i '. -; may 4. · i, 4-.1 -1 computer simulated climatic conditions s cenari1 5: develop 3,280...

57
MAY 42.1- J-; -. ': ,-_t I '. -; M-M -4 4. Z% 7" 'Ohio 41" -ti -- a X ne. Ir- C3 Ft 'n '41 7_1 FF Ft fifth; A.. 1k, 1-. _w. Ki VNIOP, Am4m 4m, FWW,4wlm LM "1614w-t -kaNIA'It "!FIJI nit -killer at" -- .-- - ;. ;,.- in rk Zt 546 4z ir .- WE'D (;D V _4e '4 .7 Z. -07: e-1 ILLU. 7 :L UgLft v -F ILLAL -X.. rt 43? 3L_ -ft .. r4*vp1i4w spar" is 8511130094 851007 :7 PDR WASTE PDR WM Pe6fd file" - Wm-lo 'DR LP R Dilt tium 77 -SS) p!u III tv. v

Upload: others

Post on 26-Jan-2020

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: I '. -; MAY 4. · i, 4-.1 -1 computer simulated climatic conditions s cenari1 5: develop 3,280 ft (1,000 m) drift from esf for repository construction - flow through ventilation 50,000

MAY 42.1-

J�-; -.': ,�-_tI '. -;� M-M -4 4.Z%7" 'Ohio

41"-ti

-- a Xne.

Ir- C3 Ft'n '41

7_1

FF Ft fifth;

A..

1k,

1-. _w.

Ki

VNIOP,Am4m

4m, FWW,4wlm LM "1614w-t� -kaNIA'It"!FIJI

nit� -killerat" -- .- - - ;. ;,.-

in �rk

Zt546

4z

ir.- WE'D

(;D

V

_4e

'4�

.7 Z.

-07:e-1

ILLU. 7 :L UgLft v -F

ILLAL -X..

rt 43?3L_ -ft..r4*vp1i4w spar"

is8511130094 851007 :7PDR WASTEPDR WM Pe6fd file" -Wm-lo

'DRLP R

Dilt tium77

-SS)p��!u III tv. v

Page 2: I '. -; MAY 4. · i, 4-.1 -1 computer simulated climatic conditions s cenari1 5: develop 3,280 ft (1,000 m) drift from esf for repository construction - flow through ventilation 50,000

:'- EIX

7md

zre w e

4tssure wate rTOrm

4.. Fac,+ors that vnftuencewoter teat.

.a Low f~low 'rcaes.

.3. P~o~{ slOW.,

6 6.4 - t Wn re s u.tts for

plae flowtow ftow and

.5. 79Y flow

.(. 'R ~a±u~-

4S1%.y tSons.

Page 3: I '. -; MAY 4. · i, 4-.1 -1 computer simulated climatic conditions s cenari1 5: develop 3,280 ft (1,000 m) drift from esf for repository construction - flow through ventilation 50,000

I - IA ->

I I.X

i. Irnor an± PAra~me ters

we+surface

Air veloc~y, U..... .. ,. . A..l./~we ltabulb am4eraThUre

ary bulb ±tnkerc e u re, +tt w

cair pressure,

Va4or 0 re_ J5ureeOtVI

]BOv~n d aLIIrs

ti taI

'I

IIII c

Page 4: I '. -; MAY 4. · i, 4-.1 -1 computer simulated climatic conditions s cenari1 5: develop 3,280 ft (1,000 m) drift from esf for repository construction - flow through ventilation 50,000

5 wTuTr~ um ayiod oflI aters

Tem erature and . tro- CL9 IRW

NxtocCiL)y

//O.ilr inetea(ce.

.A. Locco oy ir.

.5. ? TJrOMtr a TC Condit Lon of 0.jfr . 0%0

E ~~ wet-' bulbih teert~

6ttlo tem ,berafu~re~ vaO Pre ssu re

No~~~~~~e:~~Vo tuMe inflow o. water

is not a. priarTMOy VOTbarater

tu{ wdill £nhluence heat Stow indirectly

throng~ is effect on water +cem etitoe

cL'n 8 q tL$U4 Sur o-ca

Page 5: I '. -; MAY 4. · i, 4-.1 -1 computer simulated climatic conditions s cenari1 5: develop 3,280 ft (1,000 m) drift from esf for repository construction - flow through ventilation 50,000

I- Low- rat+- of w f1IC 'd . .0 ,o sconathonso

"8adm4 boic) ies O.th'4y weekinrS+ ssures.

t~ no ttpLiAiL %~trnL-hm oruf at Iut o dro t... 0 X waA&er, L

:a1 w :evso4oroiea O-Ma total

eiatr e~nters aQ stfrelarn .

lea 0 \ow.

�W

m Mc.$S otw of 'vvcef , kq/

C: S cCL c V~2cL~c4 W ater,( A.f S kT/k'S. ac)

VRT - vir O rock tam erature 0c

wet biutt temkn ratureo. t Zexit, 0 c

Page 6: I '. -; MAY 4. · i, 4-.1 -1 computer simulated climatic conditions s cenari1 5: develop 3,280 ft (1,000 m) drift from esf for repository construction - flow through ventilation 50,000

3- ,PlaQe I fOWV

Conis tions -Contxnou~s water su-or -ce s , e¢.as.

"St eat tow ('own watts

Xtor cov,

fo war in-~~~~~~~~~.. -4 4 0. D-. - .:.-

ea t ow

Ier1J by water

. Lon. e cl0-n n et ,.N.

Cab Sens e � �0. 0.� :

q -A K (tw5 - mtj) 1A a Aorea. oi ALcLd/Q ii iterface, M,

Convective he ot -ranse'rco LoLfrtc,4V//mL

twst temw of wet uce ;

CL - g tu% erFo~Ur' -of air

cc

QC

Page 7: I '. -; MAY 4. · i, 4-.1 -1 computer simulated climatic conditions s cenari1 5: develop 3,280 ft (1,000 m) drift from esf for repository construction - flow through ventilation 50,000

{i .I .

