i. general - authors.library.caltech.edu i., and c. luchinat. ... chem. rev. 84 (1984), 137-203....

27
I. General Beveridge, T. J., and R. J. Doyle, eds. Metal Ions and Bacteria. New York: Wiley, 1989. Ehrlich, H. L. Geomicrobiology. 2d ed. New York: Dekker, 1990. Eichhorn, G., and L. Marzilli, series eds. Advances in Inorganic Biochemistry, Vol. 1. New York: Elsevier, 1979. Frieden, E., series ed. Biochemistry of the Elements, Vol. I. New York: Plenum, 1984. Glusker, J., et al. Metalloproteins: Structural aspects. Adv. Protein Chem. 42 (1991). Hausinger, R. P. Mechanisms of metal ion incorporation into metalloproteins. BioFactors 2 (1990), 179-184. Hay, R. W., series ed. Perspectives in Bioinorganic Chemistry, Vol. l. Greenwich, CT: JAI Press, 1991. Hughes, M. N., and R. K. Poole. Metals and Microorganisms. New York: Chapman and Hall, 1989. Ibers, J. A., and R. H. Holm. Modeling coordination sites in metallobiomolecules. Science 290 (1980), 223-235. Irgolic, K. J., and A. E. Martell, eds. Environmental Inorganic Chemistry. Deerfield Beach, FL: VCH, 1985. Legg, J. I. Substitution-inert metal ions as probes of biological function. Coord. Chem. Rev. 25 (1978), 103-132. Leigh, G. J., ed. The Evolution of Metalloenzymes, Metalloproteins, and Related Materials. London: Symposium Press, 1977. Lippard, S. J., ed. Progress in Inorganic Chemistry, Vol. 38: Bioinorganic Chemistry. New York: 1990. Loehr, T. M., ed. Iron Carriers and Iron Proteins. New York: VCH, 1989. Lontie, R., ed. Copper Proteins and Copper Enzymes, Vols. 1-3. Boca Raton, FL: CRC Press, 1984. Meares, C. F., and T. G. Wensel. Metal chelates as probes of biological systems. Ace. Chem. Res. 17 (1984),202-209. Que, L., Jr. Metal Clusters in Proteins. American Chemical Society Symposium Series no. 372. Washington, D.C.: American Chemical Society, 1988. Schneider, W. Iron hydrolysis and the biochemistry of iron: The interplay of hydroxide and biogenic ligands. Chimia 42 (1988), 9-20. Sigel, H., and R. B. Martin. Coordinating properties of the amide bond: Stability and structure of metal ion complexes of peptides and related ligands. Chem. Rev. 82 (1982), 385-426. 585

Upload: hakien

Post on 25-Mar-2018

213 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: I. General - authors.library.caltech.edu I., and C. Luchinat. ... Chem. Rev. 84 (1984), 137-203. Perutz, M. F., et al. Stereochemistry of cooperative mechanisms in hemoglobin. Acc

I. General

Beveridge, T. J., and R. J. Doyle, eds. Metal Ions and Bacteria. New York: Wiley, 1989.Ehrlich, H. L. Geomicrobiology. 2d ed. New York: Dekker, 1990.Eichhorn, G., and L. Marzilli, series eds. Advances in Inorganic Biochemistry, Vol. 1. New

York: Elsevier, 1979.Frieden, E., series ed. Biochemistry of the Elements, Vol. I. New York: Plenum, 1984.Glusker, J., et al. Metalloproteins: Structural aspects. Adv. Protein Chem. 42 (1991).Hausinger, R. P. Mechanisms of metal ion incorporation into metalloproteins. BioFactors 2 (1990),

179-184.Hay, R. W., series ed. Perspectives in Bioinorganic Chemistry, Vol. l. Greenwich, CT: JAI

Press, 1991.Hughes, M. N., and R. K. Poole. Metals and Microorganisms. New York: Chapman and Hall,

1989.Ibers, J. A., and R. H. Holm. Modeling coordination sites in metallobiomolecules. Science 290

(1980), 223-235.Irgolic, K. J., and A. E. Martell, eds. Environmental Inorganic Chemistry. Deerfield Beach, FL:

VCH, 1985.Legg, J. I. Substitution-inert metal ions as probes of biological function. Coord. Chem. Rev. 25

(1978), 103-132.Leigh, G. J., ed. The Evolution of Metalloenzymes, Metalloproteins, and Related Materials.

London: Symposium Press, 1977.Lippard, S. J., ed. Progress in Inorganic Chemistry, Vol. 38: Bioinorganic Chemistry. New

York: 1990.Loehr, T. M., ed. Iron Carriers and Iron Proteins. New York: VCH, 1989.Lontie, R., ed. Copper Proteins and Copper Enzymes, Vols. 1-3. Boca Raton, FL: CRC Press,

1984.Meares, C. F., and T. G. Wensel. Metal chelates as probes of biological systems. Ace. Chem.

Res. 17 (1984),202-209.Que, L., Jr. Metal Clusters in Proteins. American Chemical Society Symposium Series no. 372.

Washington, D.C.: American Chemical Society, 1988.Schneider, W. Iron hydrolysis and the biochemistry of iron: The interplay of hydroxide and

biogenic ligands. Chimia 42 (1988), 9-20.Sigel, H., and R. B. Martin. Coordinating properties of the amide bond: Stability and structure

of metal ion complexes of peptides and related ligands. Chem. Rev. 82 (1982), 385-426. 585

Page 2: I. General - authors.library.caltech.edu I., and C. Luchinat. ... Chem. Rev. 84 (1984), 137-203. Perutz, M. F., et al. Stereochemistry of cooperative mechanisms in hemoglobin. Acc

586 SUGGESTED READINGS

Sigel, H., and A. Sigel, series eds. Metal Ions in Biological Systems, Vol. 1. New York: Dekker,1974.

Spiro, T., ed. Copper Proteins. New York: Wiley, 1981.Thayer, J. S. Organometallic Compounds and Living Organisms. New York: Academic Press,

1984.Williams, R. J. P. Missing information in bio-inorganic chemistry. Coord. Chon. Rev. 79 (1987),

175-193.--~. Structural aspects of metal toxicity. In J. O. Nriagu, ed., Changing Metal Cycles and

Human Health. Dahlem Konferenzen, 1984; Berlin: Springer-Verlag, 251-263.Wood, J. M. Biological cycles for elements in the environment. Naturwissenschaften 52 (1975),

357-364.

II. Techniques

Armstrong, F. A. Voltammetry of metal centres in proteins. Persp. Bioinorg. Chem. 1 (1991),141-182.

Bertini, I., and C. Luchinat. NMR ofParamagnetic Molecules in Biological Systems. Menlo Park,CA: Benjamin/Cummings, 1986.

Cheesman, M. R., C. Greenwood, and A. J. Thomson. Magnetic circular dichroism of hemopro­teins. Adv. Inorg. Chem. 35 (1991),201-255.

Darnall, D. W., and R. G. Wilkins, eds. Methods for Determining Metal Ion Environments inProteins: Structure and Function of Meta!loproteins. New York: Elsevier, 1980.

Day, E. P., et al. Squid measurement of metalloprotein magnetization. Biophys. J. 52 (1987),837-853.

Dooley, D. M., and J. H. Dawson. Bioinorganic applications of magnetic circular dichroismspectroscopy: Copper, rare-earth ions, cobalt, and non-heme iron systems. Coord. Chem.Rev. 60 (1984), 1-66.

Fairhurst, S. A., and L. H. Sutcliffe. The application of spectroscopy to the study of iron-con­taining biological molecules. Prog. Biophys. Mol. Biol. 34 (1978), 1-79.

Lever, A. B. P. Inorganic Electronic Spectroscopy. 2d ed. New York: Elsevier, 1984.Palmer, G. The electron paramagnetic resonance of metalloproteins. Biochem. Soc. Trans. 13

(1985), 548-560.Scott, R. A. Measurement of metal-ligand distance by EXAFS. Methods Enzymol. 177 (1985),

414-459.Scott, R. A., and M. K. Eidsness. The use of x-ray absorption spectroscopy for detection of

metal-metal interactions: Application to copper-containing enzymes. Comments Inorg. Chem.7 (1988),235-267.

Spiro, T. G., ed. Biological Applications of Raman Spectroscopy, Vols. 1-3. New York: Wiley,1988.

Swartz, H. M., and S. M. Swartz. Biochemical and biophysical applications of electron-spinresonance. Methods Biochem. Anal. 29 (1983), 207-323.

Wilkins, R. G. Kinetics and Mechanism of Reactions of Transition-Metal Complexes, Secondedition. New York: VCH, 1991.

---. Rapid-reaction techniques and bioinorganic reaction mechanisms. Adv. Inorg. Bioinorg.Mech. 2 (1983), 139-185.

Wuthrich, K. NMR of Proteins and Nucleic Acids. New York: Wiley, 1986.Sigel, H., and A. Sigel, eds. Applications of nuclear magnetic resonance to paramagnetic species.

Metal Ions Biol. Syst. 21 (1986).Sigel, H., and A. Sigel, eds. ENDOR, EPR, and electron spin echo for probing coordination

spheres. Metal Ions Biol. Syst. 22 (1987).

Page 3: I. General - authors.library.caltech.edu I., and C. Luchinat. ... Chem. Rev. 84 (1984), 137-203. Perutz, M. F., et al. Stereochemistry of cooperative mechanisms in hemoglobin. Acc

SUGGESTED READINGS

III. For Chapter 1

Baker, E. N., S. V. Rumball, and B. F. Anderson. Transferrins: Insights into structure andfunction from studies on lactoferrin. Trends Biochem. Sci. 12 (1987), 350-353.

Cousins, R. J. Absorption, transport, and hepatic metabolism of copper and zinc: Special refer-ence to metallothionein and ceruloplasmin. Physiological Rev. 65 (1985), 238-309.

Crichton, R. R. Inorganic Biochemistry of Iron Metabolism. New York, E. Horwood, 1991.Hamer,D. H. Metallothionein. Annu. Rev. Biochem. 55 (1986),913-951.Harrison, P. M., et al. Probing structure-function relations in ferritin and bacterioferritin. Adv.

