i 02234020 i form tp 2016282 may/june 2016 · - 5 - (ii) hence, show that an equation with roots...

30
I FORM TP 2016282 ~ ® TEST CODE 02234020 I MAY/JUNE 2016 CARIBBEAN EXAMINATIONS COUNCIL CARIBBEAN ADVANCED PROFICIENCY EXAMINATION@ PURE MATHEMATICS UNIT 2 - Paper 02 ANALYSIS, MATRICES AND COMPLEX NUMBERS 2 hours 30 minutes READ THE FOLLOWING INSTRUCTIONS CAREFULLY. 1. This examination paper consists of THREE sections. 2. Each section consists of TWO questions. 3. Answer ALL questions from the THREE sections. 4. Write your answers in the spaces provided in this booklet. 5. Do NOT write in the margins. 6. Unless otherwise stated in the question, any numerical answer that is not exact MUST be written correct to three significant figures. 7. If you need to rewrite any answer and there is not enough space to do so on the original page, you must use the extra lined page( s) provided at the back of this booklet. Remember to draw a line through your original answer. 8. If you use the extra page(s) you MUST write the question number clearly in the box provided at the top of the extra page(s) and, where relevant, include the question part beside the answer. Examination Materials Permitted Mathematical formulae and tables (provided) - Revised 2012 Mathematical instruments Silent, non-programmable, electronic calculator DO NOT TURN THIS PAGE UNTIL YOU ARE TOLD TO DO SO. Copyright © 2014 Caribbean Examinations Council All rights reserved. 111111111111111111111111111111111111111111111111111111111111 0223402003 L02234020/CAPE 2016

Upload: others

Post on 14-Aug-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: I 02234020 I FORM TP 2016282 MAY/JUNE 2016 · - 5 - (ii) Hence, show that an equation with roots a~2 and ~~ 2 is given by lOx2 +2x + 1 = O. [6 marks] GO ON TO THE NEXT PAGE 02234020/CAPE

IFORM TP 2016282 ~ ®

TEST CODE 02234020 IMAY/JUNE 2016

CARIBBEAN EXAMINATIONS COUNCIL

CARIBBEAN ADVANCED PROFICIENCY EXAMINATION@

PURE MATHEMATICS

UNIT 2 - Paper 02

ANALYSIS, MATRICES AND COMPLEX NUMBERS

2 hours 30 minutes

READ THE FOLLOWING INSTRUCTIONS CAREFULLY.

1. This examination paper consists of THREE sections.

2. Each section consists of TWO questions.

3. Answer ALL questions from the THREE sections.

4. Write your answers in the spaces provided in this booklet.

5. Do NOT write in the margins.

6. Unless otherwise stated in the question, any numerical answer that is notexact MUST be written correct to three significant figures.

7. If you need to rewrite any answer and there is not enough space to do soon the original page, you must use the extra lined page( s) provided at theback of this booklet. Remember to draw a line through your originalanswer.

8. If you use the extra page(s) you MUST write the question numberclearly in the box provided at the top of the extra page(s) and, whererelevant, include the question part beside the answer.

Examination Materials Permitted

Mathematical formulae and tables (provided) - Revised 2012Mathematical instrumentsSilent, non-programmable, electronic calculator

DO NOT TURN THIS PAGE UNTIL YOU ARE TOLD TO DO SO.

Copyright © 2014 Caribbean Examinations CouncilAll rights reserved.

1111111111111111111111111111111111111111111111111111111111110223402003L02234020/CAPE 2016

Page 2: I 02234020 I FORM TP 2016282 MAY/JUNE 2016 · - 5 - (ii) Hence, show that an equation with roots a~2 and ~~ 2 is given by lOx2 +2x + 1 = O. [6 marks] GO ON TO THE NEXT PAGE 02234020/CAPE

-4 -

SECTION A

Module 1

Answer BOTH questions.

1. (a) A quadratic equation is given by ax' + bx + c = 0, where a, b, C E R. The complex rootsof the equation are a = 1- 3i and 13.

(i) Calculate (a + 13)and (al3).

[3 marks]

GO ON TO THE NEXT PAGE02234020/CAPE 2016

L 111111111111111111111I111111111111111111111111111I11111111110223402004

Page 3: I 02234020 I FORM TP 2016282 MAY/JUNE 2016 · - 5 - (ii) Hence, show that an equation with roots a~2 and ~~ 2 is given by lOx2 +2x + 1 = O. [6 marks] GO ON TO THE NEXT PAGE 02234020/CAPE

----- ------.

- 5 -

(ii) Hence, show that an equation with roots a ~2 and ~ ~ 2 is given by

lOx2 + 2x + 1 = O.

