ieee powertech 2011realisegrid.rse-web.it/content/files/file/news...a “catalogue” of technology...

32
IEEE IEEE PowerTech PowerTech 2011 2011 A. L’Abbate *, G. Migliavacca*, T. Pagano**, A.Vaféas** * RSE (former CESI RICERCA/ERSE), Italy ** Technofi, France Advanced transmission technologies in Europe: a roadmap towards the Smart Grid evolution Trondheim, June 21st, 2011

Upload: others

Post on 24-Feb-2021

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: IEEE PowerTech 2011realisegrid.rse-web.it/content/files/File/News...A “catalogue” of technology options available for TSO integration Control zone constraints impact the choice

IEEE IEEE PowerTechPowerTech 20112011

A. L’Abbate*, G. Migliavacca*, T. Pagano**, A.Vaféas**

* RSE (former CESI RICERCA/ERSE), Italy** Technofi, France

Advanced transmission technologies in Europe:a roadmap towards the Smart Grid evolution

Trondheim, June 21st, 2011

Page 2: IEEE PowerTech 2011realisegrid.rse-web.it/content/files/File/News...A “catalogue” of technology options available for TSO integration Control zone constraints impact the choice

2011-06-21 2TREN/FP7/EN/219123/REALISEGRID

OutlineOutline

REALISEGRID technology roadmap rationale: background and issuesAssumptions for roadmap building Main roadmap componentsKey outcomesPotential for advanced transmission technologies in EuropeConclusions

Page 3: IEEE PowerTech 2011realisegrid.rse-web.it/content/files/File/News...A “catalogue” of technology options available for TSO integration Control zone constraints impact the choice

2011-06-21 3TREN/FP7/EN/219123/REALISEGRID

Background and issuesBackground and issues

European TSOs have to deal with several challenges• regional markets opening• increasing level of inter-zonal congestions• changing regulatory framework• massive variable RES generation penetration• assets ageing• environmental and social constraints• active demand and distributed generation penetration

A transition towards a progressive re-engineering of the European grids has startedTransmission networks are key enablers of the Smart Grid evolution in Europe

Page 4: IEEE PowerTech 2011realisegrid.rse-web.it/content/files/File/News...A “catalogue” of technology options available for TSO integration Control zone constraints impact the choice

2011-06-21 4TREN/FP7/EN/219123/REALISEGRID 4

Roadmap rationaleRoadmap rationale

Advanced transmission technologies may provide alternative solutions to current issuesThe REALISEGRID technology roadmap is a TSOs-targeted work, analyzing the potential integration of advanced transmission technologies into the European system at short/mid/long term horizons.It leans on two knowledge elements:- a transmission system perspective, with a long-termvision of the European system (TSOs)- a technological perspective bringing in the ongoingprogress related to promising technology options (manufacturers)

Key questions: which technologies? At which time horizon?

Page 5: IEEE PowerTech 2011realisegrid.rse-web.it/content/files/File/News...A “catalogue” of technology options available for TSO integration Control zone constraints impact the choice

2011-06-21 5TREN/FP7/EN/219123/REALISEGRID 5

A “catalogue” of technology options available for TSO integrationControl zone constraints impact the choice of one option against the others Cost-benefit analysis is required for the final choice (more and more often involving cross-border criteria)

Bene

fits

from

 Techn

o Integration  

(System attribu

tes im

provem

ents)

Increased system reliability

Increased Transmission  

capacity

Extended power flow  

controllability

System Losses Reduction

Reduced Environmental 

impact

Sustainable grid expansion (domestic and cross‐border)Existing grid optimization

Roadmap rationaleRoadmap rationale

Page 6: IEEE PowerTech 2011realisegrid.rse-web.it/content/files/File/News...A “catalogue” of technology options available for TSO integration Control zone constraints impact the choice

2011-06-21 6TREN/FP7/EN/219123/REALISEGRID 6

Assumptions: time horizonsAssumptions: time horizonsTwo overlapping timeframes• for technology incorporation ending in 2030 • for architecture and major evolutions of the

European power system ending in 2040

2010 2020 2030 2040 2050 Short -term Mid-term Long-term

REALISEGRID 2030 time horizon for technologies

EU 20-20-20

TYNDP investments

EEGI 2020 vision

REALISEGRID

2040 time horizon

for architectures

Supergridtype projects time horizon

Page 7: IEEE PowerTech 2011realisegrid.rse-web.it/content/files/File/News...A “catalogue” of technology options available for TSO integration Control zone constraints impact the choice