.. P j t ) Lote n& heat S

q,, A kc L 0.7 ( - 1|

L c oartent ie.01 4 eV or'o~Or\4or wa~ter # (-T//k'a

aws - saiurated 4 o r I vre.ssu'rea-twat

,\

sur rcc kRa.-

- OactLOl 'a'of iressUe in air, kPc

P = akr sv ssUre

1Totl he¢t

k Pa

(C)

k wA

N 0oia % t role of Water Clo 'w does

not o eoL S:9= Ln tese esuo. Cton s

Page 8: I '. -; MAY 4. · i, 4-.1 -1 computer simulated climatic conditions s cenari1 5: develop 3,280 ft (1,000 m) drift from esf for repository construction - flow through ventilation 50,000

-- - --- -V i

COMPUTER-SIMULATED CLIMATIC CONDITIONS

SCENARIO 1: - COMPRESSED AIR VENTILATION -- 12,000 CFM (5,66m3/S)

- AIR COOLED TO 500 F (100 C)- TWO HEADINGS (MD, HD) -150 FT (50 M) FROM ES-I

- 6,000 CFM AT EACH FACE

- PNEUMATIC EQUIPMENT

- 12 PERSONS UNDERGROUND- FREE FLOWING WATER IN OPEN CHANNEL TO ES-I SUMP

.. . .-.I .., � 7

CONDITIONS AT FACE AT SHAFT STATION

- DRY BULB AIR TEMPERATURE OF (0C) 68.0 (20.0)

- WET BULB AIR TEMPERATURE OF (0C) 54.5 (12.50)

84.7 (29.27)

63.9 (17.71)

- W.B.G.T. OF ( 0C) 58.6 (14.75) 71.4 (21.80)

(a MAX. ALLOWABLE WBGT = 800 F (26.7 OC)

Page 9: I '. -; MAY 4. · i, 4-.1 -1 computer simulated climatic conditions s cenari1 5: develop 3,280 ft (1,000 m) drift from esf for repository construction - flow through ventilation 50,000

p

SCENAPIO I

Compressed Air VentilationWeek 10 of Development

ESI ES 11 (In ProgrenuSilencer Compressed Air

12.000 CFM

Main DriftFace 113P x 9'

