[ieee iecon '91: 1991 international conference on industrial electronics, control and...

5
Dynamic Switching Technique For Load Control in a PV System Eisham A. El Khashab Abdel-Kamead Maamoun ?.:. Said Abd El-Yotaleb Abscract: Voltage load control of a stand-alone phor;ovoltaic (SAPV) system can be an indication for the optimum utilization of the system. can be rearranged using an electronic switching circuit to obtain the desired level of the load voltage. Nore- over, such a circuit may be also used to control the charging and discharging of the battery storage sub- system in the SAPV systems. The details of this circ- uitarepresented in this paper. The instantinuous optimum numbersof the array series and parallel cells are deduced for a given equality constraint . From an economical point of view, a cost function is introduced for the proposed system for cost minimization require- ments. The PV array Introduction Stand-alone PV systems for remote power production generally consist of a PV array and battery storage sub-system. A large penetration of PV in the market will only occur if sufficiently low energy cost can be achieved. Several studies for the authorsl-5 had been published in the field of renewable energy, while this paper is specially oriented to the control of the PV system. This paper presents a low cost on-line control by a simple electronic circuit using a switching techni- que for both the PV array, and the storage batteries. This circuit allows to reduce the size not only of the W array but also of the batteries, while maintaining the reliability of the power supply. Fig.1. Equivalent circuit of the PV cell The cell is a nonlinear device and can be represented as a current source model6 as shown in Fig.1. current source circuits have the disadvantage of vol- tage fluctuations with varying load. As a result, the main idea of this paper is to study an electronic swit- ching technique to control the load voltage throu h a continuous variation of the PV array arrangement3r7r8. The The solar cell is an electrical cell of low-level voltage and power, therefore, the cells are connected in series and parrallel combinations in order to form a array of the desired voltage and power levelsg. The ?V generator consists of strings in parallel connection. Each string is made up of modules in series connection and each module consists of series connected cells. With load variations, the array of the PV gene- rator can be rearranged by using an electronic swit- ching control circuit to obtain the desired level of the load voltage. The load voltage is compared with respect to a reference voltage. With this switching electronic circuit, all cells of the PV generator can be fully used with the switching operation, and the storage capacity can be increased. There is an optimum value for the desired voltage obtained from the PV array which is a function of the load current, and the number of both series and paral- lel connecteLceJls, may be deduced for a given equa- lity constraint . That optimum value of the generated voltage may be determined a t each instant according to the corresponding values of series and parallel cells. As a result, the system in this case is more con- trollable due to the capability of instantinuous load voltage control during the dynamic operation. From other interesting point of view, an objective cost function is designed for the suggested system un- der investigation in order to minimize the total cost of the different items of the system. A modern optimum control technique is used to optimize that cost func- tion for reducing the system total variable cost of the overall system. System Concepts A PV system in which the load is directly coupled to the solar cells (without a Plaximum Power Point Tra- cker,lvlPPT) is a relatively simple one and is usually reliable. As the load may exist over a longer period of time compared with the solar radiation, therefore an energy-accumulating system is required. The inter- action between solar cell array and accumulators may be characterised by overcharge and underdischarge phe- nomena of the accumulators. This fact has a severe impact on the life-tine of the accumulators. The system under consideration in this study con- 1. PV generator 2. Storage batteries 3. Resistive load 4. The switching electronic control circuit The storage batteries, besides being expensive, are fundamental to guarantee the continuous operation of the PV system. It is necessary to have a simple ele- ctronic control for charging and discharging operations of the batteries to maintain the batteries and to work always at a suitable level of load voltage. sists mainly from: As a result, the switching electronic control CH2976-9/91/0000-0674 $1.00 0 1991 IEEE 674 I ECON ’91

Upload: msa

Post on 14-Mar-2017

212 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: [IEEE IECON '91: 1991 International Conference on Industrial Electronics, Control and Instrumentation - Kobe, Japan (28 Oct.-1 Nov. 1991)] Proceedings IECON '91: 1991 International

