i-biology excel statbook

Upload: mrnewbs

Post on 04-Apr-2018

217 views

Category:

Documents


0 download

TRANSCRIPT

  • 7/31/2019 I-Biology Excel StatBook

    1/73

    Statistical Analysis, Data Collection and Processin Shadowed boxes are links to resources

    Stephen Taylor. IBDP Biology Excel Statbook. From http://i-biology.net/ia/statexcel Last u

    What do you

    Compare the means of two sample population

    Plot the change in a variable over time (the '5

    Determine if there is a correlation between tw

    Learn about error bars and variability in Biolog

    Plot changes 'before and after' a condition is c

    Compare outcomes to expected data (Chi-squa

    Quick guide to tables and graphs (DCP)

    More calculations for% differe

    magnifica

  • 7/31/2019 I-Biology Excel StatBook

    2/73

    and Excel

    Links:

    Front Page

    i-Biology.net

    pdated 27 Sept 2011 A Creative Commons work by

    .....under one experimental condition

    ..under two (or more) experimental conditions

    5'

    y

    anged

    red test)

    monohybrid cross

    dihybrid cross

    codominant cross

    polygenic cross

    ..where individual trials are repeated

    Learn more about the t- t-test practice

    "5x5" means 5 increments of the IV over 5 times, with 5 repeats

    ce vs %

    tions & scales

    Yeast population growth

    http://i-biology.net/http://i-biology.net/http://i-biology.net/
  • 7/31/2019 I-Biology Excel StatBook

    3/73

    Stephen Taylor

    http://i-biology.net/
  • 7/31/2019 I-Biology Excel StatBook

    4/73

    Variability and Error Bars in Biology Data sho

    The mean is a

    Data show va

    We could use

    Standard de

    34% of data f

    If a calculated

    95% of all dat

    Consider this

    repeat

    Population A

    Population B

    Image from:

    Population A

    Calculate mea

    Click on the c

    Change the ra

    When descri

    Error barsYou could use

    The top grap

    The bottom gThis is useful i

    The larger the

    Where there i

    We can test t

    Further usefu

    Click4Biology

    Error Bars

    Error Bars in B

    Can we tell how significant the difference is from the overlap in the error bars

    repeat 1 2 3 4 5 6 7 8

    Population A 1.0 2.0 3.0 4.0 3.0 2.0 1.0 2.0

    Population B 2.0 2.0 1.0 2.0 1.0 2.0 1.0 2.0

    ttp://en.wikipedia.org/wiki/Standard_deviatio

    DV (unit, uncertainty)

    68%

    95%

    Pop A

    (n=10)

    Pop B

    (n=10)

    0.0

    2.0

    4.0

    6.0

    MeanValueofthe

    DependentVariable

    Comparing the means of Population A andPopulation B. Error bars show standard deviation.

    Pop A

    (n=10)

    Pop B

    (n=10)

    0.0

    2.0

    4.0

    6.0

    MeanValueofthe

    DependentVariable

    Comparing the means of Population A andPopulation B. Error bars show 95% confidence.

    le

    Comparing the means of Populations A and B.

    (Error bars represent 95% confidence)

    http://click4biology.info/c4b/1/stat1.htmhttp://www.graphpad.com/articles/errorbars.htmhttp://jcb.rupress.org/content/177/1/7.full.pdf+htmlhttp://en.wikipedia.org/wiki/Standard_deviationhttp://en.wikipedia.org/wiki/Standard_deviationhttp://jcb.rupress.org/content/177/1/7.full.pdf+htmlhttp://www.graphpad.com/articles/errorbars.htmhttp://click4biology.info/c4b/1/stat1.htm
  • 7/31/2019 I-Biology Excel StatBook

    5/73

    In the default data here, you can a small overlap, but significant difference.

    What happens as the datasets become more similar or more different?

    Population A

    (n=10)

    Population B

    (n=10)

    0.0

    0.5

    1.0

    1.5

    2.0

    2.5

    3.0

    .

    Meanvalueofdependentvaria

    (unit,

    )

  • 7/31/2019 I-Biology Excel StatBook

    6/73

    variability.

    measure of the central tendency of a set of data. It useful, but not by itself.

    iability - this is how spread the data are around the mean.

    the range of the data (max - min values) to show variability, but this is skewed by outliers.

    iation (sd) is a very useful tool in descriptive statistics.

    ll one sd above and one sd below the mean. Therefore 68% of all data fall within 1sd of the mean.

    value for the sd is large, it suggests a lot of variability in the data. If it is small, there is less variability.

    a fall within 2sd of the mean. We can use this for 95% confidence limits.

    set of raw data:

    1 2 3 4 5 6 7 8 9 10 mean

    1.0 1.0 2.0 3.0 2.0 1.0 3.0 6.0 7.0 6.0 3.2

    1.0 1.0 1.0 1.0 1.0 1.0 2.0 1.0 2.0 1.0 1.2

    has a higher mean than Population B. Population A shows greater variability in the data.

    n with the formula "=AVERAGE(data)" Calculate sd with the formula "=STDEV"

    Calculate 95% confidence with the formula

    lls to see the formula. "=CONFIDENCE.NORM(0.05, sd, sample size)"

    w data in the table to see what heppens.

    bing data, include the standard deviation as an indictor of variability.

    are a graphical representation of the variability of a set of data. Go torange, sd, standard error or 95% confidence on the error bars. to practice

    uses sd for the error bars. You can see a clear difference in variability.

    raph shows 95% confidence.n determining the significance of a difference between the means.

    overlap between 95%CI error bars, the larger the value of P (see t-test). A small overlap might still be a

    s no overlap in 95%CI error bars, the difference is very likely to be significant.

    ese deductions further by carrying out a t-test Link:

    l resources:

    by John Burrell Thanks also to Dave Ferguson here at Canadian Academy.

    by GraphPad.com

    iology by the Journal of Cell Biology (pdf well worth reading) A Creative

    9 10 mean stdev 95% CI

    3.0 4.0 2.5 1.08 0.67

    1.0 2.0 1.6 0.52 0.32

    The error bars here represent 95%CI.

    Manipulate the data and see what happens to:

    - The overlap of The error bars

    DV (unit, uncertainty)

    t-test resources

    Links:

    Front Page

    Notice that the

    population is labe

    i-Biology.n

    http://i-biology.net/http://i-biology.net/
  • 7/31/2019 I-Biology Excel StatBook

    7/73

    - The value of P (t-test)

    H0 = "There is no significant difference between population A and B"

    P = 0.029

    If P < 0.05 then REJECT H0

    There is a significant difference.

    If P > 0.05 then ACCEPT the H0

    There is no significant difference.

  • 7/31/2019 I-Biology Excel StatBook

    8/73

    sd 5% confidence

    2.3 1.4

    0.4 0.3

    setting up error bars.

    significant difference.

    ommons work by Stephen Taylor

    sample size of each

    led on th graph (n=10)

    et

    "Comparing Means"

  • 7/31/2019 I-Biology Excel StatBook

    9/73

    Comparing two population means.

    repeat 1 2 3 4 5 6 7 8 9 10

    Population A

    Population B

    This graph is set up for you to play with.

    Put some sets of raw data in the table.

    See what happens to the means.

    What happens to the sd?

    The error bars represent 95% confidence.

    Are your data significantly different?

    The t-test can be used as a significance test.

    We set a confidence limit of 95%.OR: the probability of the difference being

    due to chance (P) is 0.05 or less.