Duct

HydrologyDrift

i WAEP i

ii i iii i Ii ! i~~ II!i ! i

' ,'. . -. L i.,

. . .

* ~~~~~~~~~~~~~~~~~~!

.- . _. _ . _. _. _ . _. ._._.. ) J. ,~~~~~~~~~~~~~~0

LE.WND

*. Fiesh Air Flow-- "Retum Air Flow

-_ .i -e-Future Drifts..... r e rlow n; n , r.

in Open pro-,

I

Face 213' x 9'

II

IIIiII!

! i

Page 10: I '. -; MAY 4. · i, 4-.1 -1 computer simulated climatic conditions s cenari1 5: develop 3,280 ft (1,000 m) drift from esf for repository construction - flow through ventilation 50,000

- t

COMPUTER SIMULATED CLIMATIC CONDITIONS

SCENARIO 2: - COMPRESSED AIR VENTILATION 12,000 CFM (5.66 m3/S)- AIR COOLED TO 50° F (100 C)- ONE HEADING -- BEFORE BREAK-IN --- 625 FT (189 M) FROM ES-I

- PNEUMATIC EQUIPMENT

- 12 PERSONS UNDERGROUND

- NO FISSURE WATER

CONDITIONS AT FACE AT SHAFT STATION

- DRY BULB AIR TEMPERATURE OF (0C) 78.8 (26.0)

- WET BULB AIR TEMPERATURE OF (0C) 59.0 (15.0)

90.3 (32.41)

64.8 (18.21)

- W. B.G. T. 64.9 (18.3) 73.1 (22.86)

(e MAX. ALLOWABLE WBGT = 800 F (26.7 0C))

Page 11: I '. -; MAY 4. · i, 4-.1 -1 computer simulated climatic conditions s cenari1 5: develop 3,280 ft (1,000 m) drift from esf for repository construction - flow through ventilation 50,000

V.

SCENA-PIO 2

Compressed Air VentilationWeek 24 of Development

KSnESI

Sllencer Actdle Face-jCompremed Air120a CFM Du"t

I_

4 ._._._._._.z I ~~~~I iI - . ~~~~~~I. ' *I '

*! i

12.000 CFM

Phiun ee fmm KS1 t Fac(s3 aErea*k4) . a2

m4 Fresh ir Flow-- Returnm M Flow-06- Future prtts

I iii! I

! iLi

i

Page 12: I '. -; MAY 4. · i, 4-.1 -1 computer simulated climatic conditions s cenari1 5: develop 3,280 ft (1,000 m) drift from esf for repository construction - flow through ventilation 50,000

j r

r

COMPUTER SIMULATED CLIMATIC CONDITIONS

SCENARIO 3: - COMPRESSED AIR VENTILATION -- 12,000 CFM (5.66M3/S)

- AIR COOLED TO 50 OF (100 C)

- ONE HEADING -- BEFORE BREAK-IN -- 625 FT (189 M) FROM ES-I

- PNEUMATIC EQUIPMENT

- 12 PERSONS UNDERGROUND

- 30 GPM (1.89 L/S) FISSURE WATER AT FACE- FREE FLOWING WATER IN OPEN CHANNEL TO SUMP

CONDITIONS AT FACE AT SHAFT STATION (ES-I)

- DRY BULB AIR TEMPERATURE OF (0C) 78.8 (26.0)

- WET BULB AIR TEMPERATURE OF (0C) 59.0 (15.0)

- W.B.G.T. AIR TEMPERATURE OF (0C) 64.9 (18.3)

97.7 (36.49)

69.8 (21.02)

78.7 (25.92)

(* MAX. ALLOWABLE WB.G.T, c 800 F (26.70 C)

Page 13: I '. -; MAY 4. · i, 4-.1 -1 computer simulated climatic conditions s cenari1 5: develop 3,280 ft (1,000 m) drift from esf for repository construction - flow through ventilation 50,000

1,

SCENARIO 3

Compressed Air VentilationWeek 24 of Development

ESI aS It3o6PH

o4sSilencer1. ov Active Face 1715Y)PE

1 12,000 CFM dsump DCta

12,000 CFM

,! j

Distane from El I t FM~ii I ,

(ES it Ereak4n) m 25

~~ -' - .- '-4 ~~Fre-sh Air Fam4Retumn Ar Flow

I i -- i tFutue Driftsg-- -j-- 3 i ....... Frhee Flow

j in Ojen Channel

,I.

I!I

I. j ...

Page 14: I '. -; MAY 4. · i, 4-.1 -1 computer simulated climatic conditions s cenari1 5: develop 3,280 ft (1,000 m) drift from esf for repository construction - flow through ventilation 50,000

;

COMPUTER SIMULATED CLIMATIC CONDITIONS

SCENARIO 4: = MAXIMUM WATER INFLOW HANDLEABLE WITH THE DESIGNEDVENTILATIONW)

- COMPRESSED AIR VENTILATION -- 12,000 CFM (5.66 m3/S)

- AIR COOLED TO 500 F (100 C).- ONE HEADING -- BEFORE BREAK-IN -- 625 FT (189 M) FROM ES-I

- PNEUMATIC EQUIPMENT

- 12 PERSONS UNDERGROUND

- FREE FLOWING WATER IN OPEN CHANNEL TO SUMP

CONDITIONS AT FACE AT SHAFT STATION (ES-I)

- DRY BULB AIR TEMPERATURE OF (0C) 78.8 (26.0)

- WET BULB AIR TEMPERATURE OF (0C) 59.0 (15.0)

- W.B.GT. AIR TEMPERATURE OF (0C) 64.9 (18.3)

100.8 (38.23)

70.9 (21.64)

80.3 (26.84)

*SIMULATION IS BASED ON 75 GPM (4.73 US)FISSURE WATER FREE FLOWING THROUGH A 10-IN.(0.25 M) OPEN CHANNEL TO THE MAIN SUMP

Page 15: I '. -; MAY 4. · i, 4-.1 -1 computer simulated climatic conditions s cenari1 5: develop 3,280 ft (1,000 m) drift from esf for repository construction - flow through ventilation 50,000

I -I,

* !... 4.

J}SC EJ &/Apto 4

Compressed Air VentilationWeek 24 of Development

ISI IRS I I

Silencer

[I 12.000CFM

e.hkk 756PHFISSUP6WA16 TActive Face -

-7< Sumsp7~.SM Duct

,,- _

'- - . . . . . . . . . . . . . . . . . . . . . . . .. . . . . 49WIPMO-ON.* - . . . . . I

*~~~~~ ~ I .. _._..! |~~~~I! i~~~~i

i~~~~~~i i. ~ ~~~ ~ .. - . ~

! I~~~~~~~~~~~~~~~~L I i' a t v 'a c : . . . . . . 1 . ! i

120M0 CFM

DIbstme h 1 131" Puc(3s n3 ak4nj a 123

LEGEND

-_-4 Fresh Ar Flow4+* Retun Ar Fnow

-*- Future Drifts.'. . Free rtowin Wter

in Open cu nepl