Inorg. Chem. 36 (1991), 449-487.Kagi, J. H. R., and A. Schaffer. Biochemistry of metallothionein. Biochemistry 27 (1988), 8509­

8515.Lindenbaum, S., J. H. Rhytting, and L. A. Sternson. Ionophores. Prog. Macrocyclic Chem. 1

(1979),219-254.Lowenstam, H. A., and S. Weiner. On Biomineralization. New York: Oxford University Press,

1989.Otvos, J. D., D. H. Petering, and C. F. Shaw. Structure-reactivity relationships of metallothi­

onein, a unique metal-binding protein. Comments Inorg. Chem. 9 (1989), 1-35.Ponka, P., H. M. Schulman, and R. C. Woodworth, eds. Iron Transport and Storage. Boca

Raton, FL: CRC Press, 1990.Theil, E. C. The ferritin family of iron-storage proteins. Adv. Enzymol. 63 (1990), 421-449.Winkelmann, G., D. van der Helm, and J. B. Neilands, eds. Iron Transport in Microbes, Plants,

and Animals. Weinheim, FRG: VCH, 1987.

IV. For Chapter 2

Bertini, 1., and C. Luchinat. An insight on the active site of zinc enzymes through metal substi­tution. Metal Ions Biol. Syst. 15 (1982), 101-156.

Christianson, D. W., and W. N. Lipscomb. Carboxypeptidase A. Ace. Chon. Res. 22 (1989),62-69.

Dolphin, D., ed. B12 , Vols. 1 and 2. New York: Wiley, 1982.Fife, T. H. Metal-ion-catalyzed ester and amide hydrolysis. Persp. Bioinorg. Chem. 1 (1991),

43-93.Matthews, B. W. Structural basis of the action of thermolysin and related zinc peptidases. Acc.

Chem. Res. 21, 333-340 (1988).Spiro, T. G., ed. Zinc Enzymes. New York: Wiley, 1983.Vallee, B. L. Zinc coordination, function, and structure of zinc enzymes and other proteins.

Biochemistry 29 (1990),5649-5659.

V. For Chapter 3

Cavaggoni, A. Calcium regulation in cell biology. Bioscience Reports 9 (1989), 421-436.Christakos, S., C. Gabrielides, and W. B. Rhoten. Functional considerations of vitamin-D depen­

dent calcium binding proteins. Endocrine Rev. 10 (1989), 3-26.Haizmann, C. W., and W. Hunziker. Intracellular calcium-binding proteins. In F. Bonner, ed.

Intracellular Calcium Regulation. New York: Wiley-Liss (1990), 211-248.Mann, S., J. Webb, and R. J. P. Williams, eds. Biomineralization. Weinheim, FRG: VCH, 1990.Strynadka, N. C. J., and M. N. G. James. Crystal structures of calcium-binding proteins. Annu.

Rev. Biochem. 58 (1989), 951-998.Tsien, R. Y., and M. Poenie. Fluorescence ratio imaging: a new window into intracellular ionic

signaling. Trends Biochem. Sci. 11 (1986), 450-455.

587

Page 4: I. General - authors.library.caltech.edu I., and C. Luchinat. ... Chem. Rev. 84 (1984), 137-203. Perutz, M. F., et al. Stereochemistry of cooperative mechanisms in hemoglobin. Acc

588 SUGGESTED READINGS

VI. For Chapter 4

Buchler, J. W. Hemoglobin-An inspiration for research in coordination chemistry. Angew. Chem.Inti. Ed. Eng. 17 (1978), 407-423.

Dolphin, D., ed. The Porphyrins. New York: Academic Press, 1978.Ellerton, H. D., N. F. Ellerton, and H. A. Robinson. Hemocyanin-A current perspective. Prog.

Biophys. Mol. Bioi. 41 (1983), 143-248.Jameson, G. B., and J. A. Ibers. On carbon monoxide and dioxygen binding by iron(Il) por­

phyrinato systems. Comments lnorg. Chem. 2 (1983), 97-126.Jones, R. D., D. A. Summerville, and F. Basolo. Synthetic oxygen carriers related to biological

systems. Chon. Rev. 79 (1979), 139-179.Karlin, K. D. Binding and activation of molecular oxygen by copper complexes. Prog. Inorg.

Chem. 35 (1987),219-327.Lamy, J., and J. Lamy, eds. Invertebrate Oxygen-Binding Proteins. New York: Dekker, 1981.Lavallee, D. K. Kinetics and mechanisms of metalloporphyrin reactions. Coord. Chem. Rev. 61

(1985),55-96.Morgan, B., and D. Dolphin. Synthesis and structure of biomimetic porphyrins. Struct. Bond.

64. Berlin and Heidelberg: Springer-Verlag, 1987.Niederhoffer, E. c., J. H. Timmons, and A. E. Martell. Thennodynamics of oxygen binding in

natural and synthetic dioxygen complexes. Chem. Rev. 84 (1984), 137-203.Perutz, M. F., et al. Stereochemistry of cooperative mechanisms in hemoglobin. Acc. Chem.

Res. 20 (1987), 309-321.Scheidt, W. R., and C. A. Reed. Spin-state/stereochemical relationships in iron porphyrins: Im­

plications for the hemoproteins. Chem. Rev. 81 (1981), 543-555.Suslick, K., and T. J. Reinert. The synthetic analogs of Orbinding heme proteins. J. Chon.

Educ. 62 (1985),974--983.Woods, E. J. The oxygen transport and storage proteins of invertebrates. Essays Biochem. 16

(1980), 1-47.

VII. For Chapter 5

Babcock, G. T. and M. Wikstom. Oxygen activation and the conservation of energy in cellrespiration. Nature 356 (1992),301-309.

Bruice, T. C. Reactions of hydroperoxides with metallotetraphenylporphyrins in aqueous solu­tions. Acc. Chon. Res. 24 (1991),243-249.

Cadens, E. Biochemistry of oxygen toxicity. Annu. Rev. Biochem. 58 (1989), 79-110.Chan, S. I., S. N. Witt, and D. F. Blair. The dioxygen chemistry of cytochrome c oxidase.

Chemica Scripta 28A (1988), 51-56.Dix, T. A., and S. J. Benkovic. Mechanism of oxygen activation by pteridine-dependent mono­

oxygenases. Acc. Chon. Res. 21 (1988), 101-107.Everse, J., K. E. Everse, and M. B. Grisham, eds. PeroxidasCc~ in chemistry and biology. 2

Vols. Boca Raton, FL: CRC Press, 1991.Fridovich, I. Superoxide dismutases: An adaptation to a paramagnetic gas. J. Bioi. Chem. 264

(1989),7761-7764.Jefford, C. W., and P. A. Cadby. Molecular mechanisms of enzyme-catalyzed dioxygenation.

Prog. Chem. Nat. Prods. 40 (1981), 191-265.Kaufman, S. Aromatic amino-acid hydroxylases. The Enzymes 18 (1987), 217-282.Malmstrom, B. G. Enzymology of oxygen. Annu. Rev. Biochem. 51 (1982), 21-59.Malmstrom, B. G. Cytochrome and oxidase as a redox-linked proton pump. Chem. Rev. 90

(1990), 1247-1260.Mansuy, D., P. Battioni, and J.-P. Battioni. Chemical model systems for drug-metabolizing

cytochrome-P-450-dependent monooxygenases. Eur. J. Biochem. 184 (1989),267-285.Miller, D. M., G. R. Buettner, and S. D. Aust. Transition metals as catalysts of autoxidation

reactions. Free Radical Bioi. Med. 8 (1990),95-108.

Page 5: I. General - authors.library.caltech.edu I., and C. Luchinat. ... Chem. Rev. 84 (1984), 137-203. Perutz, M. F., et al. Stereochemistry of cooperative mechanisms in hemoglobin. Acc

SUGGESTED READINGS 589

Ortiz de MontelJano, P. R., ed. Cytochrome P-450: Structure, Mechanism, and Biochemistry.New York: Plenum, ]986.

Sawyer, D. T. Oxygen Chemistry. Oxford: Oxford Univ. Press, 1991.Stadtman, E. R. Metal ion-catalyzed oxidation of proteins: Biochemical mechanism and biological

consequences. Free Radical Bioi. Med. 9 (1990), 315-325.Stewart, L. c., and J. P. Klinman. Dopamine beta-hydroxylase of adrenal chromaffin granules:

Structure and function. Annu. Rev. Biochem. 57 (1988),551-592.Vliegenthart, J. F. G., and G. A. Veldink. Lipoxygenases. Free Radicals in Bioi. 5 (1982),29­

M.

VIII. For Chapter 6

Amesz, J., ed. Photosynthesis. Amsterdam: Elsevier, 1987.Bertrand, P. ed. Long-range electron transfer in biology. Struct. Bond. 75 (1991), 1-47.Bowler, B. E., A. L. Raphael, and H. B. Gray. Long-range electron transfer in donor (spacer)

acceptor molecules and proteins. In S. J. Lippard, ed. Progress in Inorganic Chemistry, vol.38: Bioinorganic Chemistry (New York: Wiley, 1990), pp. 258-322.

DeVault, D. Quantum-mechanical tunnelling in biological systems. 2d ed. Cambridge: CambridgeUniv. Press, 1984.

Gray, H. B., and B. G. Malmstrom. Long-range electron transfer in multi site metalloproteins.Biochemistry 28 (1989), 7499-7505.

Gust, D., and T. A. Moore. Photosynthetic Model Systems. Topics Curro Chem. 159 (1991),103-151.

Marcus, R. A., and N. Sutin. Electron transfers in chemistry and biology. Biochim. Biophys.Acta 811 (1985), 265-322.

Moser, C. c., et al. Nature of biological electron transfer. Nature 355 (1992), 796.Onuchic, J. N., et al. Pathway analysis of protein electron-transfer reactions. Annu. Rev. Biophys.

Biomol. Struct. 21 (1992), 349-377.Robinson, J. N., and D. J. Colc-Hamilton. Electron transfer across vesicle bilayers. Chem. Soc.

Rev. 20 (1991),49-94.Scott, R. A., A. G. Mauk, and H. B. Gray. Experimental approaches to studying biological

electron transfer. J. Chem. Educ. 52 (1985), 932-938.Sigel, H., and A. Sigel, eds. Electron transfer reactions in metal!oproteins. Metal Ions Bioi. Syst.

27 (1991).Sutin, N., and B. S. Brunschwig. Some aspects of electron transfer in biological systems. In

M. K. Johnson et al., eds., Electron Transfer in Biology and the Solid State (Washington,D.c.: American Chemical Society, 1990), pp. 65-88.

Wherland, S., and H. B. Gray. Electron-transfer mechanisms employed by metalloproteins. InA. W. Addison et al., cds., Biological Aspects o/Inorganic Chemistry (New York: Wiley,1977),289-368.

Winkler, J. R., and H. B. Gray. Electron transfer in ruthenium-modified proteins. Chem. Rev.92 (1992), 369-379.

Wuttke, D. S., et al. Electron-tunneling pathways in cytochrome C. Science 256 (1992), 1007­1009.

