icss- asia ait, thailand november 23-24, 2009 bioenergy potential in asia shinya yokoyama the...

16
ICSS- Asia AIT, Thailand November 23-24, 2009 BIOENERGY POTENTIAL IN ASIA Shinya Yokoyama The University of Tokyo

Upload: sophie-parks

Post on 26-Dec-2015

215 views

Category:

Documents


1 download

TRANSCRIPT

ICSS- Asia

AIT, ThailandNovember 23-24, 2009

 

  BIOENERGY POTENTIAL IN ASIA

Shinya Yokoyama

The University of Tokyo

gaseous fuel

BIOMASS

power generation

cogeneration

gasification

direct liquefaction

indirect liquefaction

trans esterification

alcohol fermentation

anaerobic digestion

solidification

carbonization

electric ity

electric ity, heat

oil

methanol, DME, gasoline

biodiesel

ethanol

methane

pellet

charcoal

THERMOCHEMICALCONVERSION

BIOCHEMICALCONVERSION

OTHERS

pyrolysis oil

BIOMASS ENERGY CONVERSION TECHNOLOGY

BIOMASS ENERGY CONVERSION TECHNOLOGY

SHORT, MEDIUM, AND LONG TERM TERGETS OF BIOMASS CONVERSION TECHNOLOGY

Short Term:  

+ Power generation, Cogeneration

            Small Scale Gasification

+ Anaerobic Digestion to Methane Production

+ Bioethanol Production from Sugars and Grains

+ Pyrolysis

+ Biodiesel

+ Thermal Utilization

Medium Term:

+ Bioethanol Production from Cellulosic Materials

Long Term:

+ BTL

POTENTIAL OF AGRICULTURAL RESIDUES

CP * RPR * AF = ARP

CP : Crop Production 1)

RPR: Residue Production Ratio ( by weight ) 2)~6)

AF : Availability Factor 2)

ARP: Available Residue Production

TRP: Total Residue Production

= TRP

TRP * NCV = TEP , ARP * NCV = AEP

NCV: Net Calorific Value 2)6)7)

ARP: Available Energy Potential

TEP: Total Energy Potential

AEP: Available Energy Potential

Source:

1) FAO Statistics(2007), 2005-2007 平均

2) Sajjakulnukit(2005,Thailand)

3) COGEN(2005, Indonesia)

4) MOA/DOE(1998,China)

5) NEDO(2007, ASEAN)

6) Soni(2005, Indonesia)

7)China Energy Statistical Yearbook(2005. China)

×RPR ×AF

Crop Residue Available residue

EDiesel

E

ResidueSugar mill

Power plant

VehicleHouses

Power plant

CH4

CO2

CO2

CO2

CH4

E

B

B

P

P P

Diesel

VehicleCO2

PField

Residue

CH4

B

B

…Baseline emission

P

…Project emission

…Input energy

…Output energy

System evaluated

SYSTEM BOUNDARY

Projects

16

0

Palm husk

36

45

6

Bangka

Indonesia

I2

13.2

50

Cotton stem

127.5

150

25

Shandong

China

C1

19.5

50

Rice straw Wheat straw

132.6

156

24

J iangsu

China

C2

17.27

30

Corn stem

139

165

30

Shandong

China

C3

3505050200Collection radius(km)

15.75

Palm empty 

fruit bunch (EFB)

68.1

78

8.9

Surat Tani

Thailand

T3

26

Palm husk

70

78

9.7

Asahan

Indonesia

I1

22.38 14.46 Biomass 

consumption (kt-crop/ yr)

Bagasse,rice husk,sugarcane stem

rice huskBiomass

167 133 Selling 

(GWh/ yr)

196 148 Production (GWh/ yr)

41 20 Generation capacity (MW)

Phu KhieoPichitProvince

ThailandThailandCountry

T2T1Projects

16

0

Palm husk

36

45

6

Bangka

Indonesia

I2

13.2

50

Cotton stem

127.5

150

25

Shandong

China

C1

19.5

50

Rice straw Wheat straw

132.6

156

24

J iangsu

China

C2

17.27

30

Corn stem

139

165

30

Shandong

China

C3

3505050200Collection radius(km)