Page 16: I '. -; MAY 4. · i, 4-.1 -1 computer simulated climatic conditions s cenari1 5: develop 3,280 ft (1,000 m) drift from esf for repository construction - flow through ventilation 50,000

I,4-

.1 -1

COMPUTER SIMULATED CLIMATIC CONDITIONS

S CENARI1 5: DEVELOP 3,280 FT (1,000 M) DRIFT FROM ESF FOR REPOSITORYCONSTRUCTION

- FLOW THROUGH VENTILATION 50,000 CFM (23.6 M3/S)

- AIR COOLED TO 400 F (4.50 C)- ONE HEADING 13 x 9 FT (4.0 x 2.7 M) - 10 FT (3 M) PER DAY

- ELECTRIC EQUIPMENT - 150 KW AT FACE

- 20,000 CFr. (9.4 M3/S) AIR DUCTED TO THE FACE

- FISSURE WATER 7.5 x 10-5 GPM/M2 (STUDY 9)

CONDITIONS AT FACE AT SHAFT STATION.

- DRY BULB TEMPERATURE OF (OC)

- WET BULB TEMPERATURE OF ( 0C)- W.B.G.T. TEMPERATURE OF ( 0C)

84.2 (29.0)

62.1 (16.70)

-68.7 (20.39)

92.9 (39.41)

70.7 (21.50)80.9 (27.17)

NMiIS: 1. W.B.G.T. ALONG THE RETURN AIRWAY REACHES MAX. 83.50 F(28.630C) (NOT A PERMANENT WORK PLACE)

2. A BLEED OF FRESH COOL AIR CAN BE ALLOWED AT SHAFT STATION,TO BRING THE W.B.G.T. BELOW 80° F (26.70 C)

Page 17: I '. -; MAY 4. · i, 4-.1 -1 computer simulated climatic conditions s cenari1 5: develop 3,280 ft (1,000 m) drift from esf for repository construction - flow through ventilation 50,000

4 t

:,

COMPUTER SIMULATED CLIMATIC CONDITIONS

SCENARIO 6: TWO-PHASE REPOSITORY DEVELOPMENT FROM ESF

- FLOW THROUGH VENTILATION 50,000 CFM (23.6 m3/S)- AIR COOLED TO 50° F ("C) (10 OC)

- TWO HEADINGS: 2,320 AND 3,180 FT (707 AND 970 M) FROM ES-I

- ELECTRIC EQUIPMENT -- 100 KW AT FACE

- FRESH AIR DUCTED TO THE FACE

- FISSURE WATER OF 30 GPM (1.89 US) AT FACE- OPEN CHANNEL TO CLOSED SUMP

CONDITIONS AT FACE 1 *AT FACE 2 AT SHAFT STATION

- DRY BULB

- WET BULB

- W.B.G.T.

TEMPERATURE OF (0C)

TEMPERATURE OF ("C)

TEMPERATURE OF ("C)

69.8 (21.0)

59.9 (15.5)

62.9 (17.15)

65.3 (18.5)

61.9 (16.6)

62.9 (17.2)

86.8 (30.44)

70.8 (21.54)

75.8 (24.32)

NOTES: 1. 5,000 CFM USED FOR MONITORING THE ESF

2. FACE 1 VENTILATES WITH 20,000 CFM (9.43 M3/S) FRESH AIR

3. RETURN AIR FROM FACE 1 MIXED WITH THE REMAINING 25,000 CFM(11.8 M3/S ) FRESH AIR

4. FACE 2 VENTILATED WITH 20,000 CFM (9.43 M3/S)

5. AIR COOLED AT DUCT INTAKES

6. W.B.G.T. ALONG DRIFTS REACHES MAX. 80.6" F (26.98" C)

Page 18: I '. -; MAY 4. · i, 4-.1 -1 computer simulated climatic conditions s cenari1 5: develop 3,280 ft (1,000 m) drift from esf for repository construction - flow through ventilation 50,000

* : d*5 s % v4'.~~~~~~~~~~~

VRT

t,.tw

@on. d{io-S:

jwcwater entering at high Pressure

la. numtbe o I sccrewejo~~~~InT

or tine sources

O,' , 9 ivII- a spra-y itled ien3%V cf crf.M.a .

th S Ireo. sens1 7 Tnos�

Tnoj� . West t1rans f,

WQoter to

Page 19: I '. -; MAY 4. · i, 4-.1 -1 computer simulated climatic conditions s cenari1 5: develop 3,280 ft (1,000 m) drift from esf for repository construction - flow through ventilation 50,000

I- at±4lowie . .

clemeri-fheory u Lsec .

tower)

transfer(ct) -i*ffectiarsen $ 4f hatCbacTnter -Ln a. SjIv9~yI

RE F-R m--',_ .nm-

c oxacbteso6 W.L a- U.. ernj

Oar aonda water

F - Factors Ipray

Mert4t ort6eA

Page 20: I '. -; MAY 4. · i, 4-.1 -1 computer simulated climatic conditions s cenari1 5: develop 3,280 ft (1,000 m) drift from esf for repository construction - flow through ventilation 50,000

I - #:2 X

.~~~~~~~~~~ or.. marxt , F

C%# �s Q.- Qr6(0LUI o¶n % 4ccnc

'noi e axcmc'nga r afQy ,2 WVen

0 woar 1 low

* inlet-,I co

* &t ow frationattLons

C, den&s-, 4on. wOaZ1 afoktomzow+n. .

* size anc d sur aceoI dvrojIess

'able of F value5 sI

p________ b

(naver.srlmy c~ oany cr

a

Horizotntal

Ve.zrti ical

II.Cke So

fttainea)

cwamber

t~owaor

-F_1.0

0.4 -0.&

O.s - of

¶4ticai tower 0.55 -DO.8I

Page 21: I '. -; MAY 4. · i, 4-.1 -1 computer simulated climatic conditions s cenari1 5: develop 3,280 ft (1,000 m) drift from esf for repository construction - flow through ventilation 50,000

I r '

Ao.IIn :tke jrutmeniajy tSboy . is"

ConSI'Aeret tn- i ono0ysis, F-:

is astimafed to ILQ in t6 Tallga

0.1 _ 0.5

(a)) C.t iokOOn

(,) water stow

CO¶�O�{Lofl �

(WAIOr Iow oon. Cir Ae t +a rm raftu1re s

(;i) woler intat ar JemjUotbwe (V RT)

06,00 (iV) I ,me-l-tt

Ike Toke of oe1+,ran % r.

can 'be C -uactct.

1e SLnla-tO Wos rShot Slmo wA

swo4 tZ W1dNd emte1 n

gn.

Un frle ptedai cna -%e Ie-r fc&ca $nlao oAchltALonoke conditLons at ta

besutstkGt

Page 22: I '. -; MAY 4. · i, 4-.1 -1 computer simulated climatic conditions s cenari1 5: develop 3,280 ft (1,000 m) drift from esf for repository construction - flow through ventilation 50,000

