icubesat 2012.b.2.4 nanosatellite for earth environmental ... › 2012 › 06 › ...presentation...

25
Nanosatellites for Earth Environmental Monitoring The MicroMAS Project (Micro-sized Microwave Atmospheric Satellite) W. Blackwell, G. Allen, C. Galbraith, T. Hancock, R. Leslie, I. Osaretin, L. Retherford, M. Scarito, C. Semisch, M. Shields, M. Silver, D. Toher, K. Wight K. Cahoy, D. Miller, A. Marinan, S. Paek, E. Peters, F. Schmidt, B. Alvisio, E. Wise, R. Masterson, D. Miranda (MIT Space Systems Laboratory) N. Erickson (UMass-Amherst) 30 May 2012 This work was sponsored by the National Oceanographic and Atmospheric Administration under Air Force Contract FA8721-05-C-0002. Opinions, interpretations, conclusions, and recommendations are those of the authors and are not necessarily endorsed by the United States Government.

Upload: others

Post on 29-Jan-2021

3 views

Category:

Documents


0 download

TRANSCRIPT

  • Nanosatellites for Earth Environmental MonitoringThe MicroMAS Project

    (Micro-sized Microwave Atmospheric Satellite)

    W. Blackwell, G. Allen, C. Galbraith, T. Hancock, R. Leslie, I. Osaretin, L. Retherford, M. Scarito, C. Semisch, M. Shields, M. Silver, D. Toher, K. Wight

    K. Cahoy, D. Miller, A. Marinan, S. Paek, E. Peters, F. Schmidt, B. Alvisio, E. Wise, R. Masterson, D. Miranda (MIT Space Systems Laboratory)

    N. Erickson (UMass-Amherst)

    30 May 2012

    This work was sponsored by the National Oceanographic and Atmospheric Administration under Air Force Contract FA8721-05-C-0002. Opinions, interpretations, conclusions, and recommendations are those of the

    authors and are not necessarily endorsed by the United States Government.

  • Presentation Name - 2Author Initials MM/DD/YY

    • Introduction and Motivation

    • Sounding Methodology

    • Nanosatellite Spacecraft Technology

    • Path Forward

    Outline

  • Presentation Name - 3Author Initials MM/DD/YY

    All-Weather, High-Resolution, Persistent3-D Observations of the Earth’s Atmosphere

    AIRS/AMSU (NASA Aqua)Mosaic of Ascending Orbits on Sep 6, 2002

    Drives Numerical Forecasting ModelsSentinel for Severe Weather and Hurricanes

    Important Indicator for Trafficability

    Tem

    pera

    ture

    (K)

  • Presentation Name - 4Author Initials MM/DD/YY

    State-of-the-Art: Large, Monolithic SystemsAre Distributed Systems a Better Approach?

    NPOESS,DoD MetSat,NASA EOS, etc.~$1B per satelliteLong developmentHigh failure impact

    Microsatellite constellation

    Problem: Global, High-Resolution Atmospheric Sensing

    traccane

    Slide adapted from P. Eremenko, DARPA F6 presentation, Feb. 2010

  • Presentation Name - 5Author Initials MM/DD/YY

    The Nanosatellite Advantage

    • Proliferation of the CubeSat standard (10x10x10 cm, 1 kg, 1W cubes)– Inexpensive COTS subsystems readily available– Launch opportunities on a variety of vehicles– Expanding base of prior art from the academic community

    • Several successful missions with non-trivial science return– Radio Aurora Explorer (RAX), UofM, space weather mission (NSF)

    • Sensor systems now practical at CubeSat scales– Driven in some cases by communication/consumer electronics– Passive microwave systems particularly well-suited

    • New nanosatellite capabilities/infrastructure rapidly emerging– Space-to-ground communications exceeding 1Mbps– Sophisticated solar arrays– Propulsion systems

  • Presentation Name - 6Author Initials MM/DD/YY

    Recent Work & Enabling Technologies

    Ultra-compact receivers

    MIT-LL Division 10MIT-LL Division 8UMass Amherst

    Novel calibration methods

    MIT-LL Division 9MIT campusTufts

    Multiband antenna systems

    MIT-LL Division 9RF System Test FacilityNortheastern UUMass Amherst

    Geophysical retrievals and performance analysis

    MIT-LL Division 9MIT Campus

    Space systems engineering

    MIT CampusMIT-LL Division 7

    NASA &NOAA

    Beaver Works2010/2011

    NASA & NOAA

    MIT / DoD2011/2012

  • Presentation Name - 7Author Initials MM/DD/YY

    • Introduction and Motivation

    • Sounding Methodology

    • Nanosatellite Spacecraft Technology

    • Path Forward

    Outline

  • Presentation Name - 8Author Initials MM/DD/YY

    Microwave Atmospheric Sensing

    The frequency dependence of atmospheric absorption allows different altitudes to be sensed by spacing channels along absorption lines

    Cloud Penetration

  • Presentation Name - 9Author Initials MM/DD/YY

    • Focus on hurricanes and severe weather• Near-equatorial orbit• ~500-km orbit altitude• 0.2-degree pointing knowledge• 1-year mission lifetime• 30 kbps (avg) downlink• 10 W (avg) power• ~$1M unit cost

    MicroMAS-1 Mission Objectives

  • Presentation Name - 10Author Initials MM/DD/YY

    • 8 channels near 118.75-GHz oxygen line• 1 window channel• Cross-track scan• Spatial Nyquist sampling• 2.4-degree FWHM antenna beam• 95% beam efficiency• 1-2 W (avg)• 0.3 K NEDT• Noise diode, earth limb, and cold sky calibration• 1 K calibration accuracy