Dynamic S w i t c h i n g Technique For Load C o n t r o l i n a PV System

Eisham A . E l Khashab Abdel-Kamead Maamoun ?.:. S a i d Abd El-Yotaleb

Abscrac t : Vol tage l o a d c o n t r o l of a s tand-a lone phor ;ovol ta ic (SAPV) system can be an i n d i c a t i o n f o r t h e optimum u t i l i z a t i o n o f t h e sys tem. can be r e a r r a n g e d u s i n g an e l e c t r o n i c s w i t c h i n g c i r c u i t t o o b t a i n t h e d e s i r e d l e v e l o f t h e l o a d v o l t a g e . Nore- o v e r , s u c h a c i r c u i t may be a l s o used t o c o n t r o l t h e c h a r g i n g and d i s c h a r g i n g o f t h e b a t t e r y s t o r a g e sub- sys tem i n t h e SAPV sys tems. The d e t a i l s o f t h i s c i rc- u i t a r e p r e s e n t e d i n t h i s paper . The i n s t a n t i n u o u s optimum numbersof t h e a r r a y series and p a r a l l e l c e l l s a r e deduced f o r a g i v e n e q u a l i t y c o n s t r a i n t . From an economical p o i n t o f view, a c o s t f u n c t i o n i s i n t r o d u c e d f o r t h e proposed sys tem f o r c o s t min imiza t ion r e q u i r e - ments.

The PV a r r a y

I n t r o d u c t i o n

S tand-a lone PV sys tems f o r remote power p r o d u c t i o n g e n e r a l l y c o n s i s t of a PV a r r a y and b a t t e r y s t o r a g e sub-system. A l a r g e p e n e t r a t i o n o f PV i n t h e marke t w i l l o n l y o c c u r i f s u f f i c i e n t l y low energy c o s t can be achieved . S e v e r a l s t u d i e s f o r t h e a u t h o r s l - 5 had been p u b l i s h e d i n t h e f i e l d o f renewable energy , w h i l e t h i s paper is s p e c i a l l y o r i e n t e d t o t h e c o n t r o l o f t h e PV sys tem.

T h i s paper p r e s e n t s a low c o s t on- l ine c o n t r o l by a s i m p l e e l e c t r o n i c c i r c u i t u s i n g a s w i t c h i n g t e c h n i - que f o r bo th t h e PV a r r a y , and t h e s t o r a g e b a t t e r i e s . T h i s c i r c u i t a l l o w s t o reduce t h e s i z e n o t o n l y o f t h e W a r r a y but a l s o of t h e b a t t e r i e s , whi le m a i n t a i n i n g t h e r e l i a b i l i t y o f t h e power supply .

F i g . 1 . E q u i v a l e n t c i r c u i t of t h e PV c e l l

The ce l l is a n o n l i n e a r d e v i c e and can be r e p r e s e n t e d a s a c u r r e n t s o u r c e model6 a s shown i n F i g . 1 . c u r r e n t s o u r c e c i r c u i t s have t h e d i s a d v a n t a g e of v o l - t a g e f l u c t u a t i o n s w i t h v a r y i n g l o a d . As a r e s u l t , t h e main i d e a o f t h i s paper is t o s t u d y an e l e c t r o n i c s w i t - c h i n g t e c h n i q u e t o c o n t r o l t h e l o a d v o l t a g e t h r o u h a c o n t i n u o u s v a r i a t i o n o f t h e PV a r r a y arrangement3r7r8.

The

The s o l a r c e l l i s an e l e c t r i c a l c e l l o f low- leve l v o l t a g e and power, t h e r e f o r e , t h e ce l l s a r e connec ted i n series and p a r r a l l e l combina t ions i n o r d e r t o form

a a r r a y o f t h e d e s i r e d v o l t a g e and power l e v e l s g . The ?V g e n e r a t o r c o n s i s t s o f s t r i n g s i n p a r a l l e l connection. Each s t r i n g is made up of modules i n series c o n n e c t i o n and each module c o n s i s t s o f series connected ce l l s .

With l o a d v a r i a t i o n s , t h e a r r a y of t h e PV gene- r a t o r can be r e a r r a n g e d by u s i n g a n e l e c t r o n i c swit- c h i n g c o n t r o l c i r c u i t t o o b t a i n t h e d e s i r e d l e v e l o f t h e l o a d v o l t a g e . The l o a d v o l t a g e i s compared w i t h respect t o a r e f e r e n c e v o l t a g e . With t h i s s w i t c h i n g e l e c t r o n i c c i r cu i t , a l l c e l l s o f t h e PV g e n e r a t o r can be f u l l y used w i t h t h e s w i t c h i n g o p e r a t i o n , and t h e s t o r a g e c a p a c i t y can be i n c r e a s e d .