CRITICAL INFLOWS FOR A RANGE OF MERIT FACTORSAIRFLOW - 12. 000 cfm

60-

T 2- -_~,

45Ace F -0-40-- ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

5 -- -

30 - -~~~~~~~~~~~~---

2 15- '-^; : F 8:s t9 3 g30 ---

k ~~~~~~~~~~~~~~~~~~~F - 0.5 17 a -gpmJ15 F - 0.4 1e.5 gpm

F - 0.3 19.3 gpnmF - 0.2 20.5 gpm

kto F -0.1 23.0 gpm

3 5 to . 15 20 25 30 35 40 45 . 50

GALLONS PER MINUTE

F - 0.5 F - 0.4 . F - 0.3 F - 0.2 F - 0.1_ _ _ _ _ _ _ _ _ _. - - - - - - _ . . _" .a

Page 23: I '. -; MAY 4. · i, 4-.1 -1 computer simulated climatic conditions s cenari1 5: develop 3,280 ft (1,000 m) drift from esf for repository construction - flow through ventilation 50,000

.

- a.

CRITICAL INFLOWS FOR A RANGE OF MERIT FACTORSAIRFLOW = 18. 000 cfm

35--~~~~~~~~~~~~~

A 354 CRITICAL - 31.0 kJ/kg

30-- ~ ~ ~ ~ ~ ~ ~ ~ ~ -- K

M2 5 -': -

H20-

E F - 0.5 37.6 gpmA,,,, ... ~ F - 0.4 39.0 gpm

T15-- .o&' F- 0.3 41.8 gpmF - 0.2 46.0 gpm

k . - @" ; F - 0.1 60.0 gpmJl 0

g5 70'i0 50 15 20 25 30 35 40 45 50 55 60,

GALLONS PER MINUTE

F 0.5 F - 0.4 F - 0.3 : F - 0.2 F-0.1_- - - - - - - - - _ ._ -

Page 24: I '. -; MAY 4. · i, 4-.1 -1 computer simulated climatic conditions s cenari1 5: develop 3,280 ft (1,000 m) drift from esf for repository construction - flow through ventilation 50,000

~I,<: 4.-- 4<---~ -AeS / 1 0 o-p

%. 0 7., . �f

%h~~~~~~~~j-~~~~~~ ~ ' I' D -l

WATER INFLOW DESIGN FOR ES I:

o ES I FDC CRITERIA USD FOP4EFINITIVE DESI1N2

- GROWRD WATER INFlLTRATICk, 30 - 100 GL/DAkY

- SUMP CAPACITY, PUMP COLUMN FAILURE

- SUMP DRAWDOWN' TIME, 10 MINUTES (1 PUMP)

o ES I DESIGN IS 2 - SUBERSIBLE TURBIKE PUMPS, OILFIELD TYPE, EACH CAPABLE OF 200 GPM. ONE PUMP ISSPARE.

(-'

-j

CIDcc~If-

:E:

Page 25: I '. -; MAY 4. · i, 4-.1 -1 computer simulated climatic conditions s cenari1 5: develop 3,280 ft (1,000 m) drift from esf for repository construction - flow through ventilation 50,000

. , . '. ,.

WATER INFLOW BESIGN FOR iES-II

o ES-II CRITERIiA USED FOR CONCEPTUAL DESIGN

- GROUNDWATER 111FIlLTRATIOlN, 7.5 x 10-5 GPM/M? OR

ABOUT 0.94 GP (STUDY 9)

- BECAUSE THIS NUMBER IS TOO SMALL TO BE MEANINGFUL FOR

SUMP DESIGN, A FIGURE OF 30 GPM WAS ASSUMED FOR THESAKE OF CONSERVATISM.

o ES-II DESIGN IS 2 -- CENTRIFUGAL PUMPS EACH CAPABLE OF

200 6PM. ONE PUMP IS SPARE.

Page 26: I '. -; MAY 4. · i, 4-.1 -1 computer simulated climatic conditions s cenari1 5: develop 3,280 ft (1,000 m) drift from esf for repository construction - flow through ventilation 50,000

-- -

Subsurface DowatsWiwA Di.aran

To M~e"onge ~uM

Fwal"ftlmiU

shn1Cod*200 GPM. 102IbN _ w_

a SweDDI pmpHo3,.',

Y tnf

40 GPMt 20"od,

I 2 WHo ltor

nSIshaft

2

Page 27: I '. -; MAY 4. · i, 4-.1 -1 computer simulated climatic conditions s cenari1 5: develop 3,280 ft (1,000 m) drift from esf for repository construction - flow through ventilation 50,000

Probe Hole Meth! of Advance

PREVIOUS FACE

DRIFT BACK

"OLETREND

COLLAR MOTH --- '

DRIFT FLOOM

I WEEKS 0 1 2 . a 4I I~~~I i I

Page 28: I '. -; MAY 4. · i, 4-.1 -1 computer simulated climatic conditions s cenari1 5: develop 3,280 ft (1,000 m) drift from esf for repository construction - flow through ventilation 50,000

7

Probe Hole Collaring Pattern

M#I Temnd

. 4*/0C1fB

-'.CI

Dorm 9-Probe Hole Pattern(To St Mjustd to Drift ProfItfllArea,

iO HoleiRfM60n

Arj/I

Page 29: I '. -; MAY 4. · i, 4-.1 -1 computer simulated climatic conditions s cenari1 5: develop 3,280 ft (1,000 m) drift from esf for repository construction - flow through ventilation 50,000

CONTROL OF HEAVY (3400 GPM) WATER NFLOW

o ALL UNDERGROUND ADVANCE TO BE PRECEDED BY PROBEROLE DRILLING THROUGH PACKERS

o EVACUATE UNDER"ONU PERSOTNEL BEFORE BLASTING;

o AS PART OF ES-Il DEFINITIVE DESIGN PERSONNEL EGRESSAND POSITIVE WATER CONTROL MEASURES WILL BE EVALUATEDMD INCORPORATED INTO THE DESIGN AS NEEDED TO [ISUREWORKER SAFETYS

Page 30: I '. -; MAY 4. · i, 4-.1 -1 computer simulated climatic conditions s cenari1 5: develop 3,280 ft (1,000 m) drift from esf for repository construction - flow through ventilation 50,000

5 . l r *

ABNORMAL WATER INFLOW

o THREE SCENARIOS EVALUATED FOR FLOODING BASED ON AN INFLOW OF

3,400 GPM AND DEPTH OF WATER IN DRIFT EQUALING 3.0.

- AT END OF ES-I STATION, ABOUT NINE MINUTES TO ESCAPE

- ABOUT MIDWAY BETWEEN SHAFTS, ABOUT 40 MINUTES AVAILABLE

TO ESCAPE.

- AT POINT OF BREAK-IN TO SECOND SHAFT, ESCAPE TIME IS ABOUT

100 MINUTES.

o THREE SCENARIOS EVALUATED FOR FLOODING BASED ON AN INFLOW OF

3,400 GPM AND DEPTH OF WATER IN DRIFT EQUALING O'.

- AT END OF ES-I STATION, ABOUT THREE MINUTES TO ESCAPE.

