•d C". NOn·ne"'·IOninn fluid I) , Bingh;IJI1 plrll)tic l. i•l II I. Sh""r 5lre<~ v>riil'f linearly with the

t':lte of <!r.lin 2. She.1r stress does not 1'a,Y hnealy with

U1e r:otc of stJ:ni11

3. Fluid bclta''"' iil<e a ~olld until ll

minimum \'icld .~lies~ hcyonu 1\ hich it e.~hibit• ~ · linoar relnlion<hip bel\1een ~hear ~tress and tho rate •Jf ~t rain

.t. Sho:<~r stn::>s TS zcrf>

A B C 3 1 2 4 2 •' 2 I

2

I> •1

!be equation of " veloctty distribution over 3 pl>te iS &iven by 11 : 2y- y• where 11 is the velocity in m/• ~t • point y meter !rom lite plate me.-~smed perpendicularly, Assuflling I' 8.60 poi•"· thu shear slres~ "'a point 15 em from lba boundary is 11,. 1..72 N/o? b . .1.46 N/ml

"· 14.621'\/m: <1. 17.20 N/m2

/o.btch List .I (Fluid puametcrs) witlt List IT (Bosie dimensions) and '"l..:l Uta correct answer. T, isl £ /1, D)llatnio , ·iscosity B. rhew, roughne$~ coeiiic.i<;Jtl C. Bulk modulus of tbsticity

D. Surfoeeten~ion ( cr)

Li~TI

I MiL' 2. MILl: 3. J\111.1

.t. .ff.l

15 elf Jj A B c D

;&, 3 ~ 4 1 b. l 4 2 3 c. 3 4 2 1

d. 1 2 .J 3

1 J6. Ute fo= of 1mpittg~:nwnt of • jot on • v:tnc Tncn:3Se• if a. l11e l~tne ~ngle. 1~ increa.<t:~l

b. The vane angle is decreased c. The prcS!un: .is reduced d. '11teY:m<r is moved ago1rut tltc jot

I 17. Which of tltc foUowing ossumptions :trc>

tn.ade for deoying Bernoulli' < equ.-nion?

I. Flow i~ lltendy :md incompr~:~~•ible

2. Flow ie unsleody ~nd c.ompre;;!!tblc 3. Effect of tiictiotl i~ neghx:ted otid tlnw

i• n Inn A • •trenm lioc ~. P.t't'ect or friction ·~ taken into

<;Ousid~rntioo ond !low is o lou~ • &IJ'c.l ul liu e

Sd""t Ute con·c.::t :rwowor using tile ooues given below:

ll, I and 3 b. 2 and 3 e. I and 4· tl. land~

118. Wltllo: tmlosurins the velocity of air ( p :. L2kg • m1) • lb., difTcrcnc<: in U1~ stagn31ion ancl slntic pressures of n pitrJt· Stbtic Lube Was lhund lo be 380 Pa. Tile vclooily aLtbal locotion in mfs is a. 24.03

b. ·l.02 c. 17.8 d. 25.17

119. The drag force cxcncd by • Ouitl "" • bod) inuuemxl in lila Jl .uid i• due lit a. .Pn:::ssurc and viscou!i forces

b. l'r.:ssuro oud grav.ity fora.>;>

1:. Pressure and sutfitc.c ton.SioQ foo:\Uj d. VIStOUS a11d gravity force•

120. TI1c hydraulic moau~ depU1 rwhcre A = ore,, nnd P ~ webed perimetc1') l; given by

a. PiA b. P:tA

c. AlP

d. ./A lP