    Here's how to present it:

    T-test:

    H0 = There is no significant difference between population A and population B.

    df = (total sample size minus 2)

    TTEST = ###### Formula =TTEST (PopARawData:PopBRawData, 2, 2)

    Analysis If P > 0.05, accept H0 (less than 95% confident that differences are not due to ch

    If P < 0.05, reject H0 (more than 95% confident that differences are not due to c

    I reject / accept the null hypothesis.

    Conclusion: There is / is not a significant difference between population A and population B.

    Can we tell how significant the difference is from the overlap in the error bars

    repeat 1 2 3 4 5 6 7 8 9 10

    Population A 1.0 2.0 3.0 4.0 3.0 2.0 1.0 2.0 3.0 4.0Population B 2.0 2.0 1.0 2.0 1.0 2.0 1.0 2.0 1.0 2.0

    The erro

    Manipul

    - The ov

    - The val

    DV (unit, uncertainty)

    DV (unit, uncertainty)

    Population A

    (n= )0.0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1.0

    Meanvalueofdependentvariable

    (unit,

    )

    Descriptive title which makes clear

    investigation. (Error bars represe

    3.0

    3.5

    variable

    Comparing the means of Populations A and B.

    (Error bars represent 95% confidence)

  • 7/31/2019 I-Biology Excel StatBook

    10/73

    H0 = "Th

    P =

    If P < 0.

    There is

    If P > 0.

    There is

    In the default data here, you can a small overlap, but significant difference.

    What happens as the datasets become more similar or more different?

    Population A

    (n=10)

    Population B

    (n=10)

    0.0

    0.5

    1.0

    1.5

    2.0

    2.5

    Meanvalueofdependen

    (unit,

    )

  • 7/31/2019 I-Biology Excel StatBook

    11/73

    Standard deviation (sd)is used in descriptive statistics.

    mean stdev 95% confidence It is a measure of the spread (variability) of most of the data.

    #DIV/0! ###### #DIV/0! 34% of data falls above (1sd) and 34% below (1sd) the mean.

    #DIV/0! ###### #DIV/0! Therefore 68% of all data falls within 1 sd of the mean.

    95% Confidence (95% CI): confidence in the m (link)

    We can plot this 95% confidence on error bars on graphs.

    If error bars do not overlap, the sets of data are likely to be significant

    When setting 95% confidence:

    Select =CONFIDENCE.NORM as a function

    Alpha is 0.05 (95% confidence)

    STDEV select the STDEV cell

    Size = number of samples for that value

    Quick guide to setting up error bars in Excel:Click on the data points, then Chart Layout, Error bars

    Select Error Bars Options, Custom, Select Value

    For positive error bar, highlight all '95% confidence' cells.

    Do the same for the negative error bar.

    Delete horizontal error bars if they are produced.

    Click here

    to find out more about the t-test.

    ance) A Creative Commons work by Stephen Taylor

    hance)

    Thanks to Dave Ferguson for help on this one!

    mean stdev 95% CI

    2.5 1.08 0.671.6 0.52 0.32

    r bars here represent 95%CI.

    ate the data and see what happens to:

    erlap of The error bars

    lue of P (t-test)

    Links:

    Front Pagei-Biology.net

    "T-test"

    Population B

    (n= )

    the purpose of the

    t 95% confidence)

    http://i-biology.net/http://i-biology.net/
  • 7/31/2019 I-Biology Excel StatBook

    12/73

    ere is no significant difference between population A and B"

    0.029

    5 then REJECT H0

    a significant difference.

    5 then ACCEPT the H0

    no significant difference.

  • 7/31/2019 I-Biology Excel StatBook

    13/73

    ly different.

  • 7/31/2019 I-Biology Excel StatBook

    14/73

    The t-testThe t-test tests the significance of the difference between two means.

    You need to know how to apply the t-test in two ways.

    1. By using a calculated value of t and comparing it to a critical value on the t-table (exam).

    2. By using Excel on your dataset (for lab reports)

    repeat 1 2 3 4 5 6 7 8 9 10 mean stdev

    Population A 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 9.0 5.4 2.88

    Population B 2.0 2.0 2.0 2.0 3.0 4.0 5.0 5.0 5.0 5.0 3.5 1.43

    Always start by stating the null hypothesis. H0 = "There is no significant difference between population A

    This is always the same.

    Now test it.

    Quick Excel Method t-Table method (for exa

    Use the formula "=TTEST(array1, array2, tails, type)" 18

    tails = 2, type = 2 P= 0.05

    P is calculated directly. 2.10

    P= 0.08

    92.22 % Calculated value of t= 1.87

    (From

    State the Conclusion:

    IfP < 0.05 then REJECT the null hypothesis. Ift > c.v. then REJECT the null

    There is a significant difference between A and B. There is a signifi

    IfP > 0.05 then ACCEPT the null hypothesis. Ift < c.v. then ACCEPT the null

    There is no significant difference between A and B. There is no signi

    A Creative Commons work by Stephen Tay

    repeat 1 2 3 4 5 6 7 8 9 10 mean stdev

    Population A 1.0 2.0 3.0 4.0 3.0 2.0 1.0 2.0 3.0 4.0 2.5 1.08

    Population B 2.0 2.0 1.0 2.0 1.0 2.0 1.0 2.0 1.0 2.0 1.6 0.52

    The error bars here rep

    Manipulate the data an

    - The overlap of The err

    - The value of P (t-test)

    H0 = "There is no signifi

    P = ####

    DV (unit, uncertainty)

    DV (unit, uncertainty)

    Degrees of freedom =

    Critical value (c.v.) of t =

    http://www.graphpad.c

    Confidence=

    Links: Front Page i-Biology.net

    Conditions

    - Two popu

    - At least fi

    In Biology,

    (P < 0.05) l

    Population A

    (n=10)

    Population B1.5

    2.0

    2.5

    3.0

    3.5

    ofdependentvariable

    (unit,

    )

    Comparing the means of Populations A and B.

    (Error bars represent 95% confidence)

    http://www.graphpad.com/quickcalcs/ttest1.cfmhttp://i-biology.net/http://i-biology.net/http://www.graphpad.com/quickcalcs/ttest1.cfm
  • 7/31/2019 I-Biology Excel StatBook

    15/73

    If P < 0.05 then REJECT

    There is a significant dif

    If P > 0.05 then ACCEPT

    There is no significant d

    In the default data here, you can a small overlap, but significant difference.

    What happens as the datasets become more similar or more different?

    0.0

    0.5

    1.0

    .

    Meanvalue

  • 7/31/2019 I-Biology Excel StatBook

    16/73

    90% 95% 98%

    P 0.1 0.05 0.02

    Increasing significance

    DF 1 6.31 12.71 31.82

    22.92 4.30 6.97

    3 2.35 3.18 4.54

    4 2.13 2.78 3.75

    95% confidence 5 2.02 2.57 3.37

    1.78 6 1.94 2.45 3.14

    0.89 7 1.90 2.37 3.00

    8 1.86 2.31 2.90

    nd B" 9 1.83 2.26 2.82

    10 1.81 2.23 2.76

    11 1.80 2.20 2.72

    mple data) 12 1.78 2.18 2.68

    (total sample size minus 2) 13 1.77 2.16 2.65

    14 1.76 2.15 2.63

    15 1.75 2.13 2.60

    16 1.75 2.12 2.58

    (this is given to you in exams) 17 1.74 2.11 2.57

    ) 18 1.73 2.10 2.55

    19 1.73 2.09 2.54

    20 1.73 2.09 2.53

    ypothesis. 21 1.72 2.08 2.52

    cant difference between A and B. 22 1.72 2.07 2.51

    23 1.71 2.07 2.50hypothesis. 24 1.71 2.06 2.49

    ficant difference between A and B. 25 1.71 2.06 2.4926 1.71 2.06 2.48

    lor There's more 27 1.70 2.05 2.47

    28 1.70 2.05 2.47

    29 1.70 2.05 2.46

    30 1.70 2.04 2.46

    95% CI 31 1.70 2.04 2.45

    0.67 32 1.69 2.04 2.45

    0.32 33 1.69 2.04 2.45

    34 1.69 2.03 2.44

    resent 95%CI. 35 1.69 2.03 2.44

    d see what happens to: 36 1.69 2.03 2.43

    or bars 37 1.69 2.03 2.43

    38 1.69 2.02 2.43

    39 1.69 2.02 2.43

    ant difference between population A and B" 40 1.68 2.02 2.42

    42 1.68 2.02 2.42

    44 1.68 2.02 2.41

    46 1.68 2.01 2.41

    (n-2)

