iea energy technology perspectives: scenarios for industry ... · 2013 2020 2030 2040 2050 gtco 2...

26
© OECD/IEA 2015 © OECD/IEA 2015 IEA Energy Technology Perspectives: Scenarios for Industry Decarbonisation EPRI and IEA Workshop Renewables and Clean Energy for Industries 29 November 2016, Washington, DC Eric Masanet, PhD Energy Technology Policy Division International Energy Agency

Upload: others

Post on 19-Mar-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: IEA Energy Technology Perspectives: Scenarios for Industry ... · 2013 2020 2030 2040 2050 GtCO 2 CO2emissions Cement Iron and steel Pulp and paper Aluminium Chemicals and petrochemicals

© OECD/IEA 2015© OECD/IEA 2015

IEA Energy Technology Perspectives: Scenarios for Industry Decarbonisation

EPRI and IEA Workshop Renewables and Clean Energy for Industries29 November 2016, Washington, DC

Eric Masanet, PhDEnergy Technology Policy DivisionInternational Energy Agency

Page 2: IEA Energy Technology Perspectives: Scenarios for Industry ... · 2013 2020 2030 2040 2050 GtCO 2 CO2emissions Cement Iron and steel Pulp and paper Aluminium Chemicals and petrochemicals

© OECD/IEA 2015

IEA Energy Technology Activities

Where do we need to go?

Where are we today?

How do we get there?

Page 3: IEA Energy Technology Perspectives: Scenarios for Industry ... · 2013 2020 2030 2040 2050 GtCO 2 CO2emissions Cement Iron and steel Pulp and paper Aluminium Chemicals and petrochemicals

© OECD/IEA 2016

Sizing the scale of the challenge…… and its solutionsSizing the scale of the challenge…… and its solutions

The carbon intensity of the global economy can be cut by two‐thirds through a diversified energy technology mix

Contribution of technology area to global cumulative CO2 reductions 

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

2013 2020 2030 2040 2050

GtCO

2

Renewables 32%

Energy efficiency 32%

Fuel switching 10%

Nuclear 11%

CCS 15%2DS

4DS

© OECD/IEA, 2016 

The industrial sector accounts for 23% of cumulative CO2reductions in the 2DS

Page 4: IEA Energy Technology Perspectives: Scenarios for Industry ... · 2013 2020 2030 2040 2050 GtCO 2 CO2emissions Cement Iron and steel Pulp and paper Aluminium Chemicals and petrochemicals

© OECD/IEA 2016

Direct industrial CO2 emissions and final energy reductions in the 2DS compared with the 6DS

0

2

4

6

8

10

12

14

2013 2020 2030 2040 2050

GtC

O2

CO2 emissions

Cement Iron and steel Pulp and paperAluminium Chemicals and petrochemicals Other industries

0

50

100

150

200

250

300

2013 2020 2030 2040 2050

EJ

Final energy

Large reductions in direct CO2 emissions are possible, but energy use and emissions must be decoupled

The path forward for industry?The path forward for industry?

Page 5: IEA Energy Technology Perspectives: Scenarios for Industry ... · 2013 2020 2030 2040 2050 GtCO 2 CO2emissions Cement Iron and steel Pulp and paper Aluminium Chemicals and petrochemicals

© OECD/IEA 2016

0

30

60

90

120

6DS 4DS 2DS 6DS 4DS 2DS

2013 2050 2013 2050

Chemicals andpetrochemicals

Iron and steel

EJ

Biomass and waste Natural gas Electricity Heat Oil Coal

0

3

6

9

12

6DS 4DS 2DS 6DS 4DS 2DS 6DS 4DS 2DS

2013 2050 2013 2050 2013 2050

Cement Pulp and paper Aluminium

Decoupling energy use and CO2 requires a mix of technologies …Decoupling energy use and CO2 requires a mix of technologies …

By 2050, biomass, waste, and electricity grow to 25% of final energy demand, while overall energy use decreases by 24%

Page 6: IEA Energy Technology Perspectives: Scenarios for Industry ... · 2013 2020 2030 2040 2050 GtCO 2 CO2emissions Cement Iron and steel Pulp and paper Aluminium Chemicals and petrochemicals

© OECD/IEA 2016

… including a pivotal role for industrial carbon capture… including a pivotal role for industrial carbon capture

© OECD/IEA, 2016 

The deployment of CCS from all sources must be accelerated to stay on track for the 2DS

Sources of CO2 emissions captured in the 2DS

28% of cumulative CO2captured

Page 7: IEA Energy Technology Perspectives: Scenarios for Industry ... · 2013 2020 2030 2040 2050 GtCO 2 CO2emissions Cement Iron and steel Pulp and paper Aluminium Chemicals and petrochemicals