There i s a n optimum v a l u e f o r t h e d e s i r e d v o l t a g e o b t a i n e d from t h e PV a r r a y which i s a f u n c t i o n o f t h e l o a d c u r r e n t , and t h e number of b o t h series and p a r a l - l e l c o n n e c t e L c e J l s , may be deduced f o r a g i v e n equa- l i t y c o n s t r a i n t . That optimum v a l u e o f t h e g e n e r a t e d v o l t a g e may be de te rmined a t each i n s t a n t a c c o r d i n g t o t h e c o r r e s p o n d i n g v a l u e s o f series and p a r a l l e l c e l l s .

As a r e s u l t , t h e sys tem i n t h i s c a s e i s more con- t r o l l a b l e due t o t h e c a p a b i l i t y o f i n s t a n t i n u o u s l o a d v o l t a g e c o n t r o l d u r i n g t h e dynamic o p e r a t i o n .

From o t h e r i n t e r e s t i n g p o i n t o f view, an o b j e c t i v e c o s t f u n c t i o n i s des igned f o r t h e s u g g e s t e d sys tem un- d e r i n v e s t i g a t i o n i n o r d e r t o minimize t h e t o t a l c o s t o f t h e d i f f e r e n t items o f t h e sys tem. A modern optimum c o n t r o l t e c h n i q u e i s used t o o p t i m i z e t h a t c o s t func- t i o n f o r r e d u c i n g t h e sys tem t o t a l v a r i a b l e c o s t of t h e o v e r a l l system.

System Concepts

A PV system i n which t h e load is d i r e c t l y coupled t o t h e s o l a r ce l l s ( w i t h o u t a Plaximum Power P o i n t Tra- cker,lvlPPT) i s a r e l a t i v e l y s i m p l e one and i s u s u a l l y r e l i a b l e . As t h e l o a d may e x i s t o v e r a l o n g e r p e r i o d of time compared w i t h t h e s o l a r r a d i a t i o n , t h e r e f o r e an energy-accumulating sys tem is r e q u i r e d . The i n t e r - a c t i o n between s o l a r c e l l a r r a y and a c c u m u l a t o r s may be c h a r a c t e r i s e d by overcharge and u n d e r d i s c h a r g e phe- nomena of t h e accumula tors . T h i s f a c t h a s a s e v e r e impact on t h e l i f e - t i n e o f t h e accumula tors .

The system under c o n s i d e r a t i o n i n t h i s s t u d y con-

1 . PV g e n e r a t o r 2 . S t o r a g e b a t t e r i e s 3 . R e s i s t i v e l o a d 4 . The s w i t c h i n g e l e c t r o n i c c o n t r o l c i r c u i t

The s t o r a g e b a t t e r i e s , b e s i d e s b e i n g e x p e n s i v e , a r e fundamental t o g u a r a n t e e t h e c o n t i n u o u s o p e r a t i o n of t h e PV system. It i s n e c e s s a r y t o have a s i m p l e e le- c t r o n i c c o n t r o l f o r c h a r g i n g and d i s c h a r g i n g o p e r a t i o n s of t h e b a t t e r i e s t o m a i n t a i n t h e b a t t e r i e s and t o work always a t a s u i t a b l e l e v e l o f l o a d v o l t a g e .

sists mainly from:

As a r e s u l t , t h e s w i t c h i n g e l e c t r o n i c c o n t r o l

CH2976-9/91/0000-0674 $1.00 0 1991 IEEE 674 I ECON ’91

Page 2: [IEEE IECON '91: 1991 International Conference on Industrial Electronics, Control and Instrumentation - Kobe, Japan (28 Oct.-1 Nov. 1991)] Proceedings IECON '91: 1991 International

c i r c u i t under c o r s i d e r a t i o n c o n t r o l s , l o a d v o l t a g e through s e r i e s - p l r a l l e l PV a r r a y - c e l l s c o n n e c t i o n s , c h a r g i n g and d i s c b a r g i n g s t o r a g e b a t t e r i e s c u r r e n t s .

::?e d e c a i l of che g y m n i c s;rie:hing e1ec :xnic c i r c u i c o f a PV sys tem is given i n F ig .? . As a gene- ra l way t o e x p l a i n t h e syscec! o p e r a t i o n , t h e f o i l o w i n g manner i s p r e s e n t e d .