[6 marks]

GO ON TO THE NEXT PAGE02234020/CAPE 2016

L 111111111111111111111I111111111111111111111111111111111111110223402005

Page 4: I 02234020 I FORM TP 2016282 MAY/JUNE 2016 · - 5 - (ii) Hence, show that an equation with roots a~2 and ~~ 2 is given by lOx2 +2x + 1 = O. [6 marks] GO ON TO THE NEXT PAGE 02234020/CAPE

L 111111111111111111111I111111111111111111111111111111111111110223402006

r-- -6-

(b) Two complex numbers are given as u = 4 + 2i and v = 1 + 2 {2i .

(i) Complete the Argand diagram below to illustrate u.

6

5

4

3

2

1

-2 -1 1 2 3 4 5 6 7 8-1

-2

[1 mark]

(ii) On the same Argand plane, sketch the circle with equation [z - ul = 3.[2 marks]

GO ON TO THE NEXT PAGE02234020/CAPE 2016

Page 5: I 02234020 I FORM TP 2016282 MAY/JUNE 2016 · - 5 - (ii) Hence, show that an equation with roots a~2 and ~~ 2 is given by lOx2 +2x + 1 = O. [6 marks] GO ON TO THE NEXT PAGE 02234020/CAPE

......--':, .. ::,-,-:,',"

,-:::::, ::::::-":::,'::, ::,',-:,-:

·."."0-.-:.' .. ',','::_-~'

:::~:.:::~:::::::St: ::~.::::.~ r,"- -- ,Iii.~~~ :~~:~:

111···&··:··-1:&··:::·"'- ,--,

, " '-,- -,

:::e::::e::::.~ ...~ ...--, ,- --~- - - -~~ " :.:-,:e.....:..:e::.- -- - -' ..- " ..-,~.. : .:~.. ::.:--- - - :, - --:--:-:-:':.:. :-:':.:-:-:-:

-7-

5

(iii) Calculate the modulus and principal argument of z = [ ~ ] .

[6 marks]

GO ON TO THE NEXT PAGE02234020/CAPE 2016

L 111111111111111111111I111111111111111111111111111111111111110223402007

Page 6: I 02234020 I FORM TP 2016282 MAY/JUNE 2016 · - 5 - (ii) Hence, show that an equation with roots a~2 and ~~ 2 is given by lOx2 +2x + 1 = O. [6 marks] GO ON TO THE NEXT PAGE 02234020/CAPE

r-- -8-

[7 marks]

(c) A function f is defined by the parametric equations

x = 4 cos t and y = 3 sin 2t for 0 :S t:S 1!.

Determine the x-coordinates of the two stationary values of f.

Total 25 marks

GO ON TO THE NEXT PAGE02234020/CAPE 2016

L 111111111111111111111I111111111111111111111111111111111111110223402008

Page 7: I 02234020 I FORM TP 2016282 MAY/JUNE 2016 · - 5 - (ii) Hence, show that an equation with roots a~2 and ~~ 2 is given by lOx2 +2x + 1 = O. [6 marks] GO ON TO THE NEXT PAGE 02234020/CAPE

------ ------------- -------

---------------~-----------~:------- -,

-::~::::-:---:::

:;:i~I~t---~--~---- --- ---r: ------L-_'_----~:----<""I---

Ii!II

2.

L

-9-

(a) A function w is defined as w (x, y) = In 1 ~~ ~~ I·

D. Ow

etermme - .ox

02234020/CAPE 2016

111111111111111111111I111111111111111111111111111111111111110223402009

[4 marks]

GO ON TO THE NEXT PAGE

Page 8: I 02234020 I FORM TP 2016282 MAY/JUNE 2016 · - 5 - (ii) Hence, show that an equation with roots a~2 and ~~ 2 is given by lOx2 +2x + 1 = O. [6 marks] GO ON TO THE NEXT PAGE 02234020/CAPE

I" -10-

L

(b) Determine f ell sin e dx.

02234020/CAPE 2016

111111111111111111111I111111111111111111111111111111111111110223402010

[6 marks]

GO ON TO THE NEXT PAGE

Page 9: I 02234020 I FORM TP 2016282 MAY/JUNE 2016 · - 5 - (ii) Hence, show that an equation with roots a~2 and ~~ 2 is given by lOx2 +2x + 1 = O. [6 marks] GO ON TO THE NEXT PAGE 02234020/CAPE

------ ----------- ------

----- -----------------

--_.--- ----------- ------

---------------------- ------

- 11 -

ec) Let fex) = X2 + 2x + 3 for 2 ~ x ~ 5.ex - 1) (x2 + 1)

(i) Use the trapezium rule with three equal intervals to estimate the area bounded byf and the lines y = 0, x = 2 and x = 5.