    MicroMAS-1 Radiometer Objectives

  • Presentation Name - 11Author Initials MM/DD/YY

    MicroMAS – RF Front End

    Worst-case average power: 800mW

    First Stage Second Stage

  • Presentation Name - 12Author Initials MM/DD/YY

    MicroMAS Receiver Noise Temperature

  • Presentation Name - 13Author Initials MM/DD/YY

    MicroMAS Channel CharacteristicsLeft edge Center Right edge Bandwidth113.9135 114.2260 114.5385 0.625114.5375 114.8500 115.1625 0.625115.1615 115.4740 115.7865 0.625115.7855 116.0980 116.4105 0.625116.4095 116.7220 117.0345 0.625117.0335 117.3460 117.6585 0.625117.6575 117.9700 118.2825 0.625118.2815 118.5940 118.9065 0.625108.0000 108.5000 109.0000 1.0000

    Approximately 1 rev/sec1-degree sample spacing (Nyquist)+/- 50-degree swath

  • Presentation Name - 14Author Initials MM/DD/YY

    MicroMAS – IF Processor

    Worst-case average power: 500mW

  • Presentation Name - 15Author Initials MM/DD/YY

    • Substrate Integrated Waveguide (SIW) filters offer lower insertion loss and better filter shape factor than striplineinterdigital filters due to their higher Q (> 500) resonators– Filters are realized in two-layer LTCC stack with via “fences”

    creating the waveguide side walls– Via “posts” control coupling in between resonator cavities

    MicroMAS LTCC SIW Filters

    21.00 22.00 23.00 24.00 25.00Freq [GHz]

    -80.00

    -70.00

    -60.00

    -50.00

    -40.00

    -30.00

    -20.00

    -10.00

    0.00

    Y1

    SIW resonatorXY Plot 1 ANSOFT

    Curve InfodB(S(Port1,Port1))

    Setup1 : Sw eep1dB(S(Port2,Port1))

    Setup1 : Sw eep1

    HFSS SimulationHFSS Model

    WG cavity

    Coupling (“iris”)

    First Fabrication Run Now In Progress

  • Presentation Name - 16Author Initials MM/DD/YY

    Preliminary MicroMAS SimulationsSuper Typhoon Pongsona (Dec 8, 2002)

  • Presentation Name - 17Author Initials MM/DD/YY

    • Antenna subassembly complete and tested– Performance requirements achieved

    • Receiver front-end engineering model complete– Prof. Neal Erickson (UMass-Amherst)– High-performance RF LNA– Electronic calibration– Very low size, weight, and power

    • Receiver IF processor in development– Design complete– Ultra-compact, high-performance

    • Radiometer control and data handling prototype complete

    Radiometer Status

  • Presentation Name - 18Author Initials MM/DD/YY

    • Introduction and Motivation

    • Sounding Methodology

    • Nanosatellite Spacecraft Technology

    • Path Forward

    Outline

  • Presentation Name - 19Author Initials MM/DD/YY

    Beaver Works III:Micro-sized Microwave Atmospheric Satellite

    • Lead: Professor David Miller– 2010 Fall (Design focus): 16.851 Satellite Engineering 13 on MicroMAS team

    – 2011 Spring (Build focus): 16.89 Space Systems & 16.83 (undergrad capstone) Six on MicroMAS team, plus post-doc and staff

    • Micro-sized Microwave Atmospheric Satellite– Spacecraft bus developed by campus– Payload developed by Lincoln-led team

    • New Technology Development– Ultra-compact receivers (Lincoln)– CubeSat spacecraft bus (campus)

    30x10x10 cm~10 W average~30kbps~4 kg

  • Presentation Name - 20Author Initials MM/DD/YY

    4. On-orbit deployment(14 days)- Detumble- Spin up payload- Checkout

    3. Launch as secondary payload

    2. Pre-Launch Integration (P-PODCubeSat launcher)

    5. Mission Ops (12 months)- Collect radiometer data- Transmit data to ground

    8. Mission Termination

    X

    MicroMAS Mission Overview

    2

    1. Mission Planning- Altitude 475-600km- Inclination 20-60 deg

    6. Fault Recovery7. Limited Ops

  • Presentation Name - 21Author Initials MM/DD/YY

    MicroMAS 3U Spacecraft

    Deployable solar panels

    Reaction wheel assembly

    Avionics and communication

    Scanning assembly

    Passive microwave spectrometer10x10x34 cm

    4.5 kg, 12 W avg

    Body-mounted solar panels not shown

  • Presentation Name - 22Author Initials MM/DD/YY

    MicroMAS Bus Design

    MAI-400ADACS Unit

    ADACS Interface Board

    Comm. Radio

    Clyde-Space Battery

    Clyde-Space EPS

    Pumpkin Motherboard

    Motor Controller

    Magnetometer

    Scanning Assembly Motor

  • Presentation Name - 23Author Initials MM/DD/YY

    • Engineering Development Model (EDM) complete in Oct 2011– Functional testing– Vibration testing– Thermal testing– TVAC testing– Air bearing testing

    • Flight Model under development– Long-lead parts ordered– Design near complete (CDR Summer 2012)

    • Launch to be provided in late 2013 / early 2014 by NASA

    Spacecraft Status

  • Presentation Name - 24Author Initials MM/DD/YY

    • Introduction and Motivation

    • Sounding Methodology

    • Nanosatellite Spacecraft Technology

    • Path Forward

    Outline

  • Presentation Name - 25Author Initials MM/DD/YY

    • All-weather sounding of highly dynamic phenomena, including convective storms, hurricanes, etc.

    • Studies of the hydrologic cycle– Vapor, liquid, ice; precipitation

    • Studies of the diurnal cycle

    Constellation Approach Allows Rapid Revisit