A t low s o l a r i n s o l a t i o n , when t h e a r r a y c u r r e n t i s lower t h a n a s p e c i f i e d v a l u e Idn , t h e c u r r e n t t o RL is s u p p l i e d , by e i t h e r t h e PV g e n e r a t o r o r t h e b a t - teries, o r bo th . To p r e v e n t t h e b a t t e r i e s from over- c h a r g i n g a t V B ~ ~ ~ , o r under -d ischarg ing a t V E ~ ~ ~ , t h e b a t t e r i e s a r e d i s c o n n e c t e d from t h e PV g e n e r a t o r and from t h e l o a d ( R L ) , r e s p e c t i v e l y . The l o a d r e s i s t a n c e RL remains connec ted t o t h e PV g e n e r a t o r .

The system o p e r a t i o n f o r a f u l l c y c l e o f opera- t i o n w i l l now be d e s c r i b e d , a s i l l u s t r a t e d i n F i g . 3 . It is assumed t h a t t h e o p e r a t i o n is f o r d a i l y c y c l e , when t h e b a t t e r i e s are f u l l y charged a t day time t o t h e v o l t a g e o f V B ~ ~ ~ , and d i s c h a r g e d t o a v o l t a g e o f V B ~ ~ ~ ~ . During t h e day , t h e power t o R L is s u p p l i e d by e i t h e r , t h e PV g e n e r a t o r o r t h e b a t t e r i e s , o r bo th . A t n i g h t time, t h e l o a d RL is s u p p l i e d by t h e b a t t e r i e s o n l y - l q i a t J), t h e r e f o r e , t h e v o l t a g e o f t h e b a t t e r i e s d e c r e a s e s t o Vp 7 V B ~ ~ ~ ~ ( p o i n t L), where t h e modules o f t h e PV a r r a y are a r r a n g e d t o r e g u l a t e t h e o u t p u t v o l t a g e ( v b u s ) t o h i g h e r l e v e l ( f rom t h e n e x t morning) . By t h e n e x t morning, t h e v o l t a g e h a s d e c r e a s e d t o r e a c h to p o i n t .A . From t h a t time (as t h e sun rises) t h e l o a d i s s u p p l i e d by both t h e PV g e n e r a t o r and t h e b a t - teries. The b a t t e r i e s c o n t i n u e t o d i s c h a r g e b u t a t a s l o w e r rate. With t h e i n c r e a s e i n i n s o l a t i o n , t h e

block I n s d l o d a

acr anoemen' o f s e r l e s L p a r a l l e l

module8

s a n e r a t o r 7

1, c w r e n

I-, min

' b i n "Bmean "Bmax F i g . 3 . I - V c h a r a c t e r i s t i c o f a PV g e n e r a t o r ,

l o a d r e s i s t a n c e ( R L ) and s t o r a g e b a t t e r i e s i n F i g . 2 .

o p e r a t i n g p o i n t s move a l o n g t h e AB l i n e u n t i l p o i n t B r e a c h e s V B ~ ~ ~ . The b a t t e r i e s are d i s c o n n e c t e d from t h e load t o avoid- t h e d i s c h a r g i n g a t V B ~ ~ ~ . Then, t h e l o a d is s u p p l i e d from t h e PV g e n e r a t o r o n l y ( t h e t r a j e c t o r y B C D ) . A t p o i n t D, t h e PV g e n e r a t o r s u p p l i e s t h e l o a d R L and s i m u l t a n e o u s l y c h a r g e s t h e b a t t e r i e s . While a t p o i n t E ( V B s V ~ ~ ~ ~ ~ ) , t h e modules o f t h e PV a r r a y are r e a r r a n g e d t o r e g u l a t e t h e o u t p u t v o l t a g e ( v b u s ) to lower l e v e l . ' d i t h t h e i n c r e a s e o f i n s o l a t i o n , p o i n t F is reached . The b a t t e r i e s are d i s c o n n e c t e d from t h e PV g e n e r a t o r , when VB 5 V B ~ ~ ~ as shown i n F i g . 2 . S i n c e

"bus

Fig.2. The dynamic switching electronic circuit o f a PU s y s t e m

I ECON '91 675

Page 3: [IEEE IECON '91: 1991 International Conference on Industrial Electronics, Control and Instrumentation - Kobe, Japan (28 Oct.-1 Nov. 1991)] Proceedings IECON '91: 1991 International