    Confidence

    om/quickcalcs/ttest1.cfm

    for using the t-test:

    lation means to compare

    ve data points in each population

    we usually work at the 95% confidence

    level. This means that any differences

    Notice that as P decreases,

    Click here for some practice

  • 7/31/2019 I-Biology Excel StatBook

    17/73

    H0 48 1.68 2.01 2.41

    ference. 50 1.68 2.01 2.40

    60 1.67 2.00 2.39

    the H0 70 1.67 1.99 2.38

    ifference. 80 1.66 1.99 2.37

    90 1.66 1.99 2.37100 1.66 1.98 2.36

    120 1.66 1.98 2.36

    150 1.66 1.98 2.35

    200 1.65 1.97 2.35

    300 1.65 1.97 2.34

    500 1.65 1.97 2.33

    1.65 1.96 2.33

    If your degrees of freedom lie

    between values (e.g. 55 on this

    table), then use the critical value of

    the lower number (in this case 50).

  • 7/31/2019 I-Biology Excel StatBook

    18/73

    99%

    0.01

    63.66

    9.93

    5.84

    4.60

    4.03

    3.71

    3.50

    3.36

    3.25

    3.17

    3.11

    3.06

    3.01

    2.98

    2.95

    2.92

    2.90

    2.88

    2.86

    2.85

    2.83

    2.82

    2.81

    2.80

    2.792.78

    2.77

    2.76

    2.76

    2.75

    2.74

    2.74

    2.73

    2.73

    2.72

    2.72

    2.72

    2.71

    2.71

    2.70

    2.70

    2.69

    2.69

  • 7/31/2019 I-Biology Excel StatBook

    19/73

    2.68

    2.68

    2.66

    2.65

    2.64

    2.632.63

    2.62

    2.61

    2.60

    2.59

    2.59

    2.58

  • 7/31/2019 I-Biology Excel StatBook

    20/73

    Practice with the t-testAlways start by stating the null hypothesis. H0 = "There is no significant difference betwee

    1. Total sample size = 24. t = 2.33.

    H0 = "There is no significant difference between population A and B"

    Ift > c.v. then REJECT the null hypothesis. Conclusion:

    There is a significant difference between A and B. t c.v. so I the null

    There a significant difference bet

    Ift < c.v. then ACCEPT the null hypothesis.

    There is no significant difference between A and B.

    2. An ecologist measures 23 leaves on the East side of a hedge and 32 on the West. The me

    H0 = "There is no significant difference between population A and B"

    Conclusion:

    t c.v. so I the null hypothesis.

    There a significant difference between the population means.

    3. Rugby squad A has 22 players with a mean sprint time of 11.5s. Squad B has 20 players,

    H0 = "There is no significant difference between population A and B"

    Conclusion:

    t c.v. so I the null hypothesis.

    There a significant difference between the population means.

    repeat 1 2 3 4 5 6 7 8 9 10 mean stdev

    Population A 1.0 2.0 3.0 4.0 3.0 2.0 1.0 2.0 3.0 4.0 2.5 1.08

    Population B 2.0 2.0 1.0 2.0 1.0 2.0 1.0 2.0 1.0 2.0 1.6 0.52

    The error bars here re

    Manipulate the data a

    - The overlap of The e

    - The value of P (t-test

    H0 = "There is no signi

    P = ###

    If P < 0.05 then REJEC

    DV (unit, uncertainty)

    Degrees of freedom = Critical value (c.v.) of t =

    Degrees of freedom = Critical value (c.v.) of t =

    Degrees of freedom = Critical value (c.v.) of t =

    Population A

    (n=10)

    Population B

    (n=10)1.5

    2.0

    2.5

    3.0

    3.5

    lueofdependentvariable

    (unit,

    )

    Comparing the means of Populations A and B.

    (Error bars represent 95% confidence)

  • 7/31/2019 I-Biology Excel StatBook

    21/73

    There is a significant d

    If P > 0.05 then ACCEP

    There is no significant

    In the default data here, you can a small overlap, but significant difference.

    What happens as the datasets become more similar or more different?

    0.0

    0.5

    1.0

    Meanv

  • 7/31/2019 I-Biology Excel StatBook

    22/73

    90% 95% 98%

    n population A and B" P 0.1 0.05 0.02

    Increasing significance

    DF 1 6.31 12.71 31.82

    22.92 4.30 6.97

    3 2.35 3.18 4.54

    4 2.13 2.78 3.75

    5 2.02 2.57 3.37

    l hypothesis. 6 1.94 2.45 3.14

    een the population means. 7 1.90 2.37 3.00

    8 1.86 2.31 2.90

    9 1.83 2.26 2.82

    10 1.81 2.23 2.76

    ns are compared. "t" is calculated as 1.97. 11 1.80 2.20 2.72

    12 1.78 2.18 2.68

    131.77 2.16 2.65

    14 1.76 2.15 2.63

    15 1.75 2.13 2.60

    16 1.75 2.12 2.58

    17 1.74 2.11 2.57

    18 1.73 2.10 2.55

    ean time 9.3s. "t" is calculated as 2.10. 19 1.73 2.09 2.54

    20 1.73 2.09 2.53

    21 1.72 2.08 2.52

    22 1.72 2.07 2.51

    23 1.71 2.07 2.50

    24 1.71 2.06 2.49A Creative Commons work by Stephen Taylor 25 1.71 2.06 2.49

    26 1.71 2.06 2.48

    27 1.70 2.05 2.47

    28 1.70 2.05 2.47

    95% CI 29 1.70 2.05 2.46

    0.67 30 1.70 2.04 2.46

    0.32 31 1.70 2.04 2.45

    32 1.69 2.04 2.45

    present 95%CI. 33 1.69 2.04 2.45

    nd see what happens to: 34 1.69 2.03 2.44

    ror bars 35 1.69 2.03 2.44

    ) 36 1.69 2.03 2.4337 1.69 2.03 2.43

    icant difference between population A and B" 38 1.69 2.02 2.43

    39 1.69 2.02 2.43

    40 1.68 2.02 2.42

    42 1.68 2.02 2.42

    H0 44 1.68 2.02 2.41

    Confidence

    (n-2)

    Links:

    Front Page

    i-Biology.net

    http://i-biology.net/http://i-biology.net/
  • 7/31/2019 I-Biology Excel StatBook

    23/73

    ifference. 46 1.68 2.01 2.41

    48 1.68 2.01 2.41

    T the H0 50 1.68 2.01 2.40

    difference. 60 1.67 2.00 2.39

    70 1.67 1.99 2.38

    801.66 1.99 2.37

    90 1.66 1.99 2.37

    100 1.66 1.98 2.36

    120 1.66 1.98 2.36

    150 1.66 1.98 2.35

    200 1.65 1.97 2.35

    300 1.65 1.97 2.34

    500 1.65 1.97 2.33

    1.65 1.96 2.33

    If your degrees of freedom lie

    between values (e.g. 55 on this

    table), then use the critical value of

    the lower number (in this case 50).