2011-06-21 7TREN/FP7/EN/219123/REALISEGRID 7

Assumptions: technologiesNo coupling between technologies (loss of potential impacts)No consideration of OPEX driven innovationSome technologies impacting TSO operations have been taken into the pictureSome technologies have been discarded like• EHVAC (750 kV) OHLs• Tools for real time decision making• Protective relays (revisit of the N-1 rule required)• Emergency / Restoration

Page 8: IEEE PowerTech 2011realisegrid.rse-web.it/content/files/File/News...A “catalogue” of technology options available for TSO integration Control zone constraints impact the choice

2011-06-21 8TREN/FP7/EN/219123/REALISEGRID 8

The technological scopeThe technological scope

P1) XLPE underground/submarine cables

P2) Gas Insulated Lines

P3) High Temperature Conductors

P4) High Temperature Superconducting cables

P5) Innovative towers for HVAC lines

PASSIVE TECHNOLOGIES

A1) Fault Current Limiters

A3-4 ) High Voltage Direct Current (HVDC)

A5-12) Flexible Alternating Current Transmission System (FACTS)

ACTIVE TECHNOLOGIES

REAL-TIME TECHNOLOGIES

RT2) Wide-Area Monitoring Systems (WAMS)

RT1) Real-Time Thermal Monitoring (RTTR)

A2) Phase Shifting Transformers

EQUIPMENT IMPACTING ON TSO’ s OPERATIONS (ITO)

ITO1) Smart metering (impact of)

ITO2) Wind powered pumped hydro storage

ITO3) Compressed Air Energy Storage

ITO4) Flywheel Energy Storage (FES)

ITO5) Superconducting Magnetic Energy Storage (SMES)

ITO6) Sodium-Sulfur (Na-S) batteries

Inno

vativ

e

tech

nolo

gies

ope

rate

d by

TSO

sTe

chno

logi

es

Not

ope

rate

d by

TSO

s

ITO7) Flow batteries

ITO8) Super/Ultracapacitors

ITO9) Lithium-Ion batteries

Page 9: IEEE PowerTech 2011realisegrid.rse-web.it/content/files/File/News...A “catalogue” of technology options available for TSO integration Control zone constraints impact the choice

2011-06-21 9TREN/FP7/EN/219123/REALISEGRID 9

The roadmap componentsThe roadmap componentsA) Action agendas and synthetic view of key milestones

B/C) Benefits/Costs

D) Detailed technology cards

E) Stakeholders’point of view (in case of discrepancies)

2010 2020 2030Short -term Mid-term Long-term

REALISEGRID 2030 time horizon for technologies

EU 20-20-20

TYNDP investments

EEGI 2020 vision

2010 2020 2030Short -term Mid-term Long-term

REALISEGRID 2030 time horizon for technologies

EU 20-20-20

TYNDP investments

EEGI 2020 vision

2040 2050

REALISEGRID

2040 time horizon

for architectures

Techno‐economic challenges 

2010‐2020 2020‐2030 2030‐2040

Methodologies to estimate PMU data accuracy

Improved  accuracy and reliability of the Synchronized Data Acquisition processesOptimal PMUs placement with respect to system operationImproved performances of Communication infrastructureOvercoming time lags inherent in long‐distance information transmissionDevelopment of distributed control architectures based on intelligent devices (smart sensors)

Scalable processing systems supporting  the intense WAMS data computation requirements allowing full Development of oscillation detection algorithms to exploit dynamic capabilities of PMU

Offline information analysis for planning purposes 

Other ….Full scale demonstrations to  be performed to value the real system benefits of WAMS (first results expected by 2015) , source ENTSOE 

Opening a transparent data exchange in an inter‐TSOs context

Develop Standards and Deployment Recommendations involving manufacturers and TSOs

Full integration of PMU information into SCADA systems 

2010: A few EU contries have implemented country ‐wide WAMS: Italy; Austria; France, Sweden ; Denmark; Hungary

All TSO are using WAMS on a country basis 

All TSOs are using WAMS coordinate operations 

RD&D as seen  by manufacturers

Integration tests as seen by TSOs

Full scale use within the EU27 

interconnected transmission system

0

1

2

3

4

5

Increased system reliability

System losses reduction

Extended power flow controllability 

Increased transmission capacity 

Reduced environmental impact

Benefits from  technology XX integration replacing conventional solutions 

Reference: Conventional HVAC network

P1: technology XX

The technology portfolio in the TSO context at the 2030/2040 horizon

2030

 Vision

By 2020 the electricity networks in Europe should

•Actively integrate efficient new generation and consumption models

• Coordinate  planning and operations  of the whole Electricity Network

• Study and propose  new market rules  to maximize European welfare

Source European  Industrial Electricity Initiative on Electricity grids

Uncertain demand

and generation

EU electricity 

Market designs

Legal and regulatory 

framework 

Increasing complexity of 

grid operation & planningNew grid architecture(s) 