R L resla1r.s connec ted t o t h e PV g e n e r a t o r , t h e o p e r a t i n g p o i n t i s now a; p o i n t G on t h e RL l i n e . As t h e i n s o l a - t i o n v a r i e s - i c c r e a s i n g o r d e c r e a s i n g - t h e o p e r a t i n g p o i n t s move a l o n g t h e i i ~ l i n e ( p o i n t s G , E a n a I ) . A t 2 o i n t I , Vz 7 'damax, t t e b a t t e r i e s are reconnec ted t o t h e a r r a y , w h i l e t h e l o a d is s u p p l i e d by bo th t h e ?V ger!er=tor a ~ c be b a t t e r i e s a g a i n . The b a t t e r ' i e s s t a r : :s d i s c t r - s e sizk ELY i z c r e a s i n i ; raTr2, w:il zcir.: is r o ~ c c e 2 , x z r e :te C S ~ K :i=e s:~r:s. -2s :rzjec::ry

c y c l e o p e r a t i o n o f t h e system. The stares of t5e sys- L e 3 a t d i f f e r e n t o p e r a t i n g p o i z t s i n F ig .3 d L r i r 5 d a i l y c y c l e is g iven i n T a b l e 1 .

.SC>;TGFz'-I,L, ; x s : d e s c r i k e e , is a c e 2sss i c i l i : j - 35 ::e

! J a t h e r a t i c a l F o r n u l a t i o n o f t h e System

The I - V e q u a t i o n o f a s i n g l e c e l l i s g iven i n most o f p u b l i c a t i o n s byio:

V = -ZRs+l/> . I n ( 1 + - I p h - ' ~ ( 1 ) I O

where,

Vc : c e l l v o l t a g e

Iph : t h e p h o t o c u r r e n t ( a m p s ) , p r o p o r t i o n a l t o t h e

Io Rs : c e l l series r e s i s t a n c e

1 : e q u a l s q/AKT q : e l e c t r o n c h a r g e A : comple t ion f a c t o r K : Boltzman c o n s t a n t T : a b s o l u t e t empera tu re

i n s o l a t i o n : t h e r e v e r s e s a t u r a t i o n c u r r e n t

The I - V e q u a t i o n o f a PV g e n e r a t o r which c o n s i s t s

A < U P -

/ ' % .," I Off I Off I

I I I

on o f f

G&H / > ' e - I On I O f f

L -- O f f o f f ' 0 .I"

of N, c e l l s i n serres and N p c e l l s i n p a r a l l e l i s g i v e n by :

wrern -,

?ower and Cos t Op t imiza t ion A n a l y s i s

K i t h i n c r e a s i n g c o s t s o f c o n v e n t i o n a l f u e l s and e v e r i n c r e a s i n g g e o p o l i t i c a l c o n t r o l o f t h e ene rgy r e s o u r c e s , i t i s f a s t becoming obv ious t h a t one c a n n o t c o n t i n u e t o n e g l e c t t h e development o f t h e abundant and non-dep le t ing ene rgy of t h e sun i n i ts v a r i o u s manife- s t a t i o n s . From a n economical p o i n t o f view t h e t o t a l power g e n e r a t e d from t h e p h o t o v o l t a i c a r r a y a t any o p e r a t i n g p o i n t and s p e c i f i c l o a d demand shou ld be maximum t o e n s u r i n g minimum o v e r a l l cos t o f t h e system. Using t h e v o l t a g e r e l a t i o n g iven i n e q u a t i o n ( 2 1 , t h e power d e l i v e r e d from t h e PV s o u r c e o f ene rgy may be deno ted by:

N - I - - I P Ph L )

Np I o (3)

To maximize P a n o b j e c t i v e f u n c t i o n must be i n t r o d u c e d i n t h e form:

relay notes mode of the switching mode for batteries (3) the PU modules

t o i n c r e a s e o u t p u t w o l t a a e l o a d Is s u p p l i e d from 1 b o t h

d i s c h a r g i n g

I

~ uO,, o f f t o ~ n c r e a s e o u t p u t v o l t a p e PU g e n e r a t o r ( L b a t t o r i o s

l e v e l

e n d o f

d i s c h a r g i n g

o f OPeTbtlOn < off t o ~ n c r e a s e o u t p u t w o l t a o e PU g e n e r a t o r is t h e o n l y

l 0 " D l SUPPlY

s t a r t o f c h a r g ~ n a i l :::I 1 i-f 1 t o I n c r e a s e o u t p u t v o l t a g e 1 load a battOri.s a r ~

e n d of c h a r g i n g > Ug,_

l e v e l s u p p l i e d f r o m t h e

PU g e n e r a t o r .