  • 7/31/2019 I-Biology Excel StatBook

    24/73

    99%

    0.01

    63.66

    9.93

    5.84

    4.60

    4.03

    3.71

    3.50

    3.36

    3.25

    3.17

    3.11

    3.06

    3.01

    2.98

    2.95

    2.92

    2.90

    2.88

    2.86

    2.85

    2.83

    2.82

    2.81

    2.80

    2.79

    2.78

    2.77

    2.76

    2.76

    2.75

    2.74

    2.74

    2.73

    2.73

    2.72

    2.722.72

    2.71

    2.71

    2.70

    2.70

    2.69

  • 7/31/2019 I-Biology Excel StatBook

    25/73

    2.69

    2.68

    2.68

    2.66

    2.65

    2.64

    2.63

    2.63

    2.62

    2.61

    2.60

    2.59

    2.59

    2.58

  • 7/31/2019 I-Biology Excel StatBook

    26/73

    Data Processing and Presentation

    Raw data table of tissue sample masses for populations A and B

    repeat 1 2 3 4 5 6 7 8 9 10 mean

    Population A 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 1.1 1.5

    Population B 2.3 2.3 2.4 2.0 2.3 4.3 2.2 2.2 2.0 3.1 2.5

    Associated qualitatvie data:

    Record observations with the raw data. You cannot get above 0 for DCP aspect 1 without this.

    These observations could be referred to in the conclusion or evaluation.

    Mass of tissue samples (g, 0.1g)

    Population A

    (n= )

    Population B

    (n= )

    0.0

    0.5

    1.0

    1.5

    2.0

    2.5

    3.0

    3.5

    Meanmassoftissuesamples(g,

    0.1g

    )

    Comparing the mean tissue sample masses of Population A and

    Population B (Error bars represent 95% confidence)

  • 7/31/2019 I-Biology Excel StatBook

    27/73

    Raw data

    Give the tables a title.

    Always remember units and uncertainties.

    stdev 95% confidence Mean should not got to more d.p. than the precision of the recording.

    0.29 0.18 Make sure that all raw data and the means have consistent d.p.

    0.70 0.43 This includes zeroes. (Format cell, number, dp)

    STDEV and 95% confidence can have one extra d.p.

    Do not allow tables to break across pages.

    Processing data:

    Explain what calculations were used and why.

    If you used Excel, explain what functions were selected and why.

    Give worked examples of any calculations you carried out yourself.

    Where data sets are large, you will need to present processed data as a separate table.

    Think about units and uncertainties of processed data carefully.

    Presenting Processed DataTitles must be descriptive of the experiment.

    You must state what the error bars represent.

    Do not plot bar charts.

    Trend lines, if used, should be plotted by you.

    Error bars need to be for each data set. Include sample size where appropriate (n= )

    Label axes clearly, with units and uncertainties.

    Make good use of space.

    Do not clutter the graph with unnecessary colours, lines or shading.

    Ask yourself the question:

    "Does my table or graph clearly and accurately represent the data?"

    A Creative Commons work by Steph

    Links:

    Front Pagei-Biology.net

    http://i-biology.net/http://i-biology.net/
  • 7/31/2019 I-Biology Excel StatBook

    28/73

    en Taylor

  • 7/31/2019 I-Biology Excel StatBook

    29/73

    Comparing two population means under different conditionsIn this example, lichen and moss populations were compared on the North and South sides of so

    1st

    quadrat

    2nd

    quadrat

    3rd

    quadrat

    1st

    quadrat

    2nd

    quadrat

    3rd

    quadrat

    Moss 4 20 10 56 45 65

    Lichen 100 84 100 12 32 12Moss 5 6 23 76 76 65

    Lichen 87 65 54 23 12 23

    Moss 12 13 14 76 87 65

    Lichen 3 4 5 12 10 9

    Moss 76 65 54 67 54 23

    Lichen 3 6 5 3 6 5

    Moss 76 87 78 87 76 67

    Lichen 2 4 7 12 8 6

    Sample sizes: 15 per side per type

    Interpret the data and the graphs.

    Which data are more variable? How do you know?

    Which sets of data are most likely to be significantly different?

    A Creative Commons work by Stephen Taylor

    % Coverage of lichens and

    mosses on trees (4%)

    Northern direction Southern direction

    Tree 1

    Tree 2

    Links:

    Front Page

    i-Biology.net

    Tree 3

    Tree 4

    Tree 5

    http://i-biology.net/http://i-biology.net/
  • 7/31/2019 I-Biology Excel StatBook

    30/73

    e trees.

    Processed Data

    Mean Standard deviation 95% confidenceMosses 36.2 32.2 16.3

    Lichen 33.1 40.4 20.4

    Mosses 65.7 22.9 11.6

    Lichen 11.6 8.2 4.2

    % Coverage on trees (4%)

    South Side

    North Side

    Moss, North

    36.2 Lichen, North

    33.1

    Moss, South

    65.7

    Lichen, S

    0.0

    10.0

    20.0

    30.0

    40.0

    50.0

    60.0

    70.0

    80.0

    90.0

    Mean%Coverageontree

    s(

    4%)

    Comparing % coverage of moss and lichen populations on the Nort

    South aspects of trees in Bandung, West Java. (Error bars represent

    confidence)

  • 7/31/2019 I-Biology Excel StatBook

    31/73

    uth

    11.6

    and

    95%

  • 7/31/2019 I-Biology Excel StatBook

    32/73

    A results table for population comparisons where membe

    1 2 3 4 5 mean stdev 95% conf.

    A1 ###### #DIV/0!

    A2 ###### #DIV/0!

    A3 ###### #DIV/0!

    A4 ###### #DIV/0!

    A5 ###### #DIV/0!

    mean ###### ###### ###### ###### ######

    stdev ###### ###### ###### ###### ######

    95% confidence ###### ###### ###### ###### ######

    population statistics:

    mean = ###### stdev = ###### 95% confidence #DIV/0!

    T-test:

    H0 = There is no significant difference between population A and population B.

    df =

    TTEST =

    Analysis If P>0.05, accept H0 (less than 95% confident that differences are not du

    If P

  • 7/31/2019 I-Biology Excel StatBook

    33/73

    s of each population are repeating trials

    1 2 3 4 5 mean stdev 95% conf.

    B1 ###### #DIV/0! #DIV/0!

    B2 ###### #DIV/0! #DIV/0!

    B3 ###### #DIV/0! #DIV/0!

    B4 ###### #DIV/0! #DIV/0!

    B5 ###### #DIV/0! #DIV/0!

    mean ###### ###### ###### ###### ######

    stdev ###### ###### ###### ###### ######

    95% confidence ###### ###### ###### ###### ######

    population statistics:

    mean = ###### stdev = ###### 95% confidence= #DIV/0!

    e to chance)

    ue to chance)

    B. A Creative Commons work by Ste

    i-Biology.net

    Population BDV unit ( smallest division)

    Links:

    Front Page

    http://i-biology.net/http://i-biology.net/
  • 7/31/2019 I-Biology Excel StatBook

    34/73

    hen Taylor

  • 7/31/2019 I-Biology Excel StatBook

    35/73

    CorrelationsThese examples outline some different types of correlation.

    See what happens to the correlation coefficient, the scatter plots and the best-fit lines when you change some raw data points.