© OECD/IEA 2016

Other renewable power   

Buildings   

Nuclear   

Transport  

Appliances and lighting  Energy storage  

Industry  

Biofuels   Carbon capture and storage   

More efficient coal‐fired power   

Electric vehicles   Solar PV and onshore wind   

Technology Status today against 2DS targets by 2025

●Not on track ●Accelerated improvement needed ●On track

Clean energy deployment is still overall behind what is required to meet the 2°C goal, but recent progress on electric vehicles, solar PV and wind is promising

Progress in clean energy needs to accelerate 

Page 8: IEA Energy Technology Perspectives: Scenarios for Industry ... · 2013 2020 2030 2040 2050 GtCO 2 CO2emissions Cement Iron and steel Pulp and paper Aluminium Chemicals and petrochemicals

© OECD/IEA 2016

The challenge increases to get from 2 degrees to “well below” 2 degrees …The challenge increases to get from 2 degrees to “well below” 2 degrees …

© OECD/IEA, 2016 

Energy‐ and process‐related CO2 emissions by sector in the 2DS

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

2013 2020 2030 2040 2050

GtCO

2

Agriculture 2%

Buildings 8%

Industry 33%

Transport 24%

Other transformation 4%

Power 29%

Industry and transport account for the majority of remaining direct emissions in the 2DS in 2050.

Page 9: IEA Energy Technology Perspectives: Scenarios for Industry ... · 2013 2020 2030 2040 2050 GtCO 2 CO2emissions Cement Iron and steel Pulp and paper Aluminium Chemicals and petrochemicals

© OECD/IEA 2016

Decarbonizing energy‐intensive industries requires accelerated technology and policy innovation

 0

 2

 4

 6

 8

 10

 12

 14

 16

2013 2020 2025 2030 2035 2040 2045 2050

Gt C

O2

Global direct industrial CO2 emissions

 0

 50

 100

 150

 200

 250

 300

2013 2020 2025 2030 2035 2040 2045 2050

EJ

Global industrial final energy demand

… and energy‐intensive industries must lead the way… and energy‐intensive industries must lead the way

Page 10: IEA Energy Technology Perspectives: Scenarios for Industry ... · 2013 2020 2030 2040 2050 GtCO 2 CO2emissions Cement Iron and steel Pulp and paper Aluminium Chemicals and petrochemicals

© OECD/IEA 2015

Detailed picture of today’s energy system

Primary energy Transformation sector End‐use sectors Service demands

Global energy system today

Page 11: IEA Energy Technology Perspectives: Scenarios for Industry ... · 2013 2020 2030 2040 2050 GtCO 2 CO2emissions Cement Iron and steel Pulp and paper Aluminium Chemicals and petrochemicals

© OECD/IEA 2015

Primary energy Transformation sector End‐use sectors Service demands

Global energy system in the 2DS 2050

What would a 2DS world look like?

Page 12: IEA Energy Technology Perspectives: Scenarios for Industry ... · 2013 2020 2030 2040 2050 GtCO 2 CO2emissions Cement Iron and steel Pulp and paper Aluminium Chemicals and petrochemicals

© OECD/IEA 2015

ETP modelling frameworkEnd‐use sectors Service demands

Hybrid model

Industry

Long‐term simulation

Buildings

Mobility Model (MoMo)

Transport

Primary energy Conversion sectors

Renewables

Fossil

Nuclear

Electricity T&D

Fuel conversion

Fuel/heat deliveryETP Supply (bottom‐up optimisation)

Final energy

Electricity

Gasoline

Diesel

Natural gas

Heat

etc.Passenger mobilityFreight transport

Space heatingWater heating

Lighting…

Material demands…

ETP modelling framework

Page 13: IEA Energy Technology Perspectives: Scenarios for Industry ... · 2013 2020 2030 2040 2050 GtCO 2 CO2emissions Cement Iron and steel Pulp and paper Aluminium Chemicals and petrochemicals

© OECD/IEA 2015

COKE OVEN

SINTERING

PELLETISING

BLAST FURNACE

DIRECT REDUCED IRON

BASIC OXYGEN FURNACE

SMELTING REDUCTION

ELECTRIC ARC FURNACE

CONTINUOUS CASTING

COLD ROLLING

HOT ROLLING

NEAR SHAPE CASTING/ROLLING

Crude Steel

Elec.