R, l l m l t r t h e c h a r o r n o

t o d e c r e a s e o u t p u t v o l t a g e

l a v a 1 c h a r a lng

c u r r e n t to d o c r c r r c o u t p u t v o l t a g e

l O W S l

t o d e c r e a s e o u t p u t v o l t a g e P U g e n e r a t o r 1s t h e o n l y

l e v e l I SUPPlY

t o d e c r e a s e o u t p u t v o l t a g e PU g e n e r e t o r h b a t t e r l e r d i s c h a r g i n g

t o i n c r e a s e o u t p u t v o l t a g e b a t t e r l o s a r e the o n l y

d i s c h a r p r n g SUPPlS

Table 1. Daily cycle of system states at different operating points in Fig.3

676 I ECON '91

Page 4: [IEEE IECON '91: 1991 International Conference on Industrial Electronics, Control and Instrumentation - Kobe, Japan (28 Oct.-1 Nov. 1991)] Proceedings IECON '91: 1991 International

t h i s o b j e c t i v e f u n c t i o n i s desiqLed such k a t aL ezcn p o s s i b l e s o l u t i o r . an e q u a l i t y c s n s t r a i n t ir. t h e f o l - lowing form is i x u r e d :

Ns . N = N t ( 5 1 P

where

N t : t o t a l number o f series and p a r a l l e l c e l l s

A : L a g r a n g e ' s m u l t i p l i e r

A t a n extreme c o n d i t i o n a t which t h e power g e n e r a t e d w i l l be maximumtwe have t h e f o l l o w i n g t h r e e e q u a l i t y r e q u i r e m e n t s f o r o p t i m i z a t i o n purpose:

2 N I -1L Rs I L - + - l n ( 1 + ph - I L ) + p N p I o ( 6 )

N p .'A Np I o "

N I I h - N I h I o + I I o + ) . t N = o ( 7 ) P o p

N i 1:

Ns )Ip - N t 0 ( 8 )

* * * t h e r e q u i r e d c o o r d i n a t e s ( N p , N s , & ) c o r r e s p o n d i n g t o t h e d e s i r e d optimum o p e r a t i n g p o i n t may be deduced from t h e above set of e q u a t i o n s (6) - ( 8 ) by u s i n g G a u s s e l i m i n a t i o n method. T h i s method depends on t h e e l i p i n a t i o n o f N p , NS,& i n s u c c e s s i v e two c o n t i n u o u s procGssesunt i loneequat ion w i t h one c o o r d i n a t e i s o b t a i n e d j t h a t can be s o l v e d r e a d i l y f o r t h a t c o o r d i - n a t e . The remain ing c o o r d i n a t e s can be o b t a i n e d by back s u b s t i t u t i o n i n t h e i n t e r m e d i a t e r e l a t i o n s . Sone- times t h i s method is n o t a p p l i c a b l e s i n c e one o r more c o o r d i n a t e s cannot a lways be e l i m i n a t e d from t h e non- l i n e a r s e t o f e q u a t i o n s . I n t h i s case an i t e r a t i v e method i s i n i t i a t e d by s e l e c t i n g a n approximate s o l u - t i o n and t h e p r o c e s s i s cont inued u n t i l a l l changes i n t h e c o o r d i n a t e s N p , NS,& i n s u c c e e d i n g i t e r a t i o n s are w i t h i n a s p e c i f i c t o l e r e n c e . I f more a c c u r a t e s o l u - t i o n is r e q u i r e d e s p e c i a l l y when t h e c o o r d i n a t e s r e p - r e s e n t p r a c t i c a l items a s i n o u r c a s e , t h e Newton- Raphson method must be used . That l a s t ne thod depends on t h e c o n s t r u c t i o n of both t h e J a c o b i a n m a t r i x and t h e change v e c t o r . The p r i n c i p a l p r o c e s s i s r e p e a t e d u n t i l two s u c c e s s i v e v a l u e s f o r each c o o r d i n a t e d i f f e r o n l y by a s p e c i f i c t o l e r e n c e .