Key be

nefits

from

Techno

logies

Integration

Sustainable grid expansion (domestic and cross border)

Existing grid optimization

Increased system 

reliability

IncreasedTransmission  capacity

Extended power flow  

controllability

System LossesReduction

Reduced

Environmentalimpact

REAL TIME  TECHNOLOGIES

RT2) Wide‐Area Monitoring  Systems (WAMS) RT1) Real‐Time Thermal Monitoring  (RTTR)

Critical

Challenges 

P1) XLPE underground  cables

PASSIVE TECHNOLOGIES

P2) GILs (Gas Insulated Lines )

P4) HTS  cables 

P5) Innovative towers  for HVAC lines

P3) HTC  (High Temperature Conductors)

A1) Fault Current  Limiters

ACTIVE TECHNOLOGIES

A2) PST 

A5‐12) FACTS  

A3‐4) HVDC

By 2030

SameVision as 2020 but at the levels set by the EU energy policy at 2030

Smart metering (impact of)

Wind powered  pumped hydro storage

Compressed Air Energy  Storage

Flywheel Energy Storage

Superconducting Magnetic Energy Storage

Sodium‐Sulfur (Na‐S) batteries

Techno

logies ope

rated by

 TSO

s

Sustainable Grid expansion

New grid architectures

Existing Grid asset optimisation

HTS‐DC

Underground/submarine bulk transport

Aerial bulk transport

XLPE

GIL

HTS

HVDC CSC

FACTS Shunt

PST

RTTR

FCLs (novelconcepts)

HTC (new)

2010‐2020 2030‐20402020 ‐ 2030

InnovativeTowers

Real Time

Passive

Active

2030 Pan EU

grid vision

c1c2

c3

c7

r1 r2 r3

w1w2 w3

p2p1

x2 x3 x4 x6x5

x7

g1

g3

d1d2

d5

d6d6

d9

d8

s2

s1 s3

f3f2f1

f4

f6

t2t1

t3

l1l2 l3 Medium 

maturity

High maturity

Low maturity

New  joint T&D system operations

STORAGE

Smart metering expansion

x1

g2

c5c4

l4

HVDC VSC 

d3

FACTS Series

f5

Coordinated control

WAMS

w4

Storage facilities in operation

c6

σ1 σ2 σ3

Other IMPACTING Technology Impacting

d4

Page 10: IEEE PowerTech 2011realisegrid.rse-web.it/content/files/File/News...A “catalogue” of technology options available for TSO integration Control zone constraints impact the choice

2011-06-21 10TREN/FP7/EN/219123/REALISEGRID 10

Technology agendas Technology agendas

R&D by Manufacturers

Integration tests by TSOs

Deployment in Europe

2010-2020 2020-2030 2030-2040

Techno‐economic challenges 

2010‐2020 2020‐2030 2030‐2040

Methodologies to estimate PMU data accuracy

Improved  accuracy and reliability of the Synchronized Data Acquisition processesOptimal PMUs placement with respect to system operationImproved performances of Communication infrastructureOvercoming time lags inherent in long‐distance information transmissionDevelopment of distributed control architectures based on intelligent devices (smart sensors)

Scalable processing systems supporting  the intense WAMS data computation requirements allowing full Development of oscillation detection algorithms to exploit dynamic capabilities of PMU

Offline information analysis for planning purposes 

Other ….Full scale demonstrations to  be performed to value the real system benefits of WAMS (first results expected by 2015) , source ENTSOE 

Opening a transparent data exchange in an inter‐TSOs context

Develop Standards and Deployment Recommendations involving manufacturers and TSOs

Full integration of PMU information into SCADA systems 

2010: A few EU contries have implemented country ‐wide WAMS: Italy; Austria; France, Sweden ; Denmark; Hungary

All TSO are using WAMS on a country basis 

All TSOs are using WAMS coordinate operations 

RD&D as seen  by manufacturers

Integration tests as seen by TSOs

Full scale use within the EU27 

interconnected transmission system

As seen by

LegendN/C No clear view in the development due  to uncertainty at that the  time horizon

No evidence of consensus between the manufacturers N/D No Development are expected to occur due to the maturity stage of the technology