    Variable A 3.0 4.0 5.0 5.0 5.0 6.0 6.0 8.0 8.0 9.0

    Variable B 2.7 2.8 2.8 2.9 2.9 2.9 3 3.1 3.4 3.6

    Variable A 3.0 4.0 5.0 5.0 5.0 6.0 6.0 8.0 8.0 9.0

    Variable B 5 2 7 9 6 7 8 3 2 10

    Variable A 3.0 4.0 5.0 5.0 5.0 6.0 6.0 8.0 8.0 9.0Variable B 9 8 6 7 4 6 6 5 4 3

    Correlation = 0.92

    Correlation = -0.84

    Correlation = 0.10

    0

    0.5

    1

    1.5

    2

    2.5

    3

    3.5

    4

    2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0VariableB(units,uncertainties)

    Variable A (units, uncertainties)

    0

    2

    4

    6

    8

    10

    12

    2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0VariableB(units,unce

    rtainties)

    Variable A (units, uncertainties)

    4

    6

    8

    10

    units,uncertainties)

    correlation = 0.92

    correlation = 0.10 (no correlation)

    correlation = -0.84

  • 7/31/2019 I-Biology Excel StatBook

    36/73

    Variable A 3.0 4.0 5.0 5.0 5.0 6.0 6.0 8.0 8.0 9.0

    Variable B 9 8 7 7 7 6 6 4 4 3Correlation = -1.00

    0

    2

    2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0VariableB

    Variable A (units, uncertainties)

    0

    2

    4

    6

    8

    10

    2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0VariableB

    (units,uncertatinies)

    Variable A (units, uncertainties)

    correlation = -1.00

  • 7/31/2019 I-Biology Excel StatBook

    37/73

    Try it here:

    Raw data points: 1 2 3 4 5 6 7 8 9 10 mean sd

    Variable A (units, ) #DIV/0! #DIV/0!

    Variable B (units, ) #DIV/0! #DIV/0!Remember, variable A and B must align! Mean and s.d. are just descriptive here.

    Insert columns before the mean for extra data points.

    Links:

    More examples down here Front Page

    i-Biology.net

    A Creative Commons work by Stephen Taylor

    0

    0.2

    0.4

    0.6

    0.8

    1

    1.2

    0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8 4

    VariableB(units,)

    Variable (units, )

    A scatter plot to show the relationship between Variable A and Variable B

    (Correlation = )

    Remember: Correlation does not imply

    http://i-biology.net/http://i-biology.net/
  • 7/31/2019 I-Biology Excel StatBook

    38/73

  • 7/31/2019 I-Biology Excel StatBook

    39/73

  • 7/31/2019 I-Biology Excel StatBook

    40/73

    Before and AfterA 5 x 5 results table to produce a single scatter or line

    IV Value ( (unit)) repeat start end difference % difference ( x%)

    1 0 #DIV/0!

    2 0 #DIV/0!3 0 #DIV/0!

    4 0 #DIV/0!

    5 0 #DIV/0!

    1 0 #DIV/0!

    2 0 #DIV/0!

    3 0 #DIV/0!

    4 0 #DIV/0!

    5 0 #DIV/0!

    1 0 #DIV/0!

    2 0 #DIV/0!

    3 0 #DIV/0!

    4 0 #DIV/0!

    5 0 #DIV/0!

    1 0 #DIV/0!

    2 0 #DIV/0!

    3 0 #DIV/0!

    4 0 #DIV/0!

    5 0 #DIV/0!

    1 0 #DIV/0!

    2 0 #DIV/0!

    3 0 #DIV/0!

    4 0 #DIV/0!

    5 0 #DIV/0!

    recorded value ( (unit))

    1

    2

    3

    4

    5

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1.0

    n%changeofdependentv

    ariable

    (unitsanduncertainties)

    Investigating the effect of changing independent variabl

    dependent variable of _____. Error bars represent

  • 7/31/2019 I-Biology Excel StatBook

    41/73

    0.0

    0.1

    0 1 2 3

    Mea

    Independent variable (units and unce

  • 7/31/2019 I-Biology Excel StatBook

    42/73

    mean ( x%) stdev 95% confidence Calculating % differences allows for comparisons b

    where starting values may not be consistent.

    For example, an increase of mass of 0.1g on a start

    1g is much greater than the same increase on a sta

    Calculating % difference:

    end - start

    start

    Graph

    Links:

    Front Page

    i-Biology.netA Creative Commons w

    Add your own trend line.

    Do not use the Excel lines.

    Best fit and get between the error bars where poss

    #DIV/0!

    #DIV/0!

    #DIV/0!

    #DIV/0!

    #DIV/0!

    #DIV/0!

    #DIV/0!

    #DIV/0!#DIV/0!

    #DIV/0!

    #DIV/0!

    #DIV/0!

    #DIV/0!

    #DIV/0!

    % difference = x 100

    #DIV/0!

    on the % change in

    5% confidence.

    http://i-biology.net/http://i-biology.net/
  • 7/31/2019 I-Biology Excel StatBook

    43/73

    4 5 6

    rtainties)

  • 7/31/2019 I-Biology Excel StatBook

    44/73

    etween sets of data

    ing mass of

    rting mass of 5g.

    rk by Stephen Taylor

    ible.

  • 7/31/2019 I-Biology Excel StatBook

    45/73

    Continuous variable: 5 increments, 5 repeats, changes over tiA 5 x 5 results table for time trials over 5 increments of the IV (raw data)

    IV Value ( (unit)) Time ( (unit)) 1 2 3 4 5 Mean STDEV

    1 #DIV/0! #DIV/0!

    2 #DIV/0! #DIV/0!

    3 #DIV/0! #DIV/0!

    4 #DIV/0! #DIV/0!

    5 #DIV/0! #DIV/0!

    1 #DIV/0! #DIV/0!

    2 #DIV/0! #DIV/0!

    3 #DIV/0! #DIV/0!

    4 #DIV/0! #DIV/0!

    5 #DIV/0! #DIV/0!

    1 #DIV/0! #DIV/0!

    2 #DIV/0! #DIV/0!3 #DIV/0! #DIV/0!

    4 #DIV/0! #DIV/0!

    5 #DIV/0! #DIV/0!

    1 #DIV/0! #DIV/0!

    2 #DIV/0! #DIV/0!

    3 #DIV/0! #DIV/0!

    4 #DIV/0! #DIV/0!

    5 #DIV/0! #DIV/0!

    1 #DIV/0! #DIV/0!

    2 #DIV/0! #DIV/0!

    3 #DIV/0! #DIV/0!

    4 #DIV/0! #DIV/0!

    5 #DIV/0! #DIV/0!

    Repeat Processe

    4

    5

    3

    1

    2

    0.5

    0.6

    0.7

    0.8

    0.9

    1.0

    endentvariable

    uncertainties)

    Investigating the effect of (IV) on (DV).

    (Error bars represent 95% confidence.)

  • 7/31/2019 I-Biology Excel StatBook

    46/73

    IV Value ( (unit)) Mean % change sd 95% CI Use axis formatting tools to sort th

    1 #DIV/0! #DIV/0! #DIV/0! to fit the data and increments appr

    2 #DIV/0! #DIV/0! #DIV/0!

    3 #DIV/0! #DIV/0! #DIV/0!

    4 #DIV/0! #DIV/0! #DIV/0!

    5 #DIV/0! #DIV/0! #DIV/0!

    0.0

    0.1

    0.2

    0.3

    0.4

    0 1 2 3 4 5

    Meanofde

    (units

    Independent Variable (units uncertainties)

  • 7/31/2019 I-Biology Excel StatBook

    47/73

    e

    This is the standard "5 x 5" investigation that can generate "sufficient, relevant data"

    95% confidence As so much raw data is generated, processed data should be separated.