IX. For Chapter 7

Bruschi, M., and F. Guerlesquin. Structure, function, and evolution of bacterial ferredoxins.FEMS Microbial. Rev. 54 (1988), 155-176.

Burgess, B. K. The iron-molybdenum cofactor of nitrogenase. Chem. Rev. 90 (1990), 1377­1406.

Coucouvanis, D. Use of preassembled Fe/S and Fe/Mo/S clusters in the stepwise synthesis ofpotential analogues for the Fe/Mo/S site in nitrogenase. Acc. Chem. Res. 24 (1991), 1-8.

Page 6: I. General - authors.library.caltech.edu I., and C. Luchinat. ... Chem. Rev. 84 (1984), 137-203. Perutz, M. F., et al. Stereochemistry of cooperative mechanisms in hemoglobin. Acc

590 SUGGESTED READINGS

Holm, R. H. Identification of active sites in iron-sulfur proteins. In A. W. Addison et al., Bio­logical Aspects of Inorganic Chemistry (New York: Wiley-Interscience, 1977),71-11 .

Holm, R. H. Synthetic approaches to the active sitcs of iron-sulfur proteins. Ace. Chem. Res. 10(1977), 427--434.

Holm, R. H., S. Ciurli, and J. A. Weigel. Subsite-specific structures and reactions in native andsynthetic [4Fe-4S] cubane-type clusters. Prog. Inorg. Chem. 38 (1990), 1-74.

Odom, J. M., and H. D. Peck, Jr. Hydrogenase, electron-transfer proteins, and energy couplingin the sulfate-reducing bacteria desulfovibrio. Annu. Rev. Microbiol. 38 (1984),551-592.

Postgate, J. R. The Fundamentals oj" Nitrogen Fixation. Cambridge: Cambridge Univ. Press,1982.

Spiro, T., ed. Iron-Sulfur Proteins. New York: Wiley, 1982.Sweeney, W. V., and J. C. Rabinowitz. Proteins containing 4Fc-4S clusters: An overview. Annu.

Rev. Biochem. 49 (1980), 139-161.

X. For Chapter 8

Barton, J. K. Recognizing DNA. Chem. Eng. News, Sept. 26, 1988, pp. 30-41.McGall, G. H., and J. Stubbe. Mechanistic studies of bleomycin-mediated DNA e1eavage using

isotope labeling. Nucl. Acids Mol. Bioi. 2 (1989), 85-104.Sigel, H., and A. Sigel, eds. Interrelations among metal ions, enzymes, and gene expression.

Metal Ions Bioi. Syst. 25 (1989).Sigman, D. S., and A. Spassky. DNAse activity of I, lO-phenanthroline-copper ion. Nucl. Acids

Mol. Bioi. 3 (1989), 13-27.Silver, S., R. A. Laddaga, and T. K. Misra. Plasmid-determined resistance to mctal ions. In

R. K. Poole and G. N. Gadd, eds., Metal-microbe interactions (Oxford: Oxford Univ. Press,1989), pp. 49-63.

Tullius, T. D., ed. Metal-DNA Chemistry. American Chemical Society Symposium Series no.402. Washington, D.C.: American Chemical Society, 1989.

XI. For Chapter 9

Blackburn, G. N., and M. J. Gait, ed. Nucleic Acids in Chemistry and Biology. Oxford: IRLPress, 1990.

Farrell, N. Transition-Metal Complexes as Drugs and Chemotherapeutic Agents. Dordrecht, TheNetherlands: Kluwer, 1989.

Hacker, M. P., E. B. DoupJe, and 1. H. Krakoff. Platinum Coordination Complexes in CancerChemotherapy. Boston: Martinus Nijhoff, 1984.

Lippard, S. J., ed. Platinum, Gold, and Other Metal Chemotherapeutic Agents. American Chem­ical Society Symposium Series no. 209. Washington, D.C.: American Chemical Society,1983.

Nicolini, M., cd. Platinum and Other Metal Coordination Compounds in Cancer Chemotherapy.Boston: Martinus Nijhoff, 1988.

Nicolini, M., G. Bandoli, and U. Mazzi, eds. Technetium Chemistry and Nuclear Medicine. NewYork: Raven Press, 1986.

Saenger, W. Principles of Nucleic-Acid Structure. Heidelberg: Springer-Verlag, 1984.Saenger, W., and U. Hinneman, eds. Protein-Nucleic Acid Interaction. Boca Raton, FL: CRC

Press, 1989.Tullius, T. D., ed. Metal-DNA Chemistry. American Chemical Society Symposium Series no.

402. Washington, D.C.: American Chemical Society, 1989.

Page 7: I. General - authors.library.caltech.edu I., and C. Luchinat. ... Chem. Rev. 84 (1984), 137-203. Perutz, M. F., et al. Stereochemistry of cooperative mechanisms in hemoglobin. Acc

SUGGESTED READINGS 591

XII. Related Topics

Berg, J. M. Metal-binding domains in nucleic acid-binding and gene-regulatory proteins. Prog.lnorg. Chem. 37 (1989), 143-185.

Bouwman, E., W. L. Driessen, and J. Reedijk. Model systems for type-I copper proteins: Struc­tures of copper coordination compounds with thioether and azole-containing ligands. Coord.Chon. Rev. 104 (1990), 143-172.

Brudvig, G. W., and R. H. Crabtree. Bioinorganic chemistry of manganese related to photosyn­thetic oxygen evolution. Prog. lnorg. Chem. 37 (1989),99-142.

Chapman, S. K. Blue copper proteins. Persp. Bioinorg. Chon. 1 (1991), 95-140.Chasteen, N. D., ed. Vanadium in Biological Systems: Physiology and Biochemistry. Boston:

Kluwer Academic Publishers, 1990.Christou, G. Manganese carboxylate chemistry and its biological relevance. Ace. Chem. Res. 22

(1989), 328-335.Coughlan, M., ed. Molybdenum and molybdenum-containing enzymes. Oxford: Pergamon Press,

1980.Eichhorn, G. L., and L. G. Marzilli, cds. Metal-ion induced regulation of gene expression. Adv.

lnorg. Biochem. 9 (1990).Evans, C. H. Biochemistry of the Lanthanides. New York: Plenum Press, 1990.Frieden, E., cd. Biochemistry of the Essential Ultratrace Elements. New York: Plenum Press,

1984.Hinton, S. M., and D. Dean. Biogenesis of molybdenum cofactors. Crit. Rev. Microbiol. 17

(1990), 169-188.Jameson, R. F. Coordination chemistry of copper with regard to biological systems. Metal Ions

Bioi. Syst. 12 (1981), 1-30.Keppler, B. K. Metal complexes as anticancer agents: The future role of inorganic chemistry in

cancer therapy. New.J. Chem. 14 (1990), 389-403.Kurtz, D. M., Jr. Oxo- and hydroxo-bridged diiron complexes: A chemical perspective on a

biological unit. Chern. Rev. 90 (1990), 585-606.Lancaster, J. R., Jr., cd. The Bioinorganic Chemistry (~lNickel. New York: VCH, 1988.Lippard, S. J. Oxo-bridged polyiron centers in biology and chemistry. Angew. Chern. Inti. Ed.

Eng. 27 (1988),344-361.Pecoraro, V. L., ed. Manganese Redox Enzymes. New York: VCH, 1992.Que, L., Jr., and A. E. True. Dinuclear iron- and managanese-oxo sites in biology. Prog. lnorg.

Chem. 38 (1990), 97-199.Rajagopalan, K. V. Molybdenum: An essential trace element in human nutrition. Annu. Res.

Nutr. 8 (1988), 401-427.Rehder, D. The bioinorganic chemistry of vanadium. Angew. Chon. Inti. Ed. Eng. 30 (1991),

148-167.Sigel, H., and A. Sigel, eds. Aluminum and its role in biology. Metal Ions Bioi. Syst. 24 (1988).Sigel, H., and A. Sigel, eds. Antibiotics and their complexes. Metal Ions Bioi. Syst. 19 (1985).Sigel, H., and A. Sigel, eds. Compendium on magnesium and its role in biology, nutrition, and

physiology. Metal Ions Bioi. Syst. 25 (1989).Sigel, H., and A. Sigel, eds. Nickel and its role in biology. Metal Ions Bioi. Syst. 23 (1988).Spiro, T. G., ed. Molybdenum Enzymes. New York: Wiley, 1985.Stadtman, T. C. Some selenium-dependent biochemical processes. Adv. Enzymol. 48 (1979),

1-28.Stiefel, E. 1. The coordination and bioinorganic chemistry of molybdenum. Prog. lnorg. Chern.

22 (1977), 1-223.

Page 8: I. General - authors.library.caltech.edu I., and C. Luchinat. ... Chem. Rev. 84 (1984), 137-203. Perutz, M. F., et al. Stereochemistry of cooperative mechanisms in hemoglobin. Acc

592 SUGGESTED READINGS

Sykes, A. G. Plastocyanin and the bluc copper proteins. Struct. Bond. 75 (1991), 175-224.Thorp, H. H., and G. W. Brudvig. The physical inorganic chemistry of manganese relevant to

photosynthetic oxygen evolution. New 1. Chern. 15 (1991), 479-490.Vallee, B. L. Zinc: Biochemistry, physiology, toxicology, and clinical pathology. BioFactors 1

(1988),31-36.Vallee, B. L., J. E. Coleman, and D. S. Auld. Zinc fingers, zinc clusters, and zinc twists in

DNA-binding protein domains. Proc. Natl. Acad. Sci. USA 88 (1991), 999-1003.Vincent, J. B., and G. Christou. Higher oxidation state manganese biomolecules. Adv. Inorg.

Chern. 33 (1989), 197-257.Vincent, J. B., G. L. Olivier-Lilley, and B. A. Averill. Proteins containing oxo-bridged dinuclear

iron centers: A bioinorganic perspective. Chern. Rev. 90 (1990),1447-1467.Wever, R., and K. Kustin. Vanadium: A biologically relevant element. Adv. Inorg. Chern. 35

(1990),81-115.Wieghardt, K. The active sites in manganese-containing metalloproteins and inorganic model

complexes. Angew. Chern. Intl. Ed. Eng. 28 (1989), 1153-1172.

Page 9: I. General - authors.library.caltech.edu I., and C. Luchinat. ... Chem. Rev. 84 (1984), 137-203. Perutz, M. F., et al. Stereochemistry of cooperative mechanisms in hemoglobin. Acc

Note: Page numbers preceded by a C indicate material in the color plate section.