Page 11: IEEE PowerTech 2011realisegrid.rse-web.it/content/files/File/News...A “catalogue” of technology options available for TSO integration Control zone constraints impact the choice

2011-06-21 11TREN/FP7/EN/219123/REALISEGRID 11

Key technology integration Key technology integration challenges: WAMSchallenges: WAMS

Id Key technology integration challenges Type of challenge

w1 Improved WAMS signal accuracy and standards development Performances

w2 Development of standards for WAMS algorithms   Standardsw3 Evaluation of WAMS benefits based on full scale demonstrations by TSOs Coordinated use

w4 Large scale validation of the use of WAMS in Europe to monitor/control inter‐area power oscillations

Demonstration, combined use

Page 12: IEEE PowerTech 2011realisegrid.rse-web.it/content/files/File/News...A “catalogue” of technology options available for TSO integration Control zone constraints impact the choice

2011-06-21 12TREN/FP7/EN/219123/REALISEGRID

New grid architectures

Existing Grid asset optimisation

Existing Grid asset optimisation

RTTR

2010‐2020 2030‐20402020 ‐ 2030

Real ‐Time

2030 Pan‐

Europeangrid vision

r1 r2 r3

w1w2 w3

New  joint T&D system operations

WAMSw4

Id Key WAMS technology integration challenges Type of challenge

w1 Improved WAMS signal accuracy and standards development Performances

w2 Development of standards for WAMS algorithms   Standardsw3 Evaluation of WAMS benefits based on full scale demonstrations by TSOs Coordinated use

w4 Large scale validation of the use of WAMS in Europe to monitor/control inter‐area power oscillations

Demonstration, combined use

Medium maturity

High maturity

Low maturity

Page 13: IEEE PowerTech 2011realisegrid.rse-web.it/content/files/File/News...A “catalogue” of technology options available for TSO integration Control zone constraints impact the choice

2011-06-21 13TREN/FP7/EN/219123/REALISEGRID

Sustainable Grid expansion

Sustainable Grid expansion

New grid architectures

Existing Grid asset optimisation

Existing Grid asset optimisation

HTS Cables

HTS‐DC

Underground/submarine bulk transport

Aerial bulk transport

CSC‐HVDC

Multiterminal

HVDC

HVDC‐VSC

XLPE

GIL

HTS

HVDC CSC

FACTS Shunt

PST

RTTR

FCLs (novelconcepts)

HTC (new)

2010‐2020 2030‐20402020 ‐ 2030

InnovativeTowers

Real Time

Passive

Active

2030 Pan‐

Europeangrid vision

c1c2

c3

c7

r1 r2 r3

w1w2 w3

p2p1

x2 x3 x4 x6x5

x7

g1

g3

d1d2

d5

d7d6

d9

d8

s2

s1 s3

f3f2f1

f4

f6

t2t1

t3

l1l2 l3

New  joint T&D system operations

STORAGE

Smart metering expansion

x1

g2

c5c4

l4

HVDC VSC 

d3

FACTS Series

f5

Coordinated control

WAMS

w4

Storage facilities in operation

c6

σ1 σ2 σ3

Other IMPACTING Technology Impacting

d4

Medium maturity

High maturity

Low maturity

Page 14: IEEE PowerTech 2011realisegrid.rse-web.it/content/files/File/News...A “catalogue” of technology options available for TSO integration Control zone constraints impact the choice

2011-06-21 14TREN/FP7/EN/219123/REALISEGRID 14

Key outcomes/1Key outcomes/1#1: Major technology breakthroughs may possibly occur not before 2020

#2: Several passive technology options co-exist to address network expansion needs and/or existing asset optimisation

#3: Active technologies, allowing network expansion and/or existing grid assets optimization, will become crucial for the future integration of RES into the pan-European power transmission system

Page 15: IEEE PowerTech 2011realisegrid.rse-web.it/content/files/File/News...A “catalogue” of technology options available for TSO integration Control zone constraints impact the choice

2011-06-21 15TREN/FP7/EN/219123/REALISEGRID 15

Key outcomes/2Key outcomes/2#4: The combined use of passive/active technologies and real-time equipment, upon simulations and tests, may allow further optimising the use of the existing increasingly congested European grid assets

#5: Large scale experiments (system innovation) at European level are needed to validate costs and benefits under different boundary conditions

#6: Impacting technologies (smart metering, storage, smart substations) are expected to significantly ease TSOs’ operations provided that operational rules and procedures are revisited collectively

Page 16: IEEE PowerTech 2011realisegrid.rse-web.it/content/files/File/News...A “catalogue” of technology options available for TSO integration Control zone constraints impact the choice