    #DIV/0!

    #DIV/0!

    #DIV/0!

    #DIV/0!

    #DIV/0!

    #DIV/0!

    #DIV/0!

    #DIV/0!

    #DIV/0!

    #DIV/0!

    #DIV/0!

    #DIV/0!#DIV/0!

    #DIV/0!

    #DIV/0!

    #DIV/0!

    #DIV/0!

    #DIV/0!

    #DIV/0!

    #DIV/0!

    #DIV/0!

    #DIV/0! Links:

    #DIV/0! Front Pa

    #DIV/0! i-Biology.

    #DIV/0! Do more! A Creative

    With such a rich data-set, we can 'lift out' values to see more trends.

    Example: see the 'before-after' results for each increment of the dependent variable.

    IV Value ( (unit)) Time ( (unit)) 1 2 3 41 0.0 0.0 0.0 0.0

    5 0.0 0.0 0.0 0.0

    Difference 0.0 0.0 0.0 0.0

    % Change #DIV/0! #DIV/0! #DIV/0! #DIV/0!

    Mean % change #DIV/0! sd = #DIV/0! 95% CI

    1 0.0 0.0 0.0 0.0

    5 0.0 0.0 0.0 0.0

    Difference 0.0 0.0 0.0 0.0

    Data

    Link to a completed example

    Repeat

    1

    2

    0.0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1.0

    0 1 2 3 4

    Meano

    fdependentvariable

    (unitsu

    ncertainties)

    Time (units uncertainties)

    Investigating the effect of (IV) on (DV) over ti(Error bars represent 95% confidence.)

    1 2 3 4 5

    http://i-biology.net/http://i-biology.net/
  • 7/31/2019 I-Biology Excel StatBook

    48/73

    % Change #DIV/0! #DIV/0! #DIV/0! #DIV/0!

    Mean % change #DIV/0! sd = #DIV/0! 95% CI

    1 0.0 0.0 0.0 0.0

    5 0.0 0.0 0.0 0.0

    Difference 0.0 0.0 0.0 0.0

    % Change #DIV/0! #DIV/0! #DIV/0! #DIV/0!

    Mean % change #DIV/0! sd = #DIV/0! 95% CI1 0.0 0.0 0.0 0.0

    5 0.0 0.0 0.0 0.0

    Difference 0.0 0.0 0.0 0.0

    % Change #DIV/0! #DIV/0! #DIV/0! #DIV/0!

    m out Mean % change #DIV/0! sd = #DIV/0! 95% CI

    opriately. 1 0.0 0.0 0.0 0.0

    5 0.0 0.0 0.0 0.0

    Difference 0.0 0.0 0.0 0.0

    % Change #DIV/0! #DIV/0! #DIV/0! #DIV/0!

    Mean % change #DIV/0! sd = #DIV/0! 95% CI

    4

    5

    3

    6

  • 7/31/2019 I-Biology Excel StatBook

    49/73

    e

    net

    Commons work by Stephen Taylor

    50.0

    0.0

    0.0

    #DIV/0!

    #DIV/0!

    0.0

    0.0

    0.0

    5 6

    me.

  • 7/31/2019 I-Biology Excel StatBook

    50/73

    #DIV/0!

    #DIV/0!

    0.0

    0.0

    0.0

    #DIV/0!

    #DIV/0!0.0

    0.0

    0.0

    #DIV/0!

    #DIV/0!

    0.0

    0.0

    0.0

    #DIV/0!

    #DIV/0!

  • 7/31/2019 I-Biology Excel StatBook

    51/73

    Continuous variable: 5 increments, 5 repeats, changes overA 5 x 5 results table for time trials over 5 increments of the IV (raw data)

    CO2 production ( 0.5ml)

    Temp ( 0.5oC) Time ( 1 sec) 1 2 3 4 5 Mean STDEV

    0 0.0 0.0 0.0 0.0 0.0 0.0 0.00

    60 .1. 0.1 0.1 0.2 0.0 0.1 0.08

    120 0.1 0.2 0.1 0.2 0.0 0.1 0.08

    180 0.1 0.2 0.1 0.2 0.1 0.1 0.05

    240 0.1 0.3 0.1 0.3 0.1 0.2 0.11

    0 0.0 0.0 0.0 0.0 0.0 0.0 0.00

    60 0.3 0.4 0.3 0.2 0.3 0.3 0.07

    120 0.4 0.4 0.4 0.2 0.4 0.4 0.09

    180 0.6 0.5 0.4 0.3 0.5 0.5 0.11

    240 0.7 0.6 0.6 0.3 0.6 0.6 0.15

    0 0.0 0.0 0.0 0.0 0.0 0.0 0.00

    60 0.5 0.6 0.5 0.3 0.5 0.5 0.11120 0.8 0.9 0.8 0.6 0.5 0.7 0.16

    180 1.0 1.0 1.1 0.8 0.8 0.9 0.13

    240 1.2 1.2 1.5 1.3 1.3 1.3 0.12

    0 0.0 0.0 0.0 0.0 0.0 0.0 0.00

    60 0.8 0.9 0.8 0.8 0.8 0.8 0.04

    120 1.2 1.6 0.9 0.9 1.4 1.2 0.31

    180 1.5 1.9 1.5 1.7 1.9 1.7 0.20

    240 1.8 2.0 2.3 1.8 2.5 2.1 0.31

    0 0.0 0.0 0.0 0.0 0.0 0.0 0.00

    60 0.1 0.3 0.2 0.1 0.1 0.2 0.09

    120 0.1 0.3 0.3 0.2 0.2 0.2 0.08

    180 0.2 0.3 0.4 0.2 0.2 0.3 0.09

    240 0.3 0.3 0.5 0.3 0.2 0.3 0.11

    30oC

    40oC

    50oC

    Repeat Processe

    10oC

    20oC

  • 7/31/2019 I-Biology Excel StatBook

    52/73

    time This is the standard "5 x 5" investigation that can generate "sufficient, rele

    95% confidence

    #NUM!

    0.07

    0.07

    0.05

    0.10

    #NUM!

    0.06

    0.08

    0.10

    0.13

    #NUM!

    0.100.14

    0.12

    0.11

    #NUM!

    0.04

    0.27

    0.18

    0.27

    #NUM!

    0.08 You need to edit axes and labels. Links:

    0.07 Best fit should be done yourself. Front Page

    0.08 In this case, I chose polynomials which fit. i-Biology.net

    0.10 A Creative Common

    Data

    0.0

    0.5

    1.0

    1.5

    2.0

    2.5

    0 60 120 180

    Mean

    ofdependentvariable

    (unitsu

    ncertainties)

    Independent Variable (units uncertainties)

    Investigating the effect of temperature on rate of photo

    ofElodea, by measuring release of CO2 over tim

    (Error bars represent 95% confidence.)

    10oC 20oC 30oC 40oC 50oC

    http://i-biology.net/http://i-biology.net/
  • 7/31/2019 I-Biology Excel StatBook

    53/73

    ant data"

    work by Stephen Taylor

    240

    ynthesis

    .

  • 7/31/2019 I-Biology Excel StatBook

    54/73

    How does glucose concentration affect population growth ofSacch

    Raw data: Cell counts from the hemacytometer

    cells squares cells squares cells

    0 10 16 9 16 9

    24

    48

    72

    96

    0 16 16

    24

    48

    7296

    0 16 16

    24

    48

    72

    96

    0 16 16

    24

    48

    7296

    0 16 16

    24

    48

    72

    96

    Processed Data: Population estimates

    1 2 3 4 5

    0 400 360 360 400 480

    24 #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0!