Coke

Fuel

Raw material

preparationIron making Steel

makingSteel casting and

finishing

Iron ore

Sinter

Pellets

Scrap

Hot metal

DRI

Liquid steel

Casted steel

Direct CO2 emissions

ETP Times Iron & Steel model scope

NOTE: This is a high level technology structure model representation is displayed in this slide. Each module can be broken down into a group of technology options

Page 14: IEA Energy Technology Perspectives: Scenarios for Industry ... · 2013 2020 2030 2040 2050 GtCO 2 CO2emissions Cement Iron and steel Pulp and paper Aluminium Chemicals and petrochemicals

© OECD/IEA, 2016 

While continued efficiency gains are needed …

© OECD/IEA, 2016 

Energy efficiency continues to deliver, but is limited  by current technology and scrap availability 

Iron and  steel aggregated energy intensity

Note: Aggregate energy intensity includes final energy consumption in blast furnaces and coke ovens, as well as the portion of fuel consumption related to thermal energy generation of captive utilities for internal use.Source: Derived from IEA Energy Balances.

While continued efficiency improvements are critical …

Page 15: IEA Energy Technology Perspectives: Scenarios for Industry ... · 2013 2020 2030 2040 2050 GtCO 2 CO2emissions Cement Iron and steel Pulp and paper Aluminium Chemicals and petrochemicals

© OECD/IEA 2016

Globally, 6% of the final energy use in iron and steel making could be technically recovered

… expanding spatial boundaries may achieve greater energy savings …… expanding spatial boundaries may achieve greater energy savings …

NOTE: Only medium and high temperature IEH sources (>100 degC) and commercial recovery technologies included.SOURCE: Energy Technology Perspectives 2016

0.0

0.4

0.8

1.2

1.6

0.0

0.2

0.4

0.6

0.8

BOF off‐gasrecovery

EAF off‐gas thermalrecovery

CDQ

GJ/t crude

 steel

EJ

China India Other Asia Africa and Middle East Non‐OECD Latin America Other non‐OECD OECD Specific EH recovery potential

0.00

0.05

0.10

0.15

0.00

0.04

0.08

0.12

0.16

Sinter cooler exhaustthermal recovery

GJ/t crude

 steel

EJ

Global excess heat recovery technical potential – Iron and steel

Page 16: IEA Energy Technology Perspectives: Scenarios for Industry ... · 2013 2020 2030 2040 2050 GtCO 2 CO2emissions Cement Iron and steel Pulp and paper Aluminium Chemicals and petrochemicals

© OECD/IEA, 2016 © OECD/IEA, 2016 

Low‐carbon process technology RD&D is promising, but progress must be accelerated

Note: This slide is not intended to provide an exhaustive list. Sketch is not at scale and time milestones are just illustrative.

… and more innovative low‐carbon technology options are needed

Page 17: IEA Energy Technology Perspectives: Scenarios for Industry ... · 2013 2020 2030 2040 2050 GtCO 2 CO2emissions Cement Iron and steel Pulp and paper Aluminium Chemicals and petrochemicals

© OECD/IEA 2015

32 global publications, 21 different technology areas

Re‐endorsed at G7 Energy Ministerial Meeting in May 2016 (Kitakyushu)

New Cycle for Implementation: • Near‐term actions• Regional Relevance• Key partnerships (e.g.

Finance)• Metrics and Tracking

Technology Roadmapping: Bringing stakeholders together

© OECD/IEA, 2016 

Low‐Carbon Technology Roadmaps

2009 20112010 2012 2013 2014 2015

Page 18: IEA Energy Technology Perspectives: Scenarios for Industry ... · 2013 2020 2030 2040 2050 GtCO 2 CO2emissions Cement Iron and steel Pulp and paper Aluminium Chemicals and petrochemicals

© OECD/IEA 2015

IEA Roadmaps: action plans to accelerate industrial energy transitions

2009 2013 2015 2017

Global Cement

India Cement Chemical catalysis CCS

Hydrogen Brazil Cement India Cement UpdateTentative:• Global Cement Update• Iron and steel

23%28%

11%

3%1%

4%2%5%

4%1%1%

2%

15%

Final industrial energy use , 2014 (154 EJ)Iron and steelChemical and petrochemicalNon‐metallic mineralsNon‐ferrous metalsTransport equipmentMachineryMining and quarryingFood and tobaccoPaper, pulp and printWood and wood productsConstructionTextile and leatherNon‐specified (industry)

SOURCE: IEA Energy Balance. Note: Iron & Steel includes blast furnaces and coke ovens. Chemicals & Petrochemicals includes petrochemicals feedstocks.