2011-06-21 16TREN/FP7/EN/219123/REALISEGRID 16

Key outcomes/3Key outcomes/3#7: Non-technical barriers slowing the adoption pace are still present: • TSOs’ acceptance and confidence need funded

large scale demonstrations • Critical equipment interoperability is driven by a

few equipment manufacturers on a worldwide market

• Financing depends on regulatory frameworks and investment incentives in place for transmission systems

• Administrative procedures, such as multi-authority authorization, need harmonization at EU level

Page 17: IEEE PowerTech 2011realisegrid.rse-web.it/content/files/File/News...A “catalogue” of technology options available for TSO integration Control zone constraints impact the choice

2011-06-21 17TREN/FP7/EN/219123/REALISEGRID

Advanced technologies in EuropeAdvanced technologies in Europe

Source: ENTSO-E17TREN/FP7/EN/219123/REALISEGRID

Page 18: IEEE PowerTech 2011realisegrid.rse-web.it/content/files/File/News...A “catalogue” of technology options available for TSO integration Control zone constraints impact the choice

2011-06-21 18TREN/FP7/EN/219123/REALISEGRID

Application and projects in EuropeApplication and projects in Europe

PSTs at many cross-border as well as internal tiesSeveral WAMS/PMU applicationsRecent/ongoing HTC/HTLS installations e.g. in Belgium, Germany, France, Italy, IrelandInnovative towers for OHLs, e.g. in the Netherlands, ItalyEmerging RTTR-monitored OHLs/cables (e.g. potential in Germany)GIL for niche applications (most recent: Frankfurt airport)

18TREN/FP7/EN/219123/REALISEGRID

Page 19: IEEE PowerTech 2011realisegrid.rse-web.it/content/files/File/News...A “catalogue” of technology options available for TSO integration Control zone constraints impact the choice

2011-06-21 19TREN/FP7/EN/219123/REALISEGRID

FACTS projects in Europe:SSSC in Spain (pilot project)SVC/STATCOM in Italy (under study)SVC/series controllers in Germany (planned/under study)SVC in Finland (completed)SVCs in France (Brittany) (completed/planned)Series controllers/SVC in Poland (under study/planned)SVCs in Norway (completed)Series controllers/STATCOM in UK (planned/under construction)Series controllers in Sweden (under study)

19TREN/FP7/EN/219123/REALISEGRID

Application and projects in EuropeApplication and projects in Europe

Page 20: IEEE PowerTech 2011realisegrid.rse-web.it/content/files/File/News...A “catalogue” of technology options available for TSO integration Control zone constraints impact the choice

2011-06-21 20TREN/FP7/EN/219123/REALISEGRID

HVDC embedded in the AC system in Europe:France – Spain (2x1000 MW,±320 kV,2x65 km DC underground cable, VSC-HVDC)Sweden – Norway (2x600 MW,±300 kV, OHL/underground cable,MT-VSC-HVDC)Italy – France (2x600 MW,±320 kV,2x190 km DC underground cable, VSC-HVDC)Finland – Sweden (800 MW,500 kV,103 km DC OHL,200 km DC submarine cable, CSC-HVDC)UK (England) – UK (Scotland) (1800 MW,500 kV,365 km DC submarine cable, CSC-HVDC)UK (Wales) – UK (Scotland) (2000 MW,500 kV,360 km DC submarine cable, CSC-HVDC)

20TREN/FP7/EN/219123/REALISEGRID

Application and projects in EuropeApplication and projects in Europe

Page 21: IEEE PowerTech 2011realisegrid.rse-web.it/content/files/File/News...A “catalogue” of technology options available for TSO integration Control zone constraints impact the choice

2011-06-21 21TREN/FP7/EN/219123/REALISEGRID

Point-to-point, long distance links Bulk power transmissionElectricity Highways as backbones of a potential overlay network (Supergrid)

Further HVDC potential in EuropeFurther HVDC potential in Europe

Source: TU Dresden21TREN/FP7/EN/219123/REALISEGRID

Page 22: IEEE PowerTech 2011realisegrid.rse-web.it/content/files/File/News...A “catalogue” of technology options available for TSO integration Control zone constraints impact the choice

2011-06-21 22TREN/FP7/EN/219123/REALISEGRID

Further HVDC potential in EuropeFurther HVDC potential in Europe

Source: EWEA

A mid-long term (2020 and after) vision: from onshore to offshore grids

TREN/FP7/EN/219123/REALISEGRID

Page 23: IEEE PowerTech 2011realisegrid.rse-web.it/content/files/File/News...A “catalogue” of technology options available for TSO integration Control zone constraints impact the choice