AACEl/CUP2, 494Acetate, 111Acetate synthetase, 98Acetylene, 432

binding to metal-sulfur sites, 442binding/reactivity, 441bonding modes, 4421T-bonding to metals, 442

N-Acetylpenicillamine, 511Aconitase, 393, 394cis-Aconitate, 393Acridine orange, 569Actin, 141Actinomycetes, 413Adair constants, 182Adair model, 180Adamantane structure, 399Adamantane-like Fe6(SR)w4- complexes,

398Adenine, 457Adenine N7, 459Adenosine monophosphate, 518Adenosine triphosphate (seeAdhesion molecule, 154Adiabatic electron transfer, 338, 339Adrenodoxin, 379Aequorin, 13, 114Aerobic bacteria, 413Aerobic organisms, 261Aerobic respiration, 324Affinity cleavage, 489Alcohol dehydrogenase, 39, 44, 48, C-6Aldehyde

dismutation, 90oxidation, 90reductase, 12

Aldolase, 44

Alkaline phosphatase, 39, 44, 508active-site structure, 87proposed catalytic mechanism, 88structure, 87

Allosteric effectors, 176, 185Amavadine, 10Amide hydrolysis, 79Amine oxidation, 284Amino acids, 162Ammonia synthesis, 412a-Amylase, 39Anaerobic organisms, 261, 413Anaerobic respiration, 324J-\lI lt;lI11.d, 506Anhydride intermediate, 283Annexins, 135, 148Antibodies as imaging reagents, 516Anticancer drugs, 519Antioxidants, 262, 263Antiport, 124, 161Apatite, 30, 156Aragonite, 30, 112, 156Archaebacterial methanogens, 413Ascidia nigra, C-lAscorbic acid, 262Ascorbic acid oxidase, 4Aspartate, 111Aspartate transcarbamylase, 44ATP hydrolysis, 432ATP role in nitrogen 432ATP synthesis, 253ATPases, 39, 124Atropisomers, 217Auranofin, 505Autoxidation, 258Axial ligation, 2983' -Azidothymidine 524Azofermo,416 593

Page 10: I. General - authors.library.caltech.edu I., and C. Luchinat. ... Chem. Rev. 84 (1984), 137-203. Perutz, M. F., et al. Stereochemistry of cooperative mechanisms in hemoglobin. Acc

594 INDEX

Azoferredoxin, 416Azotobacter vinelandii ferredoxin I

391-393Azotobacter vinelandii nitrogenase Fe

protein, 418Azurin, 318

reaction with inorganic reagents, 343

BB1 protein, 331B12 (also see coenzyme B12), 98Blrdependent enzymes, 97B2 protein, 331Bacteriochlorophyll, 329Bacteriochlorophyll-protein complex, 327

structure, 328Bacteriopheophytin, 329Bam 551

111, 115-117structure, 116

Basal lateral membrane, 122, 123, 161Basket Fe6S62+ IFe6S6 + cores, 398Basket-handle structure, 399Benzenethio1ate, 378Bio1ulninescence, 113Biomineralization, 112, 156

models, 33Bis-imidazole iron porphyrins, 268Bis-pocket porphyrins, 220Bleomycin, 456, 496, 515, 527

active form, 497, 498imaging reagents based on, 515, 516mechanism of 497, 499metal-substituted derivatives, 497structure, 498, 516

Blood plasma, 2, 108, 112Blood-clotting enzymes, 154Blue copper protcins, 309, 318

cross electron-transfer reactions, 342Blue-green algae, 413Bohr effect, 176Bone, 157Bone matrix, 158Bovine calbindin D9b IIIBromoperoxidase, 5Brush border, 123Brush-border membrane calcitriol, 122

CCadmium carcinogenicity, 5 I 3Cadmium toxicity, 5I2Cadmium(II)-substituted carbonic anhy-

drase, 72Cadmium-substituted proteins (chemical

shift), 47Cadmium(II)-substituted zinc proteins, 46Calbindin D9b 122, 143, 144, 146

Ca2+ binding, 147porcine, C-10structure, 146, 147, C-10

Calbindin D28k , 144Calbindins, 135Calcified tissue, 156Calcimedins, 135Calcite, 30, 112, 156Calcitriol, 124Calcium

biological 109biological significance, 107biomineralization, 156Ca2+-ATPase, 124, 125Ca2+-ATPase reaction cycle, 127Ca2+-ATPase structure, 126, 127Ca2+-binding extracellular proteins,

151Ca2+-binding intracellular proteins,

136Ca2+-binding proteins (sarcoplasmic),

148Ca2+-binding proteins in microorga­

nisms, 159-bindiine pf()teins in prokaryotes,

160Ca2+-dependent proteases, 148Ca2+-dissociation and -association

rates, 137Ca2+-induced Ca2+ release, 132Ca2+_Mg2+ sites, 142Ca2+-selective microelectrode, 113,

114Ca2+INa + electrochemical potenltial,

129Ca2+INa+ exchange, 129Ca2+INa + free-energy change, 130Ca2+INa+ transport, 126complexes, fluorescence, 116

Page 11: I. General - authors.library.caltech.edu I., and C. Luchinat. ... Chem. Rev. 84 (1984), 137-203. Perutz, M. F., et al. Stereochemistry of cooperative mechanisms in hemoglobin. Acc

complexes, stability constants, IIIcomplexing agents (fluorescent), 115concentration determination, 113, 118concentration in body 151coordination chemistry, 109, 10cystosolic concentration, 107fluxes, in sea urchin egg, C-7in beer, 109in cells, 113in fluids, 109intracellular receptors, 134intracellular transport, 124isotopes, 108ligand preferences, 110messenger system, 132mitochondrial 131mitochondrial 130non-mitochondrial 131paSSive 122probes, 15pUlnping rate, 31recommended allowance, 108regulation, 121specific sites, 142terrestrial 108toxicity, 510transport, 121transport across cellular membranes,

125transport, molecular components,

123uptake and secretion, 122

Calelectrin, 135, 148135, 136, C-9

bovine C-9Ca2 + binding, 138M 13 interaction 139structure, 136, 138

135Calpactin, 135~a'fJa,,", 136, 148Calsequestrin, 128d-Camphor, 292Camphor 5-monooxygenase, 285Carbon-dioxide hydration, 48-51Carbon monoxide

bmldlflg to iron porphyrins, 237binding to iron proteins, 186, 208

INDEX 595

distal histidine interactions, 237oxidase, 379

Carbonic anhydrase, 39, 44, 48activity, 49activity with radiolabeled substrate, 52anion binding, 51apoenzyme, 50catalytic cycle, 74catalytic mechanism, 73coordinated water, 57, 62

Il)-~mb,;tituted, 69-71CPK models, C-2, C-3derivatives, 61

C-Iisozymes, 49, 54kinetics, 52ligand-binding sites, 61,""'U"'0, 76-78

dependence, 50, 51role of arginine, 57structure, 49, 51, 75structures of 62substrate 75substrate 75zinc coordination, 49

Carb(mnl0[ioxyh(~ml)globJn structure, 233Carbonmonoxymyoglobin structure, 235Carboplatin, 519, 528, 579

structure, 518O'-Carboxyglutamic acid Ill, 151Carboxylic ester hydrolysis, 86Carboxypeptidase, 39, 508Carboxypeptidase 44, C-4

active site, 80-82, C-5anion binding, 82intermediates, 82kinetics, 82metal 81proposed catalytic mechanism, 83, 84structure, 80

Carcinogenic metals, 513f3-Carotene, 263Carotenoids, 328Carp 111Catalase, 191, 263, 295, 297

mec:hanism, 297structure, 295

Catechol dioxygenases, 260, 276

Page 12: I. General - authors.library.caltech.edu I., and C. Luchinat. ... Chem. Rev. 84 (1984), 137-203. Perutz, M. F., et al. Stereochemistry of cooperative mechanisms in hemoglobin. Acc

596 INDEX

Catechol dioxygenases (continued)active site, 277, 279iron coordination, 280mechanism, 280, 282, 283spectroscopy, 277, 278, 280structure, 279substrate activation, 282

Cellular conditions, 253Ceruloplasmin, 4, 263, 264, 509Cervical cancer, 527Charge separation, 329Chelation therapy, 509, 5 513Chiton, 30Chlorocruorin, 169, 170, 184, 185Chloroheme, 185

structure, 169Chlorophyll a, 328Chlorophyll b, 328Chromate carcinogenicity, I I, 513Chromatium 385, 386Chromium, 10

biological significance,Stoxicity, 11

Chrysotherapy, 518Chymotrypsin, Ill, 137, 152Chymotrypsinogen, 111, 137, 152Cisplatin (also see cis-DDP), 505, 519

administering with sulfur compounds,528

clinical activity, 523clinical picture, 527discovery, 522efficacy improvement, 577-579mechanism of 526pharmacology, 528pre-clinical and clinical 524target, 533toxicology, 527

Citrate, 111, 393, 422Clostridium pasteurianum hydrogenase I,

407Clostridium pasteurianum hydrogenase

407Co(DIPhH (shape-selective cleavage of

nucleic acids), 486Co(phenhH

, 468Cobalamin (also see coenzyme B 98Cobalamin reactivity, 100Cobalt

biological significance, 4chemistry, 205oxyhemoglobin, 235porphyrins, 198, 206, 224, 240toxicity, 510

Cobalt(U)-rubredoxin, 377Cobalt(H)-substituted carbonic anhydrase,

54,55,59,68acid-base equilibria, 56, 57inhibitors, 57, 58, 65-67isozymes, 56

59,60NMR, 62, 64, 65NMRD, 63, 64

Cobalt(II)-substituted copper-zinc super­oxide dismutase, 303

Cobalt(II)-substituted liver alcohol dehy-drogenase, 93

Cobalt(Il)-substituted zinc proteins, 45Cobalt-dioxygen model systems, 205Cobalt-oxo 198Cobalt-porphyrin hemoglobin and myo-

globin derivatives, 205Cobalt-porphyrin oxo species, 205Cobamides, 98Coelenterazine, 113Coenzyme B 12 , 100

biological reactivity and mechanism,100

Co-C bond, 100cyano complex (vitamin Bd, 98enzymes dependent on, 98physical properties, 98