- ABOUT MIDWAY BETWEEN SHAFTS, ABOUT THREE MINUTES TO ESCAPE.

- AT POINT OF BREAK-IN TO SECOND SHAFT, ESCAPE TIME IS ABOUT

19 MINUTES (SUMP IS CONSTRUCTED).

Page 31: I '. -; MAY 4. · i, 4-.1 -1 computer simulated climatic conditions s cenari1 5: develop 3,280 ft (1,000 m) drift from esf for repository construction - flow through ventilation 50,000

a 3 a aS S V S S I 4 I I U~~~"Do 80 No

- - - - - - - - - ------ ' - * -'b

i~~~~~~~it r

feaw 6

-1e --

L~~~~~~~~~~~~~~~~~~~~-- --- 6 L f

o"_~~~~~~~~~~~~~~~~~~~~A~ A .

VENTILATION SYSTEM AIRFLOW DIAGRAM

__ ~ ~~~~~~~ ~ ~~ ~~~~~~~~~~~~~~~~~~ I s~^

It~~~~~ ~ ~ ~ ~ ~ I

Page 32: I '. -; MAY 4. · i, 4-.1 -1 computer simulated climatic conditions s cenari1 5: develop 3,280 ft (1,000 m) drift from esf for repository construction - flow through ventilation 50,000

GASSY MINE DESIGN:

o CRITERIA FOR METHANE CONCENTRATION IS 700 m6CH4/LH20

o IT IS ASSUMED THAT ALL METHANE IS INSTANTEOUSLYLIBERATED

o WITH 12,000 CFM COMPRESSED AIR VENTILATION ABOUT 220 GPMOF WATER CAN BE HANDLED BEFORE REACHING REGULATORYTHRESHOLD OF 0.25X METHANE FOR GASSY MINE CLASSIFICATION

o THREE SCENARIOS EVALUATED FOR GAS AT WATER INFL(W OF40 6PM

AT END OF ES I STATION WITH 12,000 GPM VENTILATIONGAS INFLOW IS BELOW EXPLOSIVE LIKIT

ABOUT MIDWAY BETWEEN SHAFTS WITH TIWO HEADINGS ADVANCINGAND ALL WATER IN ME DRIFT EXPLOSIVE LIMIT REACHED INABOUT 3.4 MINUTES

AT POINT OF BREAKIN TO SECONDI SHAFT MD ONLY ONEHEADING WITH 12,000 CFM GAS INFLOW IS BELOW EXPLOSIVELIMIT.

o CQSEOENCES OF GASSY MINE DESIGN IF IMPOSED:

-)EYELOPENT TIME IS INCREASED

FLAMEPROOF PMTORS AND EXPLOSION PROOF LIGHTING TO BESPECIFIED FOR PUMPS ETC.

- IMPACT ON TESTING EQUIPMENT hAS NOT BEEN EVALUATED

Page 33: I '. -; MAY 4. · i, 4-.1 -1 computer simulated climatic conditions s cenari1 5: develop 3,280 ft (1,000 m) drift from esf for repository construction - flow through ventilation 50,000

GROUNDWATER INFLOW CALCULATIONS AND ME I HANE DATA BASE

GEOHYDROLOGIC MODEL

METHANE DATA BASE

STEADY-STATE INFLOWS (EXPECTED CONDITIONS)

TRANSIENT CONDITIONS (ACCIDENT SCENARIOS)

o BOREHOLEo DRIFTS

* ;~~~~~~~~~~~~~~~~~~~~~

Page 34: I '. -; MAY 4. · i, 4-.1 -1 computer simulated climatic conditions s cenari1 5: develop 3,280 ft (1,000 m) drift from esf for repository construction - flow through ventilation 50,000

I .

I .

FIGURE 1

HYPOTHETICAL COMPOSITE CROSS SECTIONOF GEOLOGIC FEATURES POTENTIALLY

AFFECTING GROUNDWATER FLOW PATHS' ...;

BASALT FLOW 3 4

* FLOW CONTACT-o..

BASALT FLOW 2 _-..

SEDIMENTARYINTERDED

BASALT FLOW 1 -.-

ciFLOW TOP

FLOWINTERIOR

SEDIMENTARYINTERFIEP

TECTONICSTRUCTURE

TICA

toI

. .

.46-

'4

W

* I

I.

NOT TO SCALE

Page 35: I '. -; MAY 4. · i, 4-.1 -1 computer simulated climatic conditions s cenari1 5: develop 3,280 ft (1,000 m) drift from esf for repository construction - flow through ventilation 50,000

i .I

METHANE CONCENTRATIONS IN

GROUNDWATERS FROM RRL BOREHOLES

A_J

E2%Oz0

~-.

z

wz0

C)wzzw

1 ,400

1,200

1,000

800

600

400

200

UI If

I1I

I400 600 800 1000 1,200 1,400

DEPTH (m)WP8510-12

Page 36: I '. -; MAY 4. · i, 4-.1 -1 computer simulated climatic conditions s cenari1 5: develop 3,280 ft (1,000 m) drift from esf for repository construction - flow through ventilation 50,000

* I

RRL AND VICINITY,GRANDE RONDE, HYDRAULIC CONDUCTIVITY TESTS

LEGENDFLOW TOP CODE

ROCKY COULEE ICOHASSETT 2

GRANDE RONDE 3* UMTANUM 4; OTHER C

FLOW INTERIOR CODE

ROCKY COULEE ACOHASSETT B

GRANDE RONDE CUMTANUM 0

OTHER E

DRAFT FROM SD-BWI-DP-5 1 REV. UPDATE

Page 37: I '. -; MAY 4. · i, 4-.1 -1 computer simulated climatic conditions s cenari1 5: develop 3,280 ft (1,000 m) drift from esf for repository construction - flow through ventilation 50,000

. 4 .

I .. .-

NON-RRL AND VICINITY,GRANDE RONDE, HY'DRAULIC CONDUCTIVITY.TESTS;

i.

�1

i �

Page 38: I '. -; MAY 4. · i, 4-.1 -1 computer simulated climatic conditions s cenari1 5: develop 3,280 ft (1,000 m) drift from esf for repository construction - flow through ventilation 50,000

a

EXPECTED 1NORMAL CONDITIONS

STEADY-STATE INFLOW INTO THE EXPLORATORY SHAFT ASSUMING Ag FEET HIGH, 13 FEET WIDE DRIFT, 1000 FEET LONG

.023 GALLONS PER MINUTE

le,

.

I

Page 39: I '. -; MAY 4. · i, 4-.1 -1 computer simulated climatic conditions s cenari1 5: develop 3,280 ft (1,000 m) drift from esf for repository construction - flow through ventilation 50,000

i *

PARAMETERS REQUIRED TO CALCULATE INFLOW RATES(STEADY-STATE)

o HYDRAULICCONDUCTIVITYjK

o HYDRAULIC GRADIENT (HEAD DIVIDED BY LENGTH OFTRAVEL PATH), ffi

dl