    48 #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0!

    72 #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0!

    96 #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0!

    Glucose concentration

    ( 1gl-1

    )

    Population ( x 103

    cells cm-3

    )Time (

    4h)

    15

    20

    Time (

    4h)

    Glucose concentration

    ( 1gl-1)

    Population 1 Population 2 Popul

    0

    5

    Raw cel

    0

    10

  • 7/31/2019 I-Biology Excel StatBook

    55/73

    0 0 0 0 0 0

    24 #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0!

    48 #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0!

    72 #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0!

    96 #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0!

    0 0 0 0 0 0

    24 #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0!

    48 #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0!

    72 #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0!

    96 #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0!

    0 0 0 0 0 0

    24 #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0!

    48 #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0!

    72 #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0!

    96 #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0!

    0 0 0 0 0 0

    24 #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0!

    48 #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0!

    72 #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0!

    96 #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0!

    5

    10

    15

    20

  • 7/31/2019 I-Biology Excel StatBook

    56/73

    aromyces cerevisiae ?

    squares cells squares cells squares The red values

    16 10 16 12 16 1 A dilution fact

    1 If cells become

    1

    1 Associated Qu

    1 Samples for 15

    16 16 16 1 The dilution fa

    1

    1

    11

    16 16 16 1

    1

    1

    1

    1

    16 16 16 1

    1 Links:

    1 Front P

    1 i-Biolo2 A Creati

    16 16 16 1

    1

    1

    1

    2

    Processed Data: Graphing

    Further ProcessingTurn this blank chart into a scatter plot ofme

    Mean STDEV 95% CI Plot 95% CI as the error bars and for each seri

    400 49.0 42.9 Include: a descriptive title, units an uncertaint

    #DIV/0! #DIV/0! #DIV/0!

    #DIV/0! #DIV/0! #DIV/0!

    #DIV/0! #DIV/0! #DIV/0!

    #DIV/0! #DIV/0! #DIV/0!

    http://

    lation 3 Population 4 Population 5

    Link to data:

    Dilution

    Factor

    "1 in ___"

    l counts (1)

    http://i-biology.net/http://wp.me/P7lr1-kNhttp://i-biology.net/
  • 7/31/2019 I-Biology Excel StatBook

    57/73

    16 0.0 95% CI

    #DIV/0! #DIV/0! #DIV/0!

    #DIV/0! #DIV/0! #DIV/0!

    #DIV/0! #DIV/0! #DIV/0!

    #DIV/0! #DIV/0! #DIV/0!

    16 0.0 95% CI

    #DIV/0! #DIV/0! #DIV/0!

    #DIV/0! #DIV/0! #DIV/0!

    #DIV/0! #DIV/0! #DIV/0!

    #DIV/0! #DIV/0! #DIV/0!

    16 0.0 95% CI

    #DIV/0! #DIV/0! #DIV/0!

    #DIV/0! #DIV/0! #DIV/0!

    #DIV/0! #DIV/0! #DIV/0!

    #DIV/0! #DIV/0! #DIV/0!

    16 0.0 95% CI

    #DIV/0! #DIV/0! #DIV/0!

    #DIV/0! #DIV/0! #DIV/0!

    #DIV/0! #DIV/0! #DIV/0!

    #DIV/0! #DIV/0! #DIV/0!

  • 7/31/2019 I-Biology Excel StatBook

    58/73

    have been entered from the starting populations.

    r of "none" is 1 in 1

    too clustered to count, we need to dilute and factor.

    alitative Data (observations)

    gl-1

    and 20gl-1

    had to be diluted on day 5 as they were too clustered to count.

    tor was 1 in 2 (5ml sample added to 5ml water, then re-sampled).

    age

    y.net ve Commons work by Stephen Taylor

    an population over time, with 5 curves (concentrations). Model:

    es, select an appropriate best-fit curve.

    ies on the axes, clear points and lines and make good use of the space.

    p.me/P7lr1-kN

    5 x 5 example

  • 7/31/2019 I-Biology Excel StatBook

    59/73

  • 7/31/2019 I-Biology Excel StatBook

    60/73

    Chi-Squared Test Calculator: Monohybrid Cr

    Null hypothesis: there is no significant difference between observed and expected

    Description Observed (O) Expected (E)

    Phenotype 1 #DIV/0! #DIV/0!

    Phenotype 2* #DIV/0! #DIV/0!

    Sum: 0 #DIV/0! 0 #DIV/0!

    *clear cells if not needed#Write as a an integer, e.g. ( 3, 1) If

    2< critical value, accept the

    If2

    > critical value, reject the n

    Conclusion: I do/do do not accept the null hypothesis. My results do/ d

    Sample size (N) =

    predicted

    ratio#

    ratio as a

    decimal

    Collected data

    These totals must equal N

  • 7/31/2019 I-Biology Excel StatBook

    61/73

    ss (not multiple alleles)

    esults .

    (O - E) (O - E)2 D.F. $

    0.1

    (90%)

    0.05

    (95%)

    0.01

    (99%)

    #DIV/0! #DIV/0! #DIV/0! 1 2.70554 3.84146 6.6349

    #DIV/0! #DIV/0! #DIV/0! 2 4.60517 5.99146 9.21034

    #DIV/0! $Degrees of freedom:number of phenotypes minus 1

    null hypothesis

    ull hypothesis

    not fit the predicted ratio.

    Links:

    A Creative Commons work by Stephen Taylor

    p(certainty)

    Total (2

    ) =

    Front Page

    i-Biology.net

    Calculating 2

    (O - E)2

    E

    Critical Values table

    http://i-biology.net/http://i-biology.net/
  • 7/31/2019 I-Biology Excel StatBook

    62/73

    Chi-Squared Test Calculator: Dihybrid Crosse

    Null hypothesis: there is no significant difference between observed and expected

    Description Observed (O) Expected (E)

    Phenotype 1 #DIV/0! #DIV/0!

    Phenotype 2 #DIV/0! #DIV/0!

    Phenotype 3* #DIV/0! #DIV/0!

    Phenotype 4* #DIV/0! #DIV/0!

    Sum: 0 #DIV/0! 0 #DIV/0!

    *clear cells if not needed

    #Write as a an integer, e.g. (9, 3, 3, 1) If

    2< critical value, accept the

    If2

    > critical value, reject the n

    Conclusion: I do/do do not accept the null hypothesis. My results do/ d

    Sample size (N) =

    predicted

    ratio#

    ratio as a

    decimal

    Collected data

    These totals must equal N

  • 7/31/2019 I-Biology Excel StatBook

    63/73

    s & Linked Genes

    esults .

    (O - E) (O - E)2 D.F. $

    0.1

    (90%)

    0.05

    (95%)

    0.01

    (99%)

    #DIV/0! #DIV/0! #DIV/0! 1 2.70554 3.84146 6.6349

    #DIV/0! #DIV/0! #DIV/0! 2 4.60517 5.99146 9.21034

    #DIV/0! #DIV/0! #DIV/0! 3 6.25139 7.81473 11.34487

    #DIV/0! #DIV/0! #DIV/0! 4 7.77944 9.48773 13.2767

    #DIV/0! $Degrees of freedom:

    number of phenotypes minus 1

    null hypothesis

    ull hypothesis

    not fit the predicted ratio.

    Links:

    A Creative Commons work by Stephen Taylor

    p(certainty)

    Total (

    2

    ) =

    Front Pagei-Biology.net

    Calculating 2

    (O - E)2

    E

    Critical Values table

    http://i-biology.net/http://i-biology.net/
  • 7/31/2019 I-Biology Excel StatBook

    64/73

    Chi-Squared Test Calculator: Codominant (M

    Null hypothesis: there is no significant difference between observed and expected

    Description Observed (O) Expected (E)

    Phenotype 1 #DIV/0! #DIV/0!