UIH'UIH,,,, 100radical formation, 101spectroscopy, 99structure, 98, 99

Coenzyme Q, 316Collagenase, 39Combination chemotherapy, 527Complex I (NADH-Q reductase), 325Complex II (succinate-Q reductase), 325Complex III (ubiquinol-cytochrome c re-

ductase), 326Complex IV (cytochrome c oxidase), 326Cooperative ligand binding, 174-182Copper

biological significance, 3chemistry, 204

Page 13: I. General - authors.library.caltech.edu I., and C. Luchinat. ... Chem. Rev. 84 (1984), 137-203. Perutz, M. F., et al. Stereochemistry of cooperative mechanisms in hemoglobin. Acc

deficiency, 508model complexes, 270storage, 16toxicity, 509

Copper(II) tet b, 300Copper(II)-substituted carbonic anhy­

drase, 69anion binding, 69

6970,71

NMRD,71Copper(II)-substituted liver alcohol dehy-

drogenase, 93Copper(II)-substituted zinc proteins, 46Copper-containing dioxygen carriers, 185Copper-dioxygen model systems, 204Copper-thiolate model complexes, 273Copper-zinc superoxide dismutase, 298

active site, 301active-site channel, 302, 304activity, 299, 300cobalt derivative, 303

308-310mhllblt101n, 304loss of bridging ligand, 304mechanism, 303metal-substituted derivatives, 305,

306, 308, 310reaction with anions, 304role of copper, 302role of zinc, 48, 302spectroscopy, 305, 306-310structure, 300, 301-303

Core extrusion cluster 391Correlation time, 63Corrin, 98Creatine kinase, 39Cross electron-transfer reactions, 334,

337Cruciform sites, 485-487~U\Il'J'<OHJ2+, 471Cu(phenh + DNA footprinting, 482CUA,271CUA ENDOR, 272CUA 272CUB, 271Cyanobacterium (blue-green alga) Ana­

baena cylindrica, 413Cyclic 132

INDEX 597

Cystine, 315Cytochrome a, 271, 272, 326Cytochrome a3, 271, 273, 326Cytochrome arCus, 273Cytochrome bs-cytochrome c, 349, C-12Cytochrome bs62 , 326Cytochrome bS66 , 326Cytochrome bS68 , 326Cytochrome c, 9, 322, 326, 352

alkaline transition, 352electron transfer, 356, 357interaction with redox 355reduction potentials, 353, 354structure, 322structure of heme area, 353zinc-substituted, 350

Cytochrome c oxidase, 260, 267, 326carbonmonoxy derivative, 275cyanide adduct, 272, 273

273EXAFS,273

reduced, 275mechanistic studies, 275metal centers, 271redox components, 267spectroscopy, 271

Cytochrome c peroxidase, 295Cytochrome c reductase, 326Cytochrome c', 322

structure, 323Cytochrome Cj, 326Cytochrome C3, 322

structure, 323'ytochn)me nOlll1en,2Iature, 321

Cytochrome PA50, 284, 285, 297,332

active-site structure, 293catalytic cycle, 285dioxygen bond cleavage, 293free radical intermediates, 292metalloporphyrin model systems,

288proposed mechanism, 286specificity, 292, 294structure, 292

Cytosine, 457Cytosine N3, 459Cytosol, 161Cytosolic compartment, 123

Page 14: I. General - authors.library.caltech.edu I., and C. Luchinat. ... Chem. Rev. 84 (1984), 137-203. Perutz, M. F., et al. Stereochemistry of cooperative mechanisms in hemoglobin. Acc

598 INDEX

Dcis-DDP (also see cisplatin)

anticancer activity, 525bifunctional adducts, 536, 538bifunctional binding modes, 539critical lesion, 571crosslinks, 538DNA adducts, 551-563DNA antibodies, 553DNA bending, 544, 545DNA binding kinetics, 534DNA binding sequence preference, 566DNA-protein crosslinks mediated by,

539drug resistance, 549efficacy improvement, 577ethidium bromide complexes, 569Exom mapping, 568hydrolysis, 532, 536hydrolysis of chloride, 530inhibition of replication, 546, 547inhibition of transcription, 570mediated structural changes in DNA,

540model complexes with nucleobases,

563molecular mechanism, 570monofunctional adducts, 536, 538mutagenesis and repair, 548reaction with DMSO, 532reaction with serum proteins, 532reaction kinetics, 539reactions in aqueous media, 530regioselectivity, 55 Jsite-specific DNA platination, 573structure, 518target, 533

trans-DDPanticancer activity, 525bifunctional adducts, 536, 538DNA adducts, 551, 564DNA binding kinetics, 534hydrolysis, 536monofunctional adducts, 536, 538oligonucleotide structure, 565reaction kinetics, 539regioselectivity, 551

Dehydrogenation, 90

Deoxyhemoglobins and model complexes,231

Deoxymyoglobin active-site structure,231

Deoxyribonucleotides, 456Desferrioxamine, 510Desulforedoxin, 369Desulfovibrio gigas 393, 394Desulfovibrio gigas hydrogenase, 409Detoxification enzymes, 263Dewar-Chatt-Duncanson olefin binding,

438Diacylglycerol, 149,518cis-Diamminedichloroplatinum(II) (see

cisplatin, cis-DDP)Diethylenetriaminepentaacetic acid

(DTPA),51ODihydride complexes, 411Dihydrogen (see hydrogen)Dinitrogen (see nitrogen)Dioldehydrase, 98Dioxygen

adducts, 234carrying capacity of 179chemistry, 183, 191,253-259concentration in living systems, 178coordination geometries, 195, 196,211heterolytic bond cleavage, 293kinetics, 256orientation in hemoglobin, 232radical pathways, 259redox properties, 254, 255sequestration and transport, 168singlet state, 257species (bond lengths), 194storage proteins, 170stretching frequencies, 195thermodynamics, 254toxicity, 260-267triplet state, 256use, biological, 253

Dioxygen bindingcooperative, 174-182cooperativity models, 180curves, 175distal effects, 223, 228, 229, 235, 236kinetics, 172, 182, 186, 187models, 170, 229, 238, 240

Page 15: I. General - authors.library.caltech.edu I., and C. Luchinat. ... Chem. Rev. 84 (1984), 137-203. Perutz, M. F., et al. Stereochemistry of cooperative mechanisms in hemoglobin. Acc

non-cooperative, 174proximal effects, 225, 228, 229thermodynamics, 172, 173, 186, 187to hemoglobin, 238

Dioxygen carriers, 167-246biological, 167-170, 183- 215,

216ligand affinity, 219-221model systems, 170, 171,204,205,

217-219,222properties, 171thermodynamic and kinetic parameters,

186, 1872,3-Dimercaptopropan-l-ol, 509Dioxygenases, 276-283, 332Dipeptidase, 392,3-Diphosphoglycerate (2,3-DPG), 179Distal effects, 223, 228, 229, 235-237Distal histidine, 216, 235

interaction with dioxygen, 236Distamycin-Fe(Il)EDTA,4891,2-Dithiolate ligands, 4411,2-Dithiolenes, 441DNA

A-DNA, 457, 566, 567, C-14B-DNA, 457, 566, 567, C-14bending, 543bent, 484conformational changes with Pt bind­

ing, 542crosslinks with protein, 539DDP interactions (see cis-DDP, trans-

DDP)double 456footprinting, 481insertion into a plasmid, 574interactions with protein, 550metal stabilization of structure, 461oxidative damage repair, 264oxidative degradation, 262repair, 549shape-selective probes of, 485-487strand scission, 476structural changes upon platination,

565,566unwinding, 475, 540, 544Z-DNA, 458, 566, 567, C-J4

DNA polymerase, 39

INDEX 599

DNA topoisomerase, 500DNAse 1,500Dominant Hypothesis, 414, 416-419Doming, 226Dopamine-,B-hydroxyJase, 508Drug design, 524, 577-580Drug resistance, 528, 549, 573Drugs, anticancer, 519-526DTPA,510

EEcoRI,500EDTA, 111,509,510,513EF-hand, 137, 141, 146, 147, 159, 160EGTA, 111Electrochemical mode of redox activa­

tion, 401Electrogenic pump, 131, 161Electron energy loss spectroscopy

(EELS), 118, 190Electron paramagnetic resonance

193,374of Fe2S2 ferredoxin, 380of Fe3S4, 395of FeMoco, 420, 421, 424of Fe-S proteins, 374, 375of hydrogenases, 405-410of nitrogenase, 419-424

Electron probe x-ray microanalysis(EPMA), 118, J19

Electron transfercross reactions, 334-336, 342, 343distance dependence, 344in biology, 315-333in cytochrome c, 352-358in photosynthetic reaction centers, 358,

359in protein-protein complexes, 349-351in ruthenium-modified proteins, 347,

348, 356-358long-range reactions in proteins, 343-

349pathways, 345, 348, 356-358self-exchange reactions, 334-336theory, 336-342

Electronic coupling, 338, 343, 356Electronic relaxation time, 63Electrophoresis, 543

Page 16: I. General - authors.library.caltech.edu I., and C. Luchinat. ... Chem. Rev. 84 (1984), 137-203. Perutz, M. F., et al. Stereochemistry of cooperative mechanisms in hemoglobin. Acc

600 INDEX

Endocytic vesicles, 123Endocytosis, 161Endodermis, 9Endonexin, 135, 148Endonucleases, 500, 501Endoplasmic reticulum (ER), ll, 119,

124, 161ENDOR spectroscopy, 374

of hydrogenase I, 408of nitrogenase, 423, 425

Endosome, 18Endothelial cell, 158Energy release, 324Energy storage, 324Enterobactin, 20, 21, 23Enzymes, detoxification, 263Epidermis, 9Epithelial cells, 122, 161Epoxidation reactions, 256, 284Erythrocruorins, 169, 170, 184Erythrocytes, 124, 161ESEEM spectroscopy, 374

of FeMoco, 424of hydrogenase 1, 408

Essential metals, 506, 507Ester hydrolysis, 79ETH 1001, 113, 14Ethanoldeaminase, 98Ethidium bromide, 540, 568

complexes with cis-DDP, 569Eubacterial methanotrophs, 413Eukaryotic cells, 121, 161Evolution, biological, 13Exchange 63Excision repair, 549Exocytosis, 123, 148, 162Exonucleases, 500

mapping, 551Extended x-ray absorption fine structure

(EXAFS), 193, 372of Fe3S4, 393-395of FeMoco, 426of ferredoxins, 388of FeV protein, 434of hydrogenases, 409, 410of nitrogenase, 426of rubredoxin, 372of thiocubanes, 437

FF430, 4F center, 407, 4085F-BAPTA, 117

NMR,117Facultative aerobes, 413FAD (see flavin adenine dinucleotide)Fatty acid w-hydroxylation, 369Fe(Bis-Poc)(l,2-Me2Im), 220-222Fe(C2Cap)((l-Melm)(CO), 237, 240Fe(C2Cap)(l-Melm), 220-222Fe(C2Cap)(I,2-Me2Im), 220-222Fe(C2COP)(l-MeIm)(CO), 234Fe(PF)(l-MeIm), 220, 239Fe(PF)(l-Melm)(02), 234, 238, 240Fe(PF)(l,2-Me2Im), 220-222Fe(PF)(2-MeIm), 231, 240Fe(PF)(2-Melm)(02), 234