From o t h e r i n t e r e s t i n g p o i n t o f view a n a l g e b r a i c r e l a t i o n f o r N p r Ns,& may be o b t a i n e d i n t h i r d o r d e r form a s :

T h i s r e l a t i o n may be s b l v e d f o r N p a t d e f i n i t e v a l u e s f o r t h e s y s t e a p a r a m e t e r s by u s i n g t h e well known me- thod F e r r a r i s 'o r Cardan ne thod f a r n o n l i n e a r e q u a t i o n s of h i g h e r o r d e r w i t h t h e a i d of D i c a r d ' s r u l e of signs.

From o t h e r ecor.ozica1 p o i n t of view when t h e t o t a l c z s f 3f t h e c o n s i d e r e d ?V s y s t e - 3 u s t be minimum as 3ossi:le a s u i t z b l e C n k u m - c o s t a r r a l y s i s !nay be taker. -..I,* 3 ..-. ac3Lr.t. Ir. rRis .=,er --- t h e :re&-even a a l y s i s is 3reser . ted f o r p r e s e n t h g c o s t s ~ ? a p r o f i t s i n a form desi,r.ed t o a i d i n t e r y e t a t i o n a n d a n a l y s i s of p h o t o v c L t a i c sys tem and a l l t h e a u x i l i e r i e s subsystems. I n t h e proposed t e c h n i q u e of c o s t - a n a l y s i s t h e mathemat ica l r e l a t i o n s h i p s t a k e a very s i m p l e form i f t h e f o l l o w i n g a s s m p t i o n s a r e made f o r t h e purpose o f a n a l y s i s " .

1 . The v a r i a b l e c o s t sf t h e i subsystem V i is cons- t a n t , hence N i Vi is l i n e a r l y dependent on power produced ( N I i s t h e t o t a l u n i t s o f t h e i sub- s y s t e m ) .

2. Fixed c o s t s are independent o f power produced.

3. There are no f i n a n c i a l c o s t s .

4 . A l l u n i t s a r e s o l d a t t h e same p r i c e p e r u n i t .

Using t h e above assumpt ions we have t h e f o l l o w i n g c o s t - a n a l y s i s r e l a t i o n s :

t h e t o t a l c o s t J i s g i v e n by: n

i= 1 J = 1 C f i + Ni v i )

and t h e g r o s s p r o f i t Zg i s

n

Zg = Ni Si - J

i= 1

n

and t h e n e t g r o s s p r o f i t Z n e t is

Znet = ( 1 - t ) zg

( 1 1 )

( 1 2 )

where:

C f i : t h e f i x e d c c s t of t h e i

Si t : decimal t a x r a t e

subsys tem

: t h e n e t power produced p e r u n i t

I n t k i s c a s e t h e C o o r d i n a t e s o f t h e break-even p o i n t a r e g i v e n f r o n t h e r e l a t i o n :

n n

2 N i (Si - .Ii) = f i i = l i= 1

( 1 3 )

Determining t h e coordLnates o f t h e break-even p o i n t of t h e p h o t o v o l t a i c system under c o n s i d e r a t i o n is a r e s u l t o f g r e a t i m p o r t a n t . c r i t i c a l index between two considerableboundariesof n e g a t i v e and p o s i t i v e p r o f i t s . The a r e a o f + ve p r o f i t is t t e r e q u i r e d domain of d e s i g n i n which t h e power g e n e r a t e d from t h e p h o t o v o l t a i c a r r a y - b a t t e r y subsys- tems is c o r r e s p o n d i n g t o p o s i t i v e p r o f i t .

Such t h a t t h i s p o i n t d e t e r m i n e s t?.e

I ECON '91 677

Page 5: [IEEE IECON '91: 1991 International Conference on Industrial Electronics, Control and Instrumentation - Kobe, Japan (28 Oct.-1 Nov. 1991)] Proceedings IECON '91: 1991 International

C o n d u s i o n s

A low c o s t on l i n e c o n t r o l by a s i m p l e e l e c t r o r . i c c i r c u i t u s i n g a s w i t c h i n g techf i ique f o r b o t t t h e PV a r r a y and t h e s t o r a g e b a t t e r i e s is p r e s e n t e d i n t h i s paper . T h i s c i r c u i t a l l o w s t o c o n t r o l t h e b a d vol- t a g e , t h e c h a r s i n g and C i s c h a r g i n g c u r r e n t s -3 t h e s t o r a g e S a c t e r i e s . The c i r c u i t car. a l s o r e - r a r g e z t e PlJ ~ ~ r a y ce l l s -<aria+'- ..-uns.