2011-06-21 23TREN/FP7/EN/219123/REALISEGRID

Further HVDC potential in EuropeFurther HVDC potential in Europe

Source: MedRing update study / ENTSO-E

MedRing

23TREN/FP7/EN/219123/REALISEGRID

Page 24: IEEE PowerTech 2011realisegrid.rse-web.it/content/files/File/News...A “catalogue” of technology options available for TSO integration Control zone constraints impact the choice

2011-06-21 24TREN/FP7/EN/219123/REALISEGRID

ConclusionsConclusionsThe REALISEGRID roadmap analyzes transmission technology adoption trajectories in Europe: it can be used as an input to the ENTSO-E 2050 roadmapIn the short-mid term (up to 2020) these technologies may definitely emerge: HVAC XLPE cables, VSC-HVDC, FACTS (SVC and STATCON, also with storage), HTC/HTLS, RTTR-monitored OHLs/cables, WAMS/PMU, reduced impact towers for OHLsIn the mid-long term (after 2020) these technologies may definitely emerge: multiterminal VSC-HVDC, FACTS (SSSC, TCPST, UPFC), FCL, GIL (after 2020-2025), HTSC (after 2025-2030)Final decision-making needs a sound cost-benefit analysis

Page 25: IEEE PowerTech 2011realisegrid.rse-web.it/content/files/File/News...A “catalogue” of technology options available for TSO integration Control zone constraints impact the choice

2011-06-21 25TREN/FP7/EN/219123/REALISEGRID

REALISEGRID on technologiesREALISEGRID on technologiesD1.1.1: Synthetic description of performances and benefits of undergrounding transmission (E. Zaccone)

D1.1.2: Description of the “smart” (advance monitored) cable system and of its laboratory prototype (E. Zaccone, R. Gaspari, P. Maioli)

D1.2.1: Improving network controllability by Flexible Alternating Current Transmission System (FACTS) and by High Voltage Direct Current (HVDC) transmission systems (S. Rüberg, H. Ferreira, A. L’Abbate, U. Häger, G. Fulli, Y. Li, J. Schwippe)

D1.2.2: Improving network controllability by coordinated control of HVDC and FACTS device (U. Häger, J. Schwippe, K. Görner)

D1.3.3: Comparison of AC and DC technologies for long-distance interconnections (S. Rüberg, A. Purvins)

D1.4.2: Final WP1 report on cost/benefit analysis of innovative technologies and grid technologies roadmap report validated by the external partners (A. Vaféas, S. Galant, T. Pagano)

25TREN/FP7/EN/219123/REALISEGRID…

Page 26: IEEE PowerTech 2011realisegrid.rse-web.it/content/files/File/News...A “catalogue” of technology options available for TSO integration Control zone constraints impact the choice

2011-06-21 26TREN/FP7/EN/219123/REALISEGRID 26

S. Galant, T. Pagano, A. Vaféas, TechnofiA. L’Abbate, G. Migliavacca, RSE

H. Ferreira, G. Fulli, A. Purvins, H. Wilkening, EC-JRCR. Gaspari, E. Zaccone, PrysmianU. Häger, S. Rüberg, TU Dortmund

K. Jansen, M. van der Meijden, TenneTK. Reich, O. Wadosch, APG

X. Gallet, J.Y. Leost, G. de Saint-Martin, RTE-IP. Panciatici, RTE-DMA

C. Vergine, P. Antonelli, A. Sallati, TERNA

Special thanks to IRENE-40 consortium, in particular to Alstom Grid and Siemens representatives

ContributorsContributors

Page 27: IEEE PowerTech 2011realisegrid.rse-web.it/content/files/File/News...A “catalogue” of technology options available for TSO integration Control zone constraints impact the choice

2011-06-21 27TREN/FP7/EN/219123/REALISEGRID

Thank you for the attentionThank you for the attention

[email protected]@rse-web.it

FP7 REALISEGRID projecthttp://realisegrid.rse-web.it/

Page 28: IEEE PowerTech 2011realisegrid.rse-web.it/content/files/File/News...A “catalogue” of technology options available for TSO integration Control zone constraints impact the choice

2011-06-21 28TREN/FP7/EN/219123/REALISEGRID

Back-up slides

Page 29: IEEE PowerTech 2011realisegrid.rse-web.it/content/files/File/News...A “catalogue” of technology options available for TSO integration Control zone constraints impact the choice