o AREA THROUGH WI 110C FLOW OCCURS, A

I .

.

II

- .A t

Page 40: I '. -; MAY 4. · i, 4-.1 -1 computer simulated climatic conditions s cenari1 5: develop 3,280 ft (1,000 m) drift from esf for repository construction - flow through ventilation 50,000

Hydraulic ConductivitiesGrand Rondo Dense Interform

I .

0.9 -

0.8 .

0.7 -

.0a

0.6 -

0.5 -

04 -

0.3-

_0.2 -

0.1 a

0 Ia . A

-15 -13 - 1 ...0

Log K (rn/v)

PR

Page 41: I '. -; MAY 4. · i, 4-.1 -1 computer simulated climatic conditions s cenari1 5: develop 3,280 ft (1,000 m) drift from esf for repository construction - flow through ventilation 50,000

FIGURE 2OFINITE SLA" REPOSITORY GEOMETRY

0 ' o

00

0 N

- /

I,.- ?

,, , 0t

S S IS v O~~~~~~~

A B

.

Page 42: I '. -; MAY 4. · i, 4-.1 -1 computer simulated climatic conditions s cenari1 5: develop 3,280 ft (1,000 m) drift from esf for repository construction - flow through ventilation 50,000

rIGURE 3

*INFINITE SLAB" REPOSITORY GEOMETRY: BOUNDING INFLOW CALCULATION

kg~~~ I____________________ INFLOW PER SQUARE METER OF REPOSITORY AREA

ho'I - I m -

-- -q -2K hlmM2 ~~d

K~t

T ITNOM INLNPUT PARAMETERS+ I I T4TAL INFL O A8xKw- 10m1 1m s..c

d- 25iholhh -I0 0. N

IiI

* INFLOW PER SQUARE MER

q u 2 x10 1 1 _ 0 -a 7.2 x16.1 a i3fr C

TOTAL INFLOW TO A 8x 106 m2 REPOSITORY

I Om~~~~07.2 x10-lx 8 x106- 5.x 10 4.3/sec- 91gp.

h* *

-A B

. ,

Page 43: I '. -; MAY 4. · i, 4-.1 -1 computer simulated climatic conditions s cenari1 5: develop 3,280 ft (1,000 m) drift from esf for repository construction - flow through ventilation 50,000

V A0 ^:

As~ur.r s Lv 31444v+ M .t r 'Itlo

e 5+-^i tot~ A ~CA 0k4* S~Ctsti OS

Co,,vs~eyv OL+tUwm

* Ro ... F W* Cr

1To 5sA A 4.'

0 F/owj rompPIO.A-Z Ptestt.** ^"

I FwM Po VZW d O4 L4

* &vnQ & 4Frema

PA%u UPe%9ey

?pU Cva- Vjlk E IL JQAC

* llLvet AtWIt o 1RIO *e Oa( 3 vt IA ol I)

?pf ~otvitex

I 'o FootY f 0 f 1 z;Xuttt

C D v +)

tA 'D 04C FTrov PrY\v 0, � 0 I't ltcov u \

C. I~r#At

Page 44: I '. -; MAY 4. · i, 4-.1 -1 computer simulated climatic conditions s cenari1 5: develop 3,280 ft (1,000 m) drift from esf for repository construction - flow through ventilation 50,000

-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~…~~~~~~~~I . 4 I

PARAMETERS REQUIRED TO CALCULATE INFLOW RATE(TRANSIENT CUNDIIIONS)

'. � . , : � - . I -� w 17 ,

o HYDRAULIC CONDUCTIVITY, K

% -� 11 - ! ;. : :. �- � � , I :.,

o STORATIVITY

o SATURATED THICKNESS, m

o RADIUS OF BOREHOLE OR DRIFT, r

' o DRAWNDOWN, s

;06

Page 45: I '. -; MAY 4. · i, 4-.1 -1 computer simulated climatic conditions s cenari1 5: develop 3,280 ft (1,000 m) drift from esf for repository construction - flow through ventilation 50,000

I

Hydraulic ConductivitiesGrAnd Rondo Flow Tops

0.9 -,

0.8

0.7-

a0.3.0.

& 0.4 '

0.2

0.1

-12 -10 -. 8 -se , at Iw~w eVa -,

* Co opt

Page 46: I '. -; MAY 4. · i, 4-.1 -1 computer simulated climatic conditions s cenari1 5: develop 3,280 ft (1,000 m) drift from esf for repository construction - flow through ventilation 50,000

I I

Table 3-7. Comparison of hydrologic properties from borehole DC-7 and -8 testsIn the McCoy Canyon flow top of the Grande Ronde Basalt.

Property Jackson (1982) 'Wilson (1983)

Transmiasivity, m2/9 (ft2/d)

Range 3.9 x 7 - 8.4x107 17 07 - 1.25 x 10r6(0.39 - 0.84) (0.17 - 1.25)

Best estimate 7.8 x 20r7 Not given(0.78)

Bydraulic conductivity, D/8 (ft/d)

Range 3.8 x 10-8 8.1 IL 0-8 3.8 x 10 8 - 2.2 x 10-7(0.011 - 0.023) (0.011 - 0.034)

Best estimate 7.4 x 0-8 . 7.0 x 10-8(0.021) (0.020)

Storativity.best estimate 4 x 205. 3 x 2cr5

. ..~~~~~~~~~~~~~~~~~~~~~~~~~~~~4

Page 47: I '. -; MAY 4. · i, 4-.1 -1 computer simulated climatic conditions s cenari1 5: develop 3,280 ft (1,000 m) drift from esf for repository construction - flow through ventilation 50,000

FIGURE 4

.EO TRY OF POTENTIAL ACCIDENT CEMIOS.

BOREHOLE INTERCEPTION oF A FLow Top" TuNNL INTERCEPTION OF A FLow ToPj~~~~~~~~

.. , // 7 ! F low ra I ^: / f / /a

_ A/ / !g </ l~~~ ~ ~ /<Ma~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

nm CE -- ; / F / / *rNO

. . . ~~~~~~~~~~~. . .o

L..~ - .--.-....... __--~-_:.I.............. -'. , :

. ............. .'~~~~- *'.

,.1

Page 48: I '. -; MAY 4. · i, 4-.1 -1 computer simulated climatic conditions s cenari1 5: develop 3,280 ft (1,000 m) drift from esf for repository construction - flow through ventilation 50,000

FIGURE 5 :. ... . -ASSUMED GEOIETRY FOR ACCIDENT SCENARIOS.

I .'

INFLOW APPROXIMATELY:EQUIVALENT TO THE

GEOMETRY OF FIGURE 4I

.0w

mI

N;

ID

0c

FLOW INTERIOR

FLow INTERIOR

BOREHOLEOR