15.75

Palm empty 

fruit bunch (EFB)

68.1

78

8.9

Surat Tani

Thailand

T3

26

Palm husk

70

78

9.7

Asahan

Indonesia

I1

22.38 14.46 Biomass 

consumption (kt-crop/ yr)

Bagasse,rice husk,sugarcane stem

rice huskBiomass

167 133 Selling 

(GWh/ yr)

196 148 Production (GWh/ yr)

41 20 Generation capacity (MW)

Phu KhieoPichitProvince

ThailandThailandCountry

T2T1

1(1)04Registered by Japanese government

12(2)4(2)4(3)Registered by United Nations

ChinaIndonesiaThailand

1(1)04Registered by Japanese government

12(2)4(2)4(3)Registered by United Nations

ChinaIndonesiaThailand

CDM Projects in this study※( ):projects addressed in this study

CDM POWER GENERATION PROJECTS USING AGRICULTURAL RESIDUES

C1

C2

C3T2T1

T3

I2I1

CDM PROJECT SITES

0

200,000,000

400,000,000

600,000,000

800,000,000

1,000,000,000

Thailand Indonesia China

Bio

mass (

t-bio

mass/y

r)

0

2,000,000,000

4,000,000,000

6,000,000,000

8,000,000,000

10,000,000,000

12,000,000,000

En

erg

y (G

J/y

r)

Potential Residue Available ResidueTotal Energy Potential Available Energy Potential

AGRICULTURAL RESIDUES

0

500

1000

1500

2000

2500

3000

3500

4000

4500

T1 T2 T3 I1 I2 C1 C2 C3

Ene

rgy

(MJ/

t-bi

omas

s)

inp

ut

ou

tpu

t

bal

ance

inp

ut

ou

tpu

t

bal

ance

inp

ut

ou

tpu

t

bal

ance

inp

ut

ou

tpu

t

bal

ance

inp

ut

ou

tpu

t

bal

ance

inp

ut

ou

tpu

t

bal

ance

inp

ut

ou

tpu

t

bal

ance

inp

ut

ou

tpu

t

bal

ance

Balance Power generation Auxiliary fuel

Electricity for plant use Biomass transport fuel

Balance Power generation Auxiliary fuel

Electricity for plant use Biomass transport fuel

3,366MJ/t-biomass1,457MJ/t-biomass

ENERGY BALANCE OF POWER GENERATION

963kg-CO2/t-biomass

Average

Thailand: 546

Indonesia: 582

China: 824(Kg-CO2/t-biomass)

0

200

400

600

800

1,000

1,200

T1 T2 T3 I1 I2 C1 C2 C3

GH

G(k

g-C

O2e

q/t-

biom

ass)

Left alone or combustion Electricity from grid Biomass transport fuel

Fuel for plant use Biomass power generation GHG reduction

Bas

elin

e e

mis

sion

Pro

ject

em

issi

on

GH

G r

educ

tion

Bas

elin

e e

mis

sion

Pro

ject

em

issi

on

GH

G r

educ

tion

Bas

elin

e e

mis

sion

Pro

ject

em

issi

on

GH

G r

educ

tion

Bas

elin

e e

mis

sion

Pro

ject

em

issi

on

GH

G r

educ

tion

Bas

elin

e e

mis

sion

Pro

ject

em

issi

on

GH

G r

educ

tion

Bas

elin

e e

mis

sion

Pro

ject

em

issi

on

GH

G r

educ

tion

Bas

elin

e e

mis

sion

Pro

ject

em

issi

on

GH

G r

educ

tion

Bas

elin

e e

mis

sion

Pro

ject

em

issi

on

GH

G r

educ

tion

478 kg-CO2/t-biomass

GHG EMISSIONSGHG EMISSIONS

0

500

1,000

1,500

2,000

2,500

3,000

発電ポテンシャル 電源構成

Coal Oil Natural gas Biomass Nuclear Hydro Geothermal Coal Oil Natural gas Biomass Nuclear Hydro Geothermal