2011-06-21 29TREN/FP7/EN/219123/REALISEGRID

2030

 Vision By 2020 the electricity networks in Europe should

• Actively integrate efficient new generation and consumption models

• Coordinate planning and operations of the whole Electricity Network

• Study and propose new market rules to maximize European welfare

Uncertain demand

and generation

EU electricity 

market designs

Legal and regulatory 

frameworks 

Increasing complexity of 

grid operation & planning

New grid

architecture(s) 

Key be

nefits

from

 Techn

olog

ies

Integration  

REAL‐TIME  TECHNOLOGIES

RT2) Wide‐Area Monitoring Systems (WAMS) RT1) Real‐Time Thermal Monitoring (RTTR)

Critical 

Challeng

es 

P1) XLPE underground/submarine cables

PASSIVE TECHNOLOGIES

P2) Gas Insulated Lines 

P4) High Temperature Superconducting cables 

P5) Innovative towers for HVAC lines

P3) High Temperature Conductors

A1) Fault Current Limiters

ACTIVE TECHNOLOGIES

A2) PST 

A5‐12) FACTS  

A3‐4) HVDC

By 2030

Same Vision as 2020 but at the levels set by the EU energy  policy 

at 2030

Not ope

rated 

by TSO

s

Smart metering (impact of) Wind powered pumped hydro storage

Compressed Air Energy  Storage

Flywheel Energy Storage Superconducting Magnetic Energy Storage

Sodium‐Sulfur (Na‐S) batteries

Techno

logies ope

rated by

 TSO

s

Increased system reliability

Increased transmission  capacity

Extended power flow  controllability

System losses reduction

Reduced environmental 

impact

Sustainable grid expansion (domestic and cross‐border)

Existing grid optimization

Flow batteries   Super/Ultracapacitors Lithium‐Ion batteries  

Page 30: IEEE PowerTech 2011realisegrid.rse-web.it/content/files/File/News...A “catalogue” of technology options available for TSO integration Control zone constraints impact the choice

2011-06-21 30TREN/FP7/EN/219123/REALISEGRID 30

The Three core components :PASSIVE TECHNOLOGIES (Chapter 7) ACTIVE TECHNOLOGIES (Chapter 8)REAL TIME TECHNOLOGIES (Chapter 9)

A A dialoguedialogue tooltool

Chapters 1-6:• Roadmap scope• Background and

Vision • Methodological

assumptions and Roadmap overview

Annex I18 technology cards

Annex IIRationale for technology

portfolio selection

Annex IIIStakeholders’ and

manufacturers’inputs

PASSIVE: XLPE GIL HTC HTS Innovative TowersACTIVE: FCL, PST, HVDC, FACTSREAL TIME: RTTR, WAMS

PASSIVE, ACTIVE, REAL TIMEIMPACTING TECHNOLOGIES

(Storage,…)

Chapters 10, 11 , 12• Combined use of technologies • « Exotic technologies »• Other Impacting technologies

Chapters 13-16 • Non technical barriers• Scenarios considerations • Linking with ENTSO-E • Conclusions

Page 31: IEEE PowerTech 2011realisegrid.rse-web.it/content/files/File/News...A “catalogue” of technology options available for TSO integration Control zone constraints impact the choice

2011-06-21 31TREN/FP7/EN/219123/REALISEGRID 31

The The samesame structure for structure for eacheach P.A.RT. P.A.RT. technologytechnology

● Section *.3:Conclusion● On the maturity/applicability● Discrepancies between TSOs and manufacturers

● Annex I:Detailed description of the considered technology● Definitions● Key technologies● Functions● Applications ● Implemented solutions

● Section *. 2:Key expected benefits and typical Investment Costs ranges● 5 types of Benefits● Qualitative analysis of benefits on a relative scale● Cost ranges: Information on costs remains scarce

Section *.1:Action agenda for technology integration in the system

● For each technology detailed challenges are listedOrganized per decadeOrganized per point of view: manufacturer or TSO

● Critical challenges and maturity are represented graphically

PASSIVE

TECHNOLOGIES

Chapter on GAS INSULATED LINES

Techno‐economic challenges 

2010‐2020 2020‐2030 2030‐2040

Development of  2nd generation of GIL based on N2/SF6 gas mixtures with low SF6 contents  (below today's value :  10%‐20%)

Explore solutions replacing SF6

Enhanced safety  of installations (reducing the risk of SF6 gas leakages) Development of  organic composite conductors with higher transit capacity (more than 100%)

Reduced  corrosion  for long distance underground applications  

 Reduced material costs of GILs by the optimisation of the design and materials for a given rating Reduction of manufacturing costs by simplification and reduction in the number of components Reduction of installation costs by designing components for simple assembly so that large numbers of joints maybe made onsite in a reasonable timescale