Page 19: IEA Energy Technology Perspectives: Scenarios for Industry ... · 2013 2020 2030 2040 2050 GtCO 2 CO2emissions Cement Iron and steel Pulp and paper Aluminium Chemicals and petrochemicals

© OECD/IEA 2013

GHG emissions avoidance potential in chemical industry

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2010 2020 2030 2040 2050

Total G

HG Sav

ings [G

tCO

2‐eq

]

Incremental Improvement BPT conservative BPT optimistic

Emerging optimistic Biomass Hydrogen

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2010 2020 2030 2040 2050

Total G

HG Sav

ings [G

tCO

2‐eq

]

Incremental Improvement BPT conservative BPT optimistic

Emerging optimistic Biomass Hydrogen

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2010 2020 2030 2040 2050

Total G

HG Sav

ings [G

tCO

2‐eq

]

Incremental Improvement BPT conservative BPT optimistic

Emerging optimistic Biomass Hydrogen

Incremental improvement: relatively small and anticipated technological advances in the “normal course of business”

Page 20: IEA Energy Technology Perspectives: Scenarios for Industry ... · 2013 2020 2030 2040 2050 GtCO 2 CO2emissions Cement Iron and steel Pulp and paper Aluminium Chemicals and petrochemicals

© OECD/IEA 2013

GHG emissions avoidance potential in chemical industry

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2010 2020 2030 2040 2050

Total G

HG Sav

ings [G

tCO

2‐eq

]

Incremental Improvement BPT conservative BPT optimistic

Emerging optimistic Biomass Hydrogen

Best practice technology (BPT): widespread deployment of best practice/established technologies in existing plants or new facilities.

Page 21: IEA Energy Technology Perspectives: Scenarios for Industry ... · 2013 2020 2030 2040 2050 GtCO 2 CO2emissions Cement Iron and steel Pulp and paper Aluminium Chemicals and petrochemicals

© OECD/IEA 2013

GHG emissions avoidance potential in chemical industry

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2010 2020 2030 2040 2050

Total G

HG Sav

ings [G

tCO

2‐eq

]

Incremental Improvement BPT conservative BPT optimistic

Emerging optimistic Biomass Hydrogen

Emerging technologies: step‐change advances via new technology; currently in later R&D stages, demonstration with realistic potential to be commercialized. 

Page 22: IEA Energy Technology Perspectives: Scenarios for Industry ... · 2013 2020 2030 2040 2050 GtCO 2 CO2emissions Cement Iron and steel Pulp and paper Aluminium Chemicals and petrochemicals

© OECD/IEA 2013

Hydrogen from water cleavage for ammonia and methanol production

Page 23: IEA Energy Technology Perspectives: Scenarios for Industry ... · 2013 2020 2030 2040 2050 GtCO 2 CO2emissions Cement Iron and steel Pulp and paper Aluminium Chemicals and petrochemicals

© OECD/IEA 2013

GHG emissions avoidance potential in chemical industry

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2010 2020 2030 2040 2050

Total G

HG Sav

ings [G

tCO

2‐eq

]

Incremental Improvement BPT conservative BPT optimistic

Emerging optimistic Biomass Hydrogen

Page 24: IEA Energy Technology Perspectives: Scenarios for Industry ... · 2013 2020 2030 2040 2050 GtCO 2 CO2emissions Cement Iron and steel Pulp and paper Aluminium Chemicals and petrochemicals

© OECD/IEA 2013

Additional energy and fossil energy savings for ammonia and methanol via hydrogen

Production of H2 results in significant additional energy use, but also significant GHG savings

Page 25: IEA Energy Technology Perspectives: Scenarios for Industry ... · 2013 2020 2030 2040 2050 GtCO 2 CO2emissions Cement Iron and steel Pulp and paper Aluminium Chemicals and petrochemicals

© OECD/IEA 2016

Urban transport investments

 0

 1

 2

 3

 4

 5

 6

 7

 8

4DS 2DS

2015 2050

USD

  trillio

n

Internal combustion engine

Electrified

Parking and road

Metro and light rail

Infrastructure

Vehicles

In the 2DS, by 2050 one billion cars are electric vehicles while public transport travel activity more than doubles

Rethinking materials cyclesRethinking materials cycles

Page 26: IEA Energy Technology Perspectives: Scenarios for Industry ... · 2013 2020 2030 2040 2050 GtCO 2 CO2emissions Cement Iron and steel Pulp and paper Aluminium Chemicals and petrochemicals

© OECD/IEA 2015

Achieving BAT performance is critical, while accelerating low‐carbon innovations is essential• BAT includes energy and resource efficiency (e.g., yield improvements)• The pace of CCS deployment must increase• Low‐carbon process innovations require accelerated RD&D, investments

Low‐carbon fuel switching plays a key role• Biomass for renewable fuels and feedstocks, but supplies may be uncertain• Low‐carbon electrification scale depends on innovation

Expanding boundaries of influence can create new opportunities• Waste heat recovery for local plants/buildings• Materials efficiency in end use product applications

Multiple aspects of strong policy support are needed:• Long‐term energy and climate policy signals• Increased support for technology RD&D• Low‐carbon and energy efficiency labels and standards

Priorities for decarbonizing industry