222Fe(Poc)(l,2-MeIm)(CO), 234Fe(Poc-PF)( -MeIm), 220-222

I ,2-Me2Im), 220-222,2-Me2Im)(CO), 237, 238

Fe(TPP)(2-MeIm), 231, 240Fe(TPP)(Py)(CO), 234Fe2S2 centers, 366, 368, 379, 383, 386

EPR, 375, 380in ferredoxins, 320, 370, 378-382in Rieske proteins, 382localized valence trapping, 381mixed-valence, 384models, 382-384Mossbauer spectra, 376, 381

381redox potential, 370, 400resonance Raman spectra, 381

Fe3 model systems, 395Fe3/Fe4 proteins, 395Fe3S3 center, 392Fe3S4 centers, 367, 368, 391-395

ENDOR,396375, 392, 393, 395, 396

EXAFS, 393, 394in proteins, 371, 391-395Mossbauer spectra, 376, 395

396redox potential, 371, 400resonance Raman spectra, 395

Page 17: I. General - authors.library.caltech.edu I., and C. Luchinat. ... Chem. Rev. 84 (1984), 137-203. Perutz, M. F., et al. Stereochemistry of cooperative mechanisms in hemoglobin. Acc

Fe4S4 centers, 366-368, 388-390, 442375,385,386

EXAES,388in ferredoxins, 320, 384-388~ 320, 384-388MCD,387models, 388-390Mossbauer spectra, 376, 387NMR,388properties in proteins, 370, 371redox potential, 370, 371, 400resonance Raman spectra, 387

Fe6S63+/Z+ cores, 398Fe6Sl- cores, 397, 398Fe7S63+ cores, 398FegS65 + cores, 398FelgS3010- cores, 398, 399FeFe protein, 435FeFeco,435FeMo cofactor (see FeMoco)FeMo protein, 414, 416-420, 424, 425

424EXAFS,424Mossbauer spectrum, 425structure, 443

FeMoco, 414, 418, 420-442assembly reactions, 422biosynthesis, 414EPR,424ESEEM,424EXAFS,424models, 428, 429, 436, 437oxidation states, 421structure, 443, 444

FeMoS clusters, 430, 436, 437Fenton reaction, 463, 464, 482, 484fepA protein receptor, 22Ferredoxins, 320, 365-367, 370, 371

FezSz (see FezSz centers)Fe4S4 (see Fe4S4 centers)

Ferrihydrite, 30, 31Ferritin, ]2-16,31,263

core, ]5formation, 15models, 31,32structure, 14

Ferryl complex, 289FeV proteins, 433-435

INDEX 601

FeVco, 435FeWS clusters. 430Filamentous bacterial growth, 523Flavin, 512Flavin adenine dinucleotide (FAD), 326Flavin mononucleotide (FMN), 317, 318Flavodoxins, 317, 414

structure, 318Flavohemoglobin, 349Fluo-3, 11], 115Fluorescent probes of Caz +, 115FMN (see flavin mononucleotide)2-Formylpyridine thiosemicarbazone, 521Franck-Condon principle, 336Free-radical autoxidation, 258Fur protein, 494Fura-2, 111, 115, 116, C-7

GAL4,493Gallium anticancer activity, 520Giant squid axon, 129Gla-Gla dipeptide, IIIGlucocorticoid receptor, 493Gluconeogenesis, 107, 162Glucose tolerance factor, 10Glutamate mutase, 98Glutathione, 262, 263Glutathione peroxidase, 295Gly-Gly dipeptide, IIIGly-Gly-His, 489, 490Glyceroldehydrase, 98Glycolysis, 107, 162Glyoxalase, 44Goethite, 31Gold

anticancer activity, 520, 580pharmaceuticals, 518thioglucose (Solganol), 518thiomalate, 518

Growth retardation, 505Guanine, 457Guanosine triphosphate(GTP)-binding

proteins, 518Gypsum, 112, 156

H center, 407, 408

Page 18: I. General - authors.library.caltech.edu I., and C. Luchinat. ... Chem. Rev. 84 (1984), 137-203. Perutz, M. F., et al. Stereochemistry of cooperative mechanisms in hemoglobin. Acc

602 INDEX

Hz (see hydrogen)Haber-Bosch process, 412Haldane effect, 176Head and neck cancers, 527Heart disease, 505Heavy-metal poison, 505Heavy-metal staining of RNA, 461Heme a, 271,321Heme b, 169, 185,27.°,285,295,321Heme c, 9, 321Heme octapeptide, 353Heme-containing dioxygen carriers, 184Hemerythrin, 168, 170, 184, 187-190,

210-212, 216active site, 190,210dioxygen coordination, 211dioxygen stretching frequencies, 195Hill coefficients, 189metal ligands, 211, 216oligomerization, 189spectral changes with oxygenation, 212structure, 190

Hemochromatosis, 509Hemocyanin, 168, 170, 184, 185, 187,

188,210-212,216active site, 210cooperativity, 188dioxygen stretching frequencies, 195metal ligands, 211, 216spectral changes with oxygenation, 212structure, 188, 189

Hemoglobin, 168-170, 180-186,229­244

cooperativity, molecular mechanismfor, 238

dioxygen stretching frequencies, 195distal histidine mutants, 236electron transfer, 351electronic structure, 213hybrid, 350hydrophobic pocket, 232ligand affinities, 220, 221metal ligands, 215model systems, 217, 218, 229-234mutants, 244structures, 241-243, 351tetramer, 185

Hemosiderin, 13Heterothiocubane models, 437

Heterotropic allosteric effectors, 178Heterotropic allosteric interaction, 176High-mobility group (HMG) protein, 540,

572High-potential iron-sulfur proteins

(HiPIPs), 320, 384-387High-valent metal-oxo complex, 291,

295-298Hill coefficient, 177Hill equation, 177Hill plot, 174, 175, 177Hin recombinase, 489Histones, 540Homocitrate, 422Homotropic allosteric interaction, 174Horseradish peroxidase (also see peroxi-

dase), 295Human carbonic anhydrase II, C-2, C-3Human testes-determining factor, 491Hybrid hemoglobins, 350Hydrazine (NzH4), 415Hydride transfer, 90Hydrogen (Hz), 403

activation, 412, 441bonding to metal sulfides, 412bonding to metals, 411energy-level diagram, 404inhibition of nitrogen fixation, 433modes of Hz/H bonding, 412molecular orbital scheme, 404redox properties, 404, 405

Hydrogen peroxide, 254, 255, 295Hydrogenase, 401, 402, 405

H clusters, 409hydrogenase I, 406hydrogenase II, 406Mossbauer spectra, 408

Hydrogenomonas, 403Hydrolases, 38Hydrolysis reactions, 37-39Hydrolytic chemistry of nucleic acids,

465-467Hydropathy, 162Hydropathy plots, 125Hydroperoxo coordination geometries,

196Hydroxide coordination to metals, 42Hydroxide transfer, 89Hydroxyapatite, 112, 156

Page 19: I. General - authors.library.caltech.edu I., and C. Luchinat. ... Chem. Rev. 84 (1984), 137-203. Perutz, M. F., et al. Stereochemistry of cooperative mechanisms in hemoglobin. Acc

j3-Hydroxyaspartic acid (Hya), 154Hydroxyl radical, 254, 266

reaction with nucleic acids, 463Hydroxylation reactions, 255, 256, 284,

291Hypochromism,473

II.L.S.,525ICaBP, 122ID90 , 526Imaging reagents, Fe(III), Gd(III),

Mn(II), 517Indices of antitumor activity and toxicity,

525Infrared spectroscopy (IR), 193Initiators, 259Inner-sphere electron-transfer reactions,

335Inner-sphere reorganization energy, 339,

340Inorganic pyrophosphatase, 39Inorganic sulfide, 379Inositol, 517Inositol phosphates, 517

inositol 1,4,5-triphosphate, 132,518inositol phosphate mechanism of ac­

tion, 133Intercalation of metal complexes in DNA

460, 462, 470Intercalators, 541, 542Intradiol catechol dioxygenase (also see

catechol dioxygenase), 276Inverted free-energy region, 341Iodosylbenzene, 287, 288, 291Ion microscopy, 120Ion-selective electrodes, 113Iron (also see Fe)

biological significance, 2, 3biomineralization, 30deficiency, 506distribution in humans, 7EXAFS of FeMoco, 426hydrogenases, 405ligand field considerations, 6nitrogenase, 435oxo complexes, 198,274,287-291,

296,497peroxo complexes, 291

INDEX 603

porphyrin, 198, 202porphyrin, autooxidation, 199porphyrin, biological oxidation and

spin states, 201, 203porphyrin, dioxygen and carbon mon-

oxide affinities, 224proteins, 7, 414, 418redox potentials, 8solubility, 6storage and transport,S, 12, 17superoxide dismutases, 298terrestrial distribution, 6toxicity, 509uptake by siderophores, 22

Iron-sulfur proteins, 319, 370, 371Mossbauer spectra, 376NMR,377resonance Raman spectra, 377

Iron-sulfur units, 367, 368Iron-tyrosinate proteins, 277Isocitrate, 393Isocyanide binding to metals, 209

KKidney toxicity, 527Kinases,97Kruppel protein, 491

LLaccases, 309a-Lactalbumin, Ill, 152, 154j3-Lactamase II, 39,44Lactate, IIILactoferrin, 18Lactotransferrin structure, 19Langmuir isotherm, 174, 177LDso,526Lead cleavage of RNA, 466Lead toxicity, 512Leghemoglobin, 184, 185, 243Leguminous plants, 413Lepidocrocite, 31Leucine aminopeptidases, 39Ligand affinities (hemoglobins and

models), 220Lipid peroxidation, 262, 266Lipocortin, 135, 148Lithium and mental health, 517

Page 20: I. General - authors.library.caltech.edu I., and C. Luchinat. ... Chem. Rev. 84 (1984), 137-203. Perutz, M. F., et al. Stereochemistry of cooperative mechanisms in hemoglobin. Acc

604 INDEX

Liver alcohol dehydrogenase \,-,n.LJUI.