Simple laying and burial techniques to reduce civil engineering costs 

Use of FACTS to support  voltage stability issues of  GILs Assessment of performance of GILs based on conditions of use (temperature, use of assets , etc) and of electrical characteristics (inductance, capacitance, resistance, impedance) compared to OHL and XLPE

Validation of thermal models of GILs based on collection of historical thermal and load data and variability of electrical parameters versus temperature

Validation of protocols of operations : analysis of  correlations between use of assets and transmission capacity (thermal hysterisis in closed environment)

 Development of  long‐distance applications

Field tests of long‐distance applications based on N2/SF6 mixtures

Field tests in densely populated areas 

GILs are used in a few locations in Europe Implementation of GIL based solutions as underground technologies to enter densely populated areas

Components and system 

RD&D as seen  by manufacturers

Costs 

GILs 

Full scale use within the EU27 interconnected transmission system

Performances

Models Validation 

Applications 

Field tests

012345

Increased system reliability

System losses reduction

Extended power flow controllability 

Increased transmission capacity 

Reduced environmental impact

Benefits from GILs integration replacing conventional solutions 

Reference: Conventional HVAC network

P2: GILs

Sustainable Grid expansion

New grid architectures

HTS‐DC

Underground/submarine bulk transport

Aerial bulk transport

XLPE

GIL

HTS

HTC (new)

2010‐2020 2030‐20402020 ‐ 2030

InnovativeTowers

PassiveTechnologies

2030 Pan EU

grid vision

c1c2

c3

c7

x2 x3 x4 x6x5

x7

g1

g3

s2

s1 s3

t2t1

t3

Medium maturity

High maturity

Low maturity

New  joint T&D system operations

x1

g2

c5c4

c6

Id  Key  technology XLPE integration challenges Type of challenge

x1 Environment and ageing models Modelling

x2 Insulation materials and cable architectures for improved performances (reduction of junctions)

Performances

x3 Advanced installation techniques for installation costs reduction (including design of accessories)

Installation, Costs

x4 Fast qualification techniques by TSOs and related standards Commissioning, costs, standards

x5 Integration of dynamic limits into system operation procedures and tools Performances,  operation

x6 Automated underground cable installation and remote sensing system for O&M  Installation, Costs  

x7 Innovative cable materials (e.g. carbon nano‐tube) for improved performances Performances

A dialogue tool

Page 32: IEEE PowerTech 2011realisegrid.rse-web.it/content/files/File/News...A “catalogue” of technology options available for TSO integration Control zone constraints impact the choice

2011-06-21 32TREN/FP7/EN/219123/REALISEGRID 32

Action agenda for WAMSAction agenda for WAMSTechno‐economic 

challenges 2010‐2020 2020‐2030 2030‐2040

Methodologies to estimate PMU data accuracy (standardisation) WACS/WAPS: Development of reliable turn‐key systems combining data monitoring, control and protection schemes

N/C

Improved  accuracy and reliability of the Synchronized Data Acquisition processes (supercalibrator)

Optimal PMUs placement with respect to system operationImproved performances of Communication infrastructureOvercoming time lags inherent in long‐distance information transmission

WACS development: distributed control architectures based on intelligent device (smart sensors)

Scalable processing systems supporting  the intense WAMS data computation requirements allowing full use of collected data

Development of standards for oscillation detection algorithms to exploit dynamic capabilities of PMU and models for interpretation

 Understandable link for operators between operational conditions and inter‐area power oscillation damping thanks to correlations of synthetic measurements data  such as generation patterns in Europe 

Full scale demonstrations to  be performed to value the real system benefits of WAMS (first results expected by 2015)

Full integration of PMUs information into SCADA systems including special protection schemes and automation

N/C

Development of  standards on accuracy of data and deployment recommendations involving manufacturers and TSOs

Opening a transparent data exchange in an inter‐TSOs context

Integration and processing of accurate data at local level and tranmission of syntethic information at central level Integration test of non conventional sensors based on optical fibers 

Full scale use within the EU27 interconnected transmission system

2010: a few EU contries have implemented country ‐wide WAMS: Italy; Austria; France, Sweden, Denmark, Hungary 

All European TSO are using WAMS in order to monitor/control inter‐area  power oscillations, ..

WACS /WAPS : use of WAMS data for control and protection issues 

WAMS

RD&D as seen  by manufacturers

Integration tests as seen by TSOs

Signal accuracy

Communication or architectures and processing 

Algorithms