SHAFT

. .

I_ I ;

.

16

I

Page 49: I '. -; MAY 4. · i, 4-.1 -1 computer simulated climatic conditions s cenari1 5: develop 3,280 ft (1,000 m) drift from esf for repository construction - flow through ventilation 50,000

FIGURE 6ACCIDENT SCENARIO GEOMETRY AND ASWTIONS

"CONFIMED AQUIFER" CONITIONS ARE AsSUMED

Kv = H = O

/B/K. H2 S

.

0-4114

*.1

40.

0

Fhow INTERIORHi = 0

BOREHOLEOR

SHAFT

KY =

.~~~~~~~~~~~~~~~~ ;t.~~~~~~~~~~~~~~~~ .

.i . . I

..

I .. I

I.-

Page 50: I '. -; MAY 4. · i, 4-.1 -1 computer simulated climatic conditions s cenari1 5: develop 3,280 ft (1,000 m) drift from esf for repository construction - flow through ventilation 50,000

SD-BWI-TI-274 Rev. 0

. . . . _~~ -~ ~ SZ . 9 .C.r9n..-.-.. - - -.

. ASICMODEL S ~h.,I- ho..goo m O iggo.r

1

K 0r m/sec/ /7/ // //./ //f z / J//

.,

Flowtop K c 10-7 m/sec or lO - r/sec

S 10- d 10 I

I K rnlO 7 m/sec or 1OS m/secS a 10-5

I how�r

. . . . . . . _- U , _ J . .

// ///////////

I ' .:_ -.1 ' ,. -- . 17:-:. . , , _,- .-. :: ,

Initial- -7- - Potentioometric

Surface

//////2

K mOm/sec.

NOT TO SCALE

r, a .038 mrz a . 3 ip

Drift orBorehole

/ //// /. / _ Impermeable Boundary

Assumptions:

Unsteady-state radial flowHomogeneous, isotropic, nonleaky infinite artesian aquiferFully penerating wellsConstant drawdown conditionsInitial drawdown 'is zero throughout aquifer, i.e., ho c hWater level in well drops instantaneously to ho 0 0Full peneration exists at the time of initial discharge

APPENDIX B

* Figure 1 SCHEMATIC OF CONCEPTUAL MODEL

B-6

24

Page 51: I '. -; MAY 4. · i, 4-.1 -1 computer simulated climatic conditions s cenari1 5: develop 3,280 ft (1,000 m) drift from esf for repository construction - flow through ventilation 50,000

a

DISCHARGE FROM A 3 INCH DIAMETER BOREHOLEPENETRATING 33 FEET INTO A NOMINAL

(I 0-7 m/s HYDRAULIC CONDUCTIVITY) FLOW TOP

AFTER ONE MINUTEAFTER ONE HOURAFTER ONE WEEK

20 GALLONS PER MINUTE14 GALLONS PER MINUTrE1 I GALLONS PER MINUTE

CONCEIVABLE SCENARIO

i

Page 52: I '. -; MAY 4. · i, 4-.1 -1 computer simulated climatic conditions s cenari1 5: develop 3,280 ft (1,000 m) drift from esf for repository construction - flow through ventilation 50,000

Inflow WithProbe Into Flow Top (K -

Time1 0^-7 m/s)

20

19

18

17

1 6

15

14

13

12.

1 1

10

9

8

7

61 10 100 1000 10000

Log Time, minutes; i

.A-_

100000

Page 53: I '. -; MAY 4. · i, 4-.1 -1 computer simulated climatic conditions s cenari1 5: develop 3,280 ft (1,000 m) drift from esf for repository construction - flow through ventilation 50,000

Inflow With T.TimeProbe Into Flow Top (K - 1 0^-5 m/s)

1.30

1.20

1.10

En~Qat00

0 0"E C

1.00

0.90

0.80

.

0.70

0.60

0.501 10 100 1000 10000 100000

Log Time. minutes

Page 54: I '. -; MAY 4. · i, 4-.1 -1 computer simulated climatic conditions s cenari1 5: develop 3,280 ft (1,000 m) drift from esf for repository construction - flow through ventilation 50,000

a i, tI

I .V .,

INFLOW INTO A 20 FOOT DIAMETER DRIFTPENETRATING 33 FEET INTO A NOMINAL -(10-7 m/s HYDRAULIC CONDUCTIVITY)

FLOW TOP

AFTER ONE MINUTEAFTER ONE HOURAFTER ONE WEEK

100 GALLONS PER MINUTE40 GALLONS PER MINUTE18 GALLONS PER MINUTE

UNLIKELY SCENARIO

0

;

Page 55: I '. -; MAY 4. · i, 4-.1 -1 computer simulated climatic conditions s cenari1 5: develop 3,280 ft (1,000 m) drift from esf for repository construction - flow through ventilation 50,000

I

INFLOW INTO A 20 FOOT DIAMETER DRIFTPENETRATING 33 FEET INTO A HIGH

(10-5 m/s HYDRAULIC CONDUCTIVITY)FLOW TOP

AFTER ONE MINUTEAFTER ONE HOURAFTER ONE WEEK

3,400 GALLONS PER MINUTE2,000 GALLONS PER MINUTE1,300 GALLONS PER MINUTE

HIGHLY UNLIKELY SCENARIO

Page 56: I '. -; MAY 4. · i, 4-.1 -1 computer simulated climatic conditions s cenari1 5: develop 3,280 ft (1,000 m) drift from esf for repository construction - flow through ventilation 50,000

-.

Inflow With TimeDrift Penetrating Flow Top

3.50-,

3.00 High K, 1 0C(-5) m/s.

2.50

3 2.00

0

1.50

1.00

0.50

.Nominal K. 10(-7) rn/s0.00

1 10 100 1 0O 10000 100000

Log time, minutes. ;

Page 57: I '. -; MAY 4. · i, 4-.1 -1 computer simulated climatic conditions s cenari1 5: develop 3,280 ft (1,000 m) drift from esf for repository construction - flow through ventilation 50,000

9. D-. l

I e a, , r

**'e

I . .-

_

._ E - I

0k tAI;Ac { oxAO_ H CL0A

kX

jc",r c

Novuiot 4A ( -sold

i 0 A/ 5

H 4-- ( Io,Io a "f..

. ICobalWto

.. ... w

.,Y-

2-C -p R 3v V

I l°D' t3-)q 5~r i,3 40' v,--) I "IV t&

I

Grow- 4Ottso bToGo . ; 1- Ir-At A SiW.-,% s

v.iL(gas-

I ; 0 |bo 100 t, IO6

G pVV