    Phenotype 2 #DIV/0! #DIV/0!

    Phenotype 3* #DIV/0! #DIV/0!

    Phenotype 4* #DIV/0! #DIV/0!

    Sum: 0 #DIV/0! 0 #DIV/0!

    *clear cells if not needed

    #Write as a an integer, e.g. (9, 3, 3, 1) If

    2< critical value, accept the

    If2

    > critical value, reject the n

    Conclusion: I do/do do not accept the null hypothesis. My results do/ d

    Sample size (N) =

    predicted

    ratio#

    ratio as a

    decimal

    Collected data

    These totals must equal N

  • 7/31/2019 I-Biology Excel StatBook

    65/73

    onohybrid)

    esults .

    (O - E) (O - E)2 D.F. $

    0.1

    (90%)

    0.05

    (95%)

    0.01

    (99%)

    #DIV/0! #DIV/0! #DIV/0! 1 2.70554 3.84146 6.6349

    #DIV/0! #DIV/0! #DIV/0! 2 4.60517 5.99146 9.21034

    #DIV/0! #DIV/0! #DIV/0! 3 6.25139 7.81473 11.34487

    #DIV/0! #DIV/0! #DIV/0! 4 7.77944 9.48773 13.2767

    #DIV/0! $Degrees of freedom:

    number of phenotypes minus 1

    null hypothesis

    ull hypothesis

    not fit the predicted ratio.

    Links:

    Front Pagei-Biology.net

    A Creative Commons work by Stephen Taylor

    p(certainty)

    Total (

    2

    ) =

    Calculating 2

    (O - E)2

    E

    Critical Values table

    http://i-biology.net/http://i-biology.net/
  • 7/31/2019 I-Biology Excel StatBook

    66/73

    Chi-Squared Test Calculator: Polygenic or TriNull hypothesis: there is no significant difference between observed and expected

    Description Observed (O) Expected (E)

    Phenotype 1 #DIV/0! #DIV/0!

    Phenotype 2 #DIV/0! #DIV/0!

    Phenotype 3 #DIV/0! #DIV/0!

    Phenotype 4 #DIV/0! #DIV/0!

    Phenotype 5 #DIV/0! #DIV/0!

    Phenotype 6 #DIV/0! #DIV/0!

    Sum: 0 #DIV/0! 0 #DIV/0!

    *clear cells if not needed

    #Write as a an integer, e.g. (9, 3, 3, 1) If

    2< critical value, accept the

    If2

    > critical value, reject the n

    Conclusion: I do/do do not accept the null hypothesis. My results do/ d

    Sample size (N) =

    predicted

    ratio#

    ratio as a

    decimal

    Collected data

    These totals must equal N

  • 7/31/2019 I-Biology Excel StatBook

    67/73

    hybrid Crossesesults .

    (O - E) (O - E)2 D.F. $

    0.1

    (90%)

    0.05

    (95%)

    0.01

    (99%)

    #DIV/0! #DIV/0! #DIV/0! 1 2.70554 3.84146 6.6349

    #DIV/0! #DIV/0! #DIV/0! 2 4.60517 5.99146 9.21034

    #DIV/0! #DIV/0! #DIV/0! 3 6.25139 7.81473 11.34487

    #DIV/0! #DIV/0! #DIV/0! 4 7.77944 9.48773 13.2767

    #DIV/0! #DIV/0! #DIV/0! 5 9.23636 11.0705 15.08627

    #DIV/0! #DIV/0! #DIV/0! 6 10.6446 12.59159 16.81189

    #DIV/0! $Degrees of freedom:number of phenotypes minus 1

    null hypothesis

    ull hypothesis

    not fit the predicted ratio.

    Links:

    Front Pagei-Biology.net

    A Creative Commons work by Stephen Taylor

    p(certainty)

    Total (2

    ) =

    Calculating 2

    (O - E)2

    E

    Critical Values table

    http://i-biology.net/http://i-biology.net/
  • 7/31/2019 I-Biology Excel StatBook

    68/73

    Percentage Difference vs Percentage Change When is the d

    A = 0.50 If A is simply bein

    B = 0.75 If A has become

    % Difference: Simple Comparisons % Change:

    difference

    A or B

    No negative values - the magnitude of the difference only is considered. Negative values a

    Therefore two answers are acceptable.

    0.75 - 0.50

    0.50

    OR

    0.75 - 0.500.75

    Change =riginal value:

    Final value:% Change Calculator

    1

    2

    Consider these two data points.

    %

    %

    Click on the white cells to see the formula used

    x 100 = 33

    % Difference = x 100 % Change =

    50x 100 = % Change =

    % Change =

  • 7/31/2019 I-Biology Excel StatBook

    69/73

    istinction between these important?

    compared to B, we use one method.

    (changed over time), we use another.

    rder is important

    (Final - original)

    Original Value

    re possible. Magnitude and 'direction' of the change are shown.

    0.75 - 0.50

    0.5

    What if A = 0.75 ?and B = 0.50 ?

    0.50 - 0.75

    0.5

    Links:

    You need to adjust the d.p. to the Front Page

    same degree of precision as the measurements. i-Biology.net

    A Creative Commons work by

    100.00 %

    x 100

    50 % (increase)

    x100 = -33.3 % (decrease)

    x100 =

    http://i-biology.net/http://i-biology.net/
  • 7/31/2019 I-Biology Excel StatBook

    70/73

    Stephen Taylor

  • 7/31/2019 I-Biology Excel StatBook

    71/73

    Calculating Magnifications

    You should be able to:

    1. Calculate the linear magnification of an image when given a s

    ruler length 2.5cm 25,000mscale bar 1m 1m

    get to the same units

    2. Calculate the actual size of an object when given the linear m"An image is magnified 5,000x. Calculate the actual size of an organelle meas

    ruler length 2mm

    magnification 5000

    horrible notation

    3. Calculate the actual size of an object when given a scale bar."A scale bar of 10m is 50mm on an image. Calculate the actual size of an or

    scale bar length 50mm

    object length 23mmx scaleActual size = = x 10m

    =Magnification=

    Actual size = = =.0004mm=

    = =

  • 7/31/2019 I-Biology Excel StatBook

    72/73

    ale bar.

    gnification.ured as 2mm on the image."

    4 x 10-4

    mm

    0.4m nm m mm

    400nm nm 1 1 x 10-3

    1 x 10-6

    nicer notations m 1 x 103 1 1 x 10-3

    mm 1 x 106

    1 x 103 1

    m 1 x 109

    1 x 106

    1 x 103

    km 1 x 1012

    1 x 109

    1 x 106

    anelle measured as 23mm on the image."

    Pick the most appropriate unit and notation to present

    Proper scientific notation should have one integer bef

    Links:

    Front Pagei-Biology.net

    A Creative Co

    = 21.7m

    is worth _____

    These relationships are fa

    Oneofthese

    5,000 x magnification 1

    http://i-biology.net/http://i-biology.net/
  • 7/31/2019 I-Biology Excel StatBook

    73/73

    m km cm

    1 x 10-9

    1 x 10-12

    1 x 10-7

    1 x 10-6 1 x 10-9 1 x 10 -4

    1 x 10-3

    1 x 10-6

    1 x 10-1

    1 1 x 10-3

    1 x 102

    1 x 103 1 1 x 10

    5

    your data.

    re the decimal place.

    mons work by Stephen Taylor

    _ of one of these:

    tors of 1000