90, C-6active site, 91conformational change, 91electronic spectra, 93kinetics, 94metal-substituted derivatives, 92, 93NADH binding, 91

dependence of activity, 92, 95proposed catalytic cycle, 95, 96protonation scheme, 94structure, 90

Longitudinal relaxation time, 63Lumen, 123Lyases, 39, 90

MM center (also see FeMoco), 420M-N binding, 439M-S bonding to H2/H, 412M-T4MPyP, 471M13mp 18, 575Macrobicyclic amino cryptate, Ill, 137Magnesium ion (Mg2+) complex stability

constants, IIIMagnetic circular dichroism (MCD) of

Fe2S2 clusters, 387Magnetic resonance imaging (MRI), 517Magnetic susceptibility, 193Magnetite, 13, 30, 31Magneto-bacteria, 30Malonate, IIIManganese

biological significance, 4peroxo complexes, 291porphyrin, 199porphyrins, DNA footprinting, 482superoxide dismutase, 298toxicity, 5 I0

Manganese(I1)-substituted zinc proteins,47

Manic-depressive behavior, 517Marcus cross relation, 342Marcus theory, 339Mastoparan, 138MECAM, 20, 23, 24Mellitin, 138Membrane cytoskeleton, 148mer operon, 5 II

MerA, mercuric reductase, 5ll, 512MerB, organomercury lyase, 511, 512Mercury resistance, 494, 5 IIMercury toxicity, 510Mercury-binding protein, 494MerP, 511MerR, 494, 495, 511MerT, 51 IMesophilic bacteria, 413Metal complexes

antitumor (nonplatinum), 580binding to nucleic acids, 468-475

Metal ion storage, 16Metal ion transport, 17,25,126

thermodynamics, 126Metal phosphine anticancer activity, 520Metal requirements, biological, 507Metal storage, IMetal substitution in zinc proteins, 44Metal toxicity, 508Metal transport, IMetal-dioxygen species, 197Metal-dioxygen structure and spectros-

copy, 192Metal-ion mediated oxidation, 264Metal-N2 complexes, 439Metal-oxo orbital scheme, 199Metal-peroxo intermediate, 299Metal-substituted heme protein, 350Metal-substituted zinc proteins, 44-48Metallocene anticancer activity, 519, 580Metallodrug design, 524, 577Metalloenzyme-mediated dioxygen reac-

260Metallofootprinting reagents, 48 IMetallohydrolases, 38Metallointercalation, 470, 471, 520, 542Metallopeptidases, 38Metalloporphyrin

binding of carbon monoxide, 208binding of isocyanide, 209binding of nitric oxide, 208binding of nitroso species, 209complex geometry, 226d-orbital splitting diagram, 20 Ielectronic structure, 213-215ligand binding, 215model systems, 288

Metalloregulatory proteins, 493, 5 I I

Page 21: I. General - authors.library.caltech.edu I., and C. Luchinat. ... Chem. Rev. 84 (1984), 137-203. Perutz, M. F., et al. Stereochemistry of cooperative mechanisms in hemoglobin. Acc

Metallothionein, 3, 16, 17, 264Methane monooxygenase, 284Methane synthetase, 98Methanogens, archaebacterial, 413Methemoglobin, 200Methidium-propyl-FeEDTA,478Methionine synthetase, 98N-methyl-n-aspartate (NMDA), 132Methyl transferase, 98ll'-Methylene-glutarate mutase, 98MethylmalonylCoA mutase, 98Metmyoglobin active-site structure, 231Michaelis-Menten scheme, 163Mitochondria, II, 119, 162

inner membrane, 124Mitochondrial electron-transfer chain, 324Mitochondrial redox component (com­

plexes I-IV), 325Mo K-edge EXAFS (Klebsiella pneumo-

niae MoFe protein), 427Mo K-edge EXAFS of nitrogenase, 426M03S44+ core, 395MoFe protein, 416-418

crystals, 426structure, 442-444

Molecular light switches, 480Molecular mechanics, 561Molybdenum (also see 12

biological significance, 5Molybdenum nitrogenases (see nitrogen-

ases)Molybdoferredoxin, 416Monocapped prismatic structure, 399Monoimidazole complexes of iron por-

phyrins, 268, 269Monooxygenase enzymes, 284, 294, 332Mossbauer spectroscopy, 193, 374

481,482Mugeneic acid, 25Mugeneic acid-Co(III) complex, 26Multisite redox enzymes, 400Mung bean nuclease, 500MWC two-state model for cooperative li-

gand binding, 180, 181Mycobactin, 21Myeloperoxidase, 295Myochrisin,518Myoglobin, 184

active-site structure, 231

INDEX 605

cyanogen-bromide modified, 348, 349distal ligand mutations, 235electron transfer, 347-349electron-tunneling pathway, 348ligand-binding parameters, 239oxy and carbonmonoxy derivatives,

203structure, 169thermodynamic parameters for electron

transfer, 348Myosin, 141Myosin light-chain kinase (MLCK), 138

NN2 (see nitrogen)N2H2 (diimine, diazene, diamide), 415N2H4 (hydrazine), 415Nested al!ostery, 188Neutral protease, 39Nickel, biological significance, 4Nickel carcinogenicity, 513Nickel, EPR signals in hydrogenases, 409Nickel hydrogenases, 409, 410

activation/reactivity scheme for, 410inactivation by dioxygen, 412

Nickel(H)-rubredoxin, 377Nickel-iron hydrogenases, 405, 409, 411Nicotinamide, 315Nicotinamide adenine dinucleotide

(NAD),316Nicotinamide adenine dinucleotide phos-

phate (NADP), 316Nicotinic cholinergic agonist, 132NitB-,421nit D and nit K genes, 419nit genes, 413, 414Nit V mutants, 421Nit V nitrogenase, 422NiFe3S4 thiocubane structures, 395Nitrate reductase, 12Nitric oxide binding, 208, 209Nitrilotriacetate, IIINitrogen (N2), 415

binding modes, 438complexes, 437kinetic inertness, 415reduction to NH3, 415, 416

Nitrogen fixation, 412-416in Klebsiella pneumoniae, 414

Page 22: I. General - authors.library.caltech.edu I., and C. Luchinat. ... Chem. Rev. 84 (1984), 137-203. Perutz, M. F., et al. Stereochemistry of cooperative mechanisms in hemoglobin. Acc

606 INDEX

Nitrogen fixation (continued)inhibition by Hz, 433intermediates, 414role of ATP, 432

Nitrogenases,412all-iron, 435, 436alternative, 433crystal structure, 442FeMo protein, 414FeMoco structure, 444homogeneous preparations, 419inhibitors, 432models, 436molybdenum, properties of, 417P-clusters, 422, 423purity, 419redox activation, 401substrates, 431, 432

Nitroso species binding, 209NMR (see nuclear magnetic resonance)Non-cooperative dioxygen binding, 174Non-heme iron dioxygen carriers, 188Nonadiabatic electron transfer, 338,

339Nonbiological Fe-S clusters, 398, 399Nonsymbiotic nitrogen-fixing plants,

413Normal free-energy region, 340Nuclear magnetic relaxation dispersion

(NMRD), 63, 64Nuclear magnetic resonance (NMR), 193

43Ca, 152113Cd, 14619F, I 7of Fe-S proteins, 377of metal complex/nucleic acid struc­

tures, 473-475probes of Caz +, I 1767Zn, 44

Nucleases, 500Nucleic acid/metal complex interactions,

468, 479, 484, 485chirality, 468, 480H-bindimg, 462luminescence, 480

Nucleic acidshydrolytic chemistry, 465-467metal coordination, 459, 460reactions with metals, 462

redox chemistry with metal complexes,463,489

structures, 456Nucleophilic addition of hydride, 89Nucleophilic ~ddition of hydroxide, 89Nucleoside diphosphate kinase, 97Nucleosome core particles, 540

oOlefin binding, 438Oligonucleotide cleavage by metal com­

plexes, 476-479Orbitals, bonding u and antibonding u*,

403Organelles, 162Organomercury lyase, 511, 512ortho hydrogen, 403Osmate esters, 461Osmium tetroxide, 461, 485Osteoblast, 157, 158Osteocalcin, 157Osteoclast, 157, 158Osteocyte, 158Osteogenic cell, 158Osteoid, 158Osteonectin, 157Osteoporosis, 157, 162Outer-sphere electron-transfer reaction,

335, 336Outer-sphere reorganization energy, 340Ovarian carcinomas, 527Oxidant scavengers, 262Oxidation

of 284of iron porphyrins (mechanism), 198of nucleic acids by metal complexes,

462Oxidative addition, 197Oxidative damage repair, 264Oxidative dealkylation, 284Oxidative phosphorylation, 267Oxygen rebound mechanism, 291Oxygenases, 276Oxyhemerythrin (also see hemerythrin),

196,210Oxyhemocyanin (also see hemocyanin),

196, 204, 210Oxyhemoglobin (also see hemoglobin),

196, 213, 233

Page 23: I. General - authors.library.caltech.edu I., and C. Luchinat. ... Chem. Rev. 84 (1984), 137-203. Perutz, M. F., et al. Stereochemistry of cooperative mechanisms in hemoglobin. Acc

Oxymyoglobin (also see myoglobin),233, 235

OxyR,265

pP-clusters, 418, 420, 422, 423, 442, 443p36 (Ca2 + /phospholipid-binding protein),

135, 148para hydrogen, 403Parvalbumin, 135, 137, 144-147Penicillamine, 513Peptidases, 38, 39Periodate, 287Pernicious anemia, 4, 505Peroxidase, 263, 295-298Peroxide anion, 194Peroxide shunt, 286, 291Peroxide stretching frequencies, 195Peroxisomes, 263Peroxo complexes, 274Peroxo coordination geometries, 196Peroxo species, 210Peroxo-bridged copper complexes, 274Peroxy intermediate, 283Peroxynitrite, 266Phenolate-to-iron(lH) charge-transfer tran-

sitions, 277Phorbol esters, 135, 162Phosphatases, 39,B-Phosphate, 112Phosphate backbone, 456

reactions with metal complexes, 462PhosphatidyIserine, 149Phosphocitrate, 131Phosphoglucomutase, 39Phosphoinositol, 149Phospholipase A2 , 39, Ill, 137, 152,

264catalytic mechanism, 153

Phospholipase C, 39, 149Phosphoproteins, 157Photoactivated cleavage of DNA, 464,

476,483Photosynthesis, 324, 327-330Photosynthetic bacteria, 329, 358Photosynthetic organisms, 413Photosynthetic reaction center, 329, 330,

358, C-13electron-transfer rates, 359

INDEX 607

Photosystem pigments, 327, 328Phycocyanin, 328Phycoerythrin, 328Picket-fence porphyrin, 217

ligand-binding properties, 220-224,228,239,243

structure, 218, 229, 230, 232Plasma membrane, 124Plastocyanin, 345

electron transfer, 345reaction with inorganic reagents, 343remote and surface binding sites, 346structure, 346