Potential of power

generation

Power generation

mix

3000

2500

2000

1500

1000

500

0

Ele

ctrici

ty (T

Wh/

yr)

China

16.41132.221.7Thailand99.03127.4126.1Indonesia

13.642,497.4340.7China

Alternative rate (%)

Total consumption of electricity (TWh/yr)

Potential of power

generation (TWh/yr)

16.41132.221.7Thailand99.03127.4126.1Indonesia

13.642,497.4340.7China

Alternative rate (%)

Total consumption of electricity (TWh/yr)

Potential of power

generation (TWh/yr)

0

40

80

120

160

200

発電ポテンシャル 電源構成

石炭 石油 天然ガス バイオマス原子力 水力 地熱

0

40

80

120

160

200

発電ポテンシャル 電源構成

Potential Mix Potential Mix

200

160

120

80

40

0E

lect

rici

ty (T

Wh/

yr) Thailand Indonesia

200

160

120

80

40

0

POTENTIAL OF POWER GENERATION

AND  ENERGY PORTFOLIO

GHG REDUCTION POTENTIAL

China Thailand Indonesia

Available Residue(t-biomass/yr)

453,911,854 35,661,136 128,395,507

GHG reduction new biomass residue (t-CO2eq/t-biomass)

0.824 0.546 0.582

GHG reduction(t-CO2eq/yr) 374,158,349 19,470,624 74,669,129

GHG emission(2006, t-CO2eq/yr) 6,018,000,000 245,000,000 280,000,000

GHG reduction potential

6.22% 7.95% 26.67%

RESULTS

China Thailand Indonesia

Resource

Potential of agricultural residue

t-biomass/yr 628,413,419 74,644,339 357,221,307

Availability % 72.00% 64.88% 75.55%

Available residue t-biomass/yr 452,472,300 48,432,741 269,889,984

Available energy potential

GJ/yr 6,788,362,652 318,186,664 1,314,484,952

Power generation

Potential of power generation (average)

GWh/yr 340,651 21,691 126,133

Alternative rate % 13.64% 16.41% 99.03%

GHG reduction

GHG reductiont-CO2eq

/t-biomass0.824 0.546 0.582

GHG reduction potential

t-CO2eq

/t-biomass374,158,349 19,470,624 74,669,129

GHG reduction rate % 6.22% 7.95% 26.67%

Default Value of GHG Emissions“Sustainability Ordinance”

260

240

220

200

180

160

140

120

100

80

60

40

20

0

260

240

220

200

180

160

140

120

100

80

60

40

20

0

260

240

220

200

180

160

140

120

100

80

60

40

20

0

Wh

eat

(EU

)

Co

rn (

N.

Am

.)

Su

gar

can

e (

L.

Am

.)

Su

gar

bee

t(E

U)

Rap

esee

d (

EU

)

So

ybe

an (

L.

Am

.)

So

ybe

an (

N.

Am

.)

Pal

m o

il (

SE

. A

s.)

Rap

esee

d (

EU

)

So

ybe

an (

L.

Am

.)

So

ybe

an (

N.

Am

.)

Pal

m o

il (

SE

. A

s.)

Rap

esee

d (

EU

)

So

ybe

an (

L.

Am

.)

So

ybe

an (

N.

Am

.)

Paz

lmo

il (

SE

. A

s.)

Kg

CO

2-e

pe

r G

J B

iofu

el

Direct land use change

Production of biomass

Transport of biomass

Conversion step 1

Transport betw. conversion steps

Conversion step 2

Transport to admixture

Reference systems

30% saving

40% saving

Bioethanol FAME Straight oil Hydro oil

LCA OF BIOFUELS

KEY MESSAGE

+ Intimate Contact and Information Exchange to Avoid

Labor, Time, and Expenditure etc.

+ Appropriate Technologies for Energy and Materials

+ Further Study for Sustainability of Biomass Utilization

Including, for Example, Land Use Change, Competition

with Food, Biodiversity etc.

+ Well Designed Regulation for Biomass Utilization

+ International Collaboration

Thank you very much

[email protected]