The series and p a r a l l e l ce l l s a r e d e t e r n i n e d i n The c o o r d i n a t e s t h i s paper a t each o p e r a t i n g p o i n t .

of t h e p h o t o v o l t a i c a r r a y )Ip and Ns a r e o b t a i n e d s u c h t h a t t h e t o t a l power i s g e n e r a t e d a t extrem,o c o n d i t i o r . . From o t h e r i n t e r e s t i n g poifi t of view, t h e break-ever, p o i n t o f t h e o v e r a l l sys tem is dsduced as an index between t h e two b o u n d a r i e s of power g e n e r a t e d .

R e f e r e n c e s

[ 13 M.S .Abd El-Motaleb and Hisham A . El-Khashab , "Optimal S i z i n g Algorithm f o r S tand Alone PV Sys- tems", B u l l e t i n of t h e F a c u l t y of Eng., Ain Sharcs Univ. , vo1.2, No.24, 1989, pp.136-148.

[2] Hisham A . E 1 Khashab, "Small P h o t o v o l t a i c System i n an Egypt ian Remote Area", Proceeding o f t h e I n t e r - n a t i o n a l Conference , F r e i b u r g , Fed. Rep. of Ger- many, 25-29 S e p t . 1989.

[33 Hisham E l Khashab and M.S.Abd El-Motaleb,"Maximum t f t i l i s a t i o n of S o l a r Cel l s of SAPV System", PEMC'90, 6 Conference on Power E l e c t r o n i c s and Motion Cont ro l , Budapest, Hungary, O c t . 1990.

and Hisham E l Khashab, "Sta- r t i n g and Steady S t a t e C h a r a c t e r i s t i c s of Dc Motor Powered by Hybrid PV-wind System", a c c e p t e d f o r p u b l i c a t i o n i n CICEXI'91, China, S e p t . 1991.

and F.Hosny, "Opt imiza t ion of a Eybrid PV-Wind Stand Alone Systems" a c c e p t e d fo r p u b l i c a t i o n i n I E E Japan-IAS'91, J a p a n , Aug. 1991.

d i r e c t c o u p l i n g p h o t o v o l t a i c system", I E E E Trans . on Energy Convers ion , vol.EC-2, No.4, pp.534-541, Dec. 1987.

171 R.N.Wabrek and M.H.Cobble, "Comparison of two c u r - r e n t v o l t a g e models f o r p h o t o v o l t a i c c e l l s " , - I n t e r n a t i o n a l J o u r n a l of Energy Sys tems, vo1 .3 , r0.3, 1983.

[8] N.C.Wyeth, "Sheet r e s i s t a n c e component o f ser ies r e s i s t a n c e i n a s o l a r c e l l a s a f u n c t i o n o f g r i d geometry", S o l i d S t a t e E l e c t r o n i c s , vo1.20, p p .

(93 I .E ;Ziedan , ?.:.A .El-Sayed And E<.A .Tamam, ' 'Optilniza-

[ 4 ] M.S. Abd El-Motaleb

[5] M.S. Abd El-Motaleb, h'isham E l Khashab

[6] J.Applebaum, "The q u a l i t y o f l o a d matching i n a

629-634, 1977.

t i o n o f p h o t o v o l t a i c a r r a y u s i n g m i c r o p r o c e s s o r " , Middle E a s t Power System Conference , NEPCON 8 9 , Paper No. C4115-173.

DO] J.Applebaum, " S t a r t i n g and Steady S t a t e Charac- t e r i s t ics of Cc Motors Powered By S o l a r Cell Gene- r a t o r s " , I E E E T r a n s a c t i o n s on Energy Convers ion , v o 1 . X - 1 , No.1, March 1986.

C . J e l e n and James H.Black, McGraw-Hill I n t e r n a - t i o n a l Book Company, 1983.

13 "Cost And Opt imiza t ion Engineer ing" , F r e d e r i c

678 I ECON '91