Platination of DNA, 565Platinol, 524Platinum anticancer drugs, 519, 522

molecular mechanism, 529Platinum-nucleobase model complexes,

563Plutonium toxicity, 510

bis-strapped, 222capped, 219, 220, 222, 228cation radical, 289chelated, 217flat-open, 222models for hemeproteins , 218picket-fence (pocket), 217, 218,

222strapped, 222tail-under, 217

Prebiotic era, 12, 260Primitive organisms, 12, 13Prokaryotic cells, 159, 162Proline trans/cis bond, 147Propeller twisting, 458, 487Protection of the metal-dioxygen moiety,

216Protein binding to cis-DDP modified

DNA, 572Protein kinase C (PKC), III, 133, 135,

149activation, 149structure, 150

Protein-based radical, 315Protein-protein complexes, 349Proteoglycans, 157Prothrombin, 154Prothrombinase complex, 155

Page 24: I. General - authors.library.caltech.edu I., and C. Luchinat. ... Chem. Rev. 84 (1984), 137-203. Perutz, M. F., et al. Stereochemistry of cooperative mechanisms in hemoglobin. Acc

608 INDEX

Protocatechuate 3,4-dioxygenase (PCD),276

structure, 279Protoheme, 185Proton pumping, 276Proton-induced x-ray emission (PIXEL

120microprobe, C-8

Protoporphyrin IX dianion, 171Protoporphyrin structure, 169Proximal effects, 223, 225, 228, 229Proximal histidine, 215Proximal ligand, 232Proximation, 400Pseudobactin, 21Pt(terpy)Cl + , 462PtA2 {d(GMP)}, 2,531PtA2{d(pApG)},531PtA2{d(pGpG)}, 531Purine heterocycles, 456Purine N7, 459Putidamonooxin, 379Putidaredoxin, 332, 379Pyochelin, 21Pyridoxal-requiring monamine oxidase,

508Pyrogallol, 28Pyruvate carboxylase, 4, 44Pyruvate kinase, 39Pyruvate-flavoprotein oxidoreductase, 414

Quin-2, Ill, 115, 116Quinone, 315, 316

RRabbit skeletal muscle, IIIRadical autoxidation, 258Radiodiagnostic agents, 514Radionuclides in medicine, 514Raman and resonance Raman spectros-

copy, 193Reaction center cofactors, C-13Recognition proteins, 571Redox

activation, electrochemical mode of,401

active disulfide, 512behavior of Fe-S sites, 398, 400

chemistry of nucleic acids, 463, 465enzymes, 400properties of hydrogenases, 408properties of nitrogenase, 419properties of the nitrogenase iron pro-

tein, 417states of Fe2S2 proteins, 380states of Fe4S4 proteins, 386, 387

Reduced dinitrogen intermediates, 439Reduced intermediates of N2, 415Reduction of N2 to 2NH3, 415Reduction potentials for dioxygen, 255Relaxed state (R), 180Reorganization energy, 339Repair of oxidative damage, 264Replication mapping, 552Resonance Raman spectra

of Fe-S proteins, 377of Fe2S2 sites, 381of Fe3S4, 395of ferredoxins, 387of hydrogenase I, 408

Respiration, 253, 324Respiratory electron-transport chain, 267,

325, 326Restriction endonucleases, 465Reticulocytes, 18Reverse transcriptase, 524Rh(DIPh3+ structure, 485Rh(phenhphi3+ (shape-selective cleavage

of nucleic acids), 486, 487Rh(phenhphi3+ structure, 485Rh(phenh3+ , 468Rh(phihbpy3+

DNA footprinting, 483structure, 482

Rheumatoid arthritis, 518Rhodium anticancer activity, 521, 580Ribonucleotide reductase, 98, 331Ribozymes, 459Rieske centers, 382RNA

A-form, 459cleavage by lead, 466hydrolytic cleavage, 466shape-selective probes of, 4875S,487structure, 458, C-15tRNAPhe

, 458, 475, 487, 488, C-15

Page 25: I. General - authors.library.caltech.edu I., and C. Luchinat. ... Chem. Rev. 84 (1984), 137-203. Perutz, M. F., et al. Stereochemistry of cooperative mechanisms in hemoglobin. Acc

RNA polymerase, 44, 500Root effect, 176Root hair surface, 9Rotational correlation 63Ru(bpYhdppz2+, 480, 481Ru(DlPh2+, 480, 481

+ (shape-selective cleavage ofnucleic acids), 486

Ru(phenhdppz2+, 480Ru(phenhphi2+, 471Ru(phenh2+, 468, 469

luminescence with 475metal-to-ligand charge-transfer band,

472

shape-selective cleavage of nucleicacids, 486

structure, 485Ruberythrin, 369Rubredoxin, 9, 319, 365-370

373374

ligand field, 373373

models, 377, 378Mossbauer spectrum, 374redox potential, 400reductase, 369S-7Fe charge-transfer transitions, 373structure, 372, 373

Ruthenium anticancer activity, 521, 580Ruthenium-modified cytochrome c, 356Ruthenium-modified myoglobin, 347

SS-100 135SI endonuclease,Sanocrysin, 518Sarcoplasmic Ca2+-binding proteins, 148,

C-IISarcoplasmic 121, 125, 128,

132, 162Sea 27, C-ISelf-exchange reactions, 334-337, 341Serine proteases, 152Serum proteins, 532Shape selection, 485Shape-selective recognition, 491

INDEX 609

Sickle cell anemia, 507Siderophores, 20Siderosis, 510Silica, 30Singlet dioxygen reactivity, 257Singlet oxygen reaction with nucleic

acids, 464Site-specifically platinated 573Six-electron reduction of N2, 415Skeletal muscle thin filament, 141Sodium biological concentration, 130Solubility products (calcium phosphates),

112

Spl transcription factor, 491Spatial resolution of ion concentration,

I 8Special 329Spin-state changes with dioxygen bind­

ing, 238Spin-coupling in Fe2S2 ferredoxins, 381Spilugermaniurn, 521

structure, 518Staphylococcal nuclease, 500Stele, 9Stellacyanin

cross electron-transfer reaction, 342reaction with inorganic reagents, 343self-exchange reaction, 335

Stinging nettle hair, C-8Strapped 228, 243Structure-specific recognition prc)teins,

571,572Substrate activation, 282Succinate dehydrogenase, 379Sulfide oxidation, 284Superacid, 40Superhelical 475,477Superoxide, 254, 255, 265

anion radical, 191, 194disproportionation, 298reaction with nucleic acids, 464stretching frequencies, 195toxicity, 265, 266

Superioxide dismutase (also see copper­zinc superoxide dismutase), 191,263, 266, 298

Superoxo coordination geometries, 196Superoxo species, 197SV40 540, 546, 548

Page 26: I. General - authors.library.caltech.edu I., and C. Luchinat. ... Chem. Rev. 84 (1984), 137-203. Perutz, M. F., et al. Stereochemistry of cooperative mechanisms in hemoglobin. Acc

610 INDEX

TT antigen, 540T4 DNA ligase, 575Technetium radiopharmaceuticals, 514,

515Tense state (T), 180Testicular cancer, 527Tet b, 300Tetraplatin, 579Tetrathiomolybdate (MOS4

2-), 437

Therapeutic index (TI), 526Thermolysin, 39, 44

active-site structure, 85Thermophilic archaebacterial methanogen,

413Thiocubanes, 367, 385, 386,429,437Thioprismanes, 398, 399Thioredoxin, 315Three-iron centers, 391Three-state model, 386, 387Thrombin fragment, IIIThrombospondin, 154Thymidine kinase, 508Thymine, 457Thymine N3, 459Timescales, experimental, 335Tin anticancer activity, 5200'-Tocopherol, 262Transcarboxylase, 44Transcription factors, 491Transferrin, 8, 12, 17, 18,263,264

structure, 19Transverse relaxation time, 63TRENCAM, 28, 29TRENPAM, 28, 29Triethylphosphinegold(I) tetra-O-acetyl-

thioglucose, 518TRIMCAM,241,4,5-Triphosphoinositol (I,4,5-IP3), 131Triple-helix formation, 489Triplet dioxygen reactivity, 256Trophoblasts, 124, 162Tropomyosin, 141Troponin C (TnC), 135, 140, 142

Ca2 + binding, 143Ca2 + /Mg2 + sites, IIIconformational change, 143, 144Mg2 + binding, 143

regulatory sites, 143structure, 142

Troponin I 140Troponin T (TnT), 140Trypsin, III, 137, 152Trypsinogen, 111, 137, 152Tryptic digest, 162Tryptic fragments, 138Tunicates, 5, 10,27, C-ITunichrome, 10, 28, 29Tunneling pathways, 345Two-iron ferredoxins, 367Tyrosinase, 284, 508Tyrosine ligation, 296Tyrosine radical, 315

UUbiquinol, 316Ubiquinone, 316Uniporter, 131, 162Uracil N3, 459Uranyl acetate DNA footprinting, 483UV-visible spectroscopy, 193uvrABC excinuclease system, 571UW-45,421

VValerite, 156Vanadate, 27Vanadium, 10

accumulation mechanism, 28biological significance, 5nitrogenase, 433, 434transport, 27

Vesicular transport, 123Vicinal 1,2 interchange, 97Vinblastine, 527Vinyl-disulfide-chelating ligand, 441Vitamin (also see coenzyme Bd, 4,

98structure, 99

Vitamin D, 122, 146Vitamin E, 263Vitamin K, 154

WWater coordination, 41, 42WeddelJite, 156

Page 27: I. General - authors.library.caltech.edu I., and C. Luchinat. ... Chem. Rev. 84 (1984), 137-203. Perutz, M. F., et al. Stereochemistry of cooperative mechanisms in hemoglobin. Acc

Whew(~lIite, 112, 156Wilson's disease, 509

XX-ray absorption near-edge structure

(XANES), 193, 372X-ray absorption spectroscopy, 372,

426X-ray photoelectron spectroscopy (XPS),

193X-ray single-crystal diffraction,

193Xanthine oxidase, 12,315,329,366,

367, 379structure, 33

Xeroderma pigmentosum (XP) human fi­broblast cells, 549491

Xylem vessels, 9

INDEX 611

yYeast calmodulin, 159

ZZ-form DNA, 458, 566

structure, 567Zinc

biological significance, 3coordination, 40, 43deficiency, 507enzymes, 39, 40, 43fingers, 3,48,456,491,492, C-lprotein-mediated peptide hydrolysis, 79reactivity in cavities, 43regulatory role, 48storage, 16structural role in proteins, 48, 302,

492,493thioneins, 48toxicity, 510

A(:kIliO'l'vh~ldgllllent: HBG thanks Deborah Wuttke, Kara Bren, Gary Mines, and PaolaTurano for assistance in preparing and checking the index.