02234020/CAPE 2016

L 111111111111111111111I111111111111111111111111111111111111110223402011

[5 marks]

GO ON TO THE NEXT PAGE

Page 10: I 02234020 I FORM TP 2016282 MAY/JUNE 2016 · - 5 - (ii) Hence, show that an equation with roots a~2 and ~~ 2 is given by lOx2 +2x + 1 = O. [6 marks] GO ON TO THE NEXT PAGE 02234020/CAPE

- 12 -

(ii) Using partial fractions, show that f(x) = ~1 __ }x .x- x + 1

[6 marks]

GO ON TO THE NEXT PAGE02234020/CAPE 2016

L 111111111111111111111I11111111111111111111111111111111111111

0223402012.J

Page 11: I 02234020 I FORM TP 2016282 MAY/JUNE 2016 · - 5 - (ii) Hence, show that an equation with roots a~2 and ~~ 2 is given by lOx2 +2x + 1 = O. [6 marks] GO ON TO THE NEXT PAGE 02234020/CAPE

----:------- :::::---------:::: -:------:----- ---:::-- -:::::----

:::--::- :::::::-:::::: :::::::-

---::--:- -:_---::::~-~-=-~-~-~----~-:-:-:-:-:-:

:--::: -::--:::-

-:--::- :------:--:

::::::- -::::::------- -------

~-=-=-=-:-:-= ::-:-:-:-:-:-:

------- -------------- -------

::-:-:--:m:-:i~ll-}~:::::~:::

- l3 -

5

(iii) Hence, determine the value of f f(x) dx.2

[4 marks]

Total 25 marks

GO ON TO THE NEXT PAGE02234020/CAPE 2016

L 111111111111111111111I11111111111111111111111111111I111111110223402013

Page 12: I 02234020 I FORM TP 2016282 MAY/JUNE 2016 · - 5 - (ii) Hence, show that an equation with roots a~2 and ~~ 2 is given by lOx2 +2x + 1 = O. [6 marks] GO ON TO THE NEXT PAGE 02234020/CAPE

- 14 -

SECTIONB

Module 2

Answer BOTH questions.

3. (a) A sequence is defined by the recurrence relation U = U 1 + x(u )" where u1 = 1, u2 = Xn+ 1 n- n

and (u )' is the derivative of u .n n

For example, u = u = u1

+ x(u2

)' = 1 + x.3 2 + 1

Given that Us = 13x + 1 and that ulO = 34x + 1, find (u9)'.

[4 marks]

GO ON TO THE NEXT PAGE02234020/CAPE 2016

L 111111111111111111111I11111111111111111111111111111111111111

0223402014

Page 13: I 02234020 I FORM TP 2016282 MAY/JUNE 2016 · - 5 - (ii) Hence, show that an equation with roots a~2 and ~~ 2 is given by lOx2 +2x + 1 = O. [6 marks] GO ON TO THE NEXT PAGE 02234020/CAPE

------- --------

-----------

----------

---------------

------1-------.,--------------,---------------1_-_-_----------

=============J ~===~=-=::-~~~---------------j---------------

--------------'._---------------------------1_-_-_-_-_-_--_--------------j-------

- 15 -

(b)n

The nth partial sum of a series, S , is given by S = L r(r - 1).n n

r= 1

(i) n(n2 -1)Show thatS =n 3

[7 marks]

02234020/CAPE 2016GO ON TO THE NEXT PAGE

L 111111111111111111111I11111111111111111111111111111111111111

0223402015"--.J

Page 14: I 02234020 I FORM TP 2016282 MAY/JUNE 2016 · - 5 - (ii) Hence, show that an equation with roots a~2 and ~~ 2 is given by lOx2 +2x + 1 = O. [6 marks] GO ON TO THE NEXT PAGE 02234020/CAPE

- 16 -

20

(ii) Hence, or otherwise, evaluate L r(r - 1).10

[5 marks]

GO ON TO THE NEXT PAGE02234020/CAPE 2016

L 111111I1111111111111111111I11111 11111 11111 11111 1111111111111

0223402016

Page 15: I 02234020 I FORM TP 2016282 MAY/JUNE 2016 · - 5 - (ii) Hence, show that an equation with roots a~2 and ~~ 2 is given by lOx2 +2x + 1 = O. [6 marks] GO ON TO THE NEXT PAGE 02234020/CAPE

-------------- -----.---------

-_--_-_-_-_-_-c--------------

(c)

- 17 -

, =r np(i) Given that "P: = (n :'r)! show that (2r)! r is equal to the binomial coefficient

"C .r

02234020/CAPE 2016

L 111111I11111111111111I111111111111111111111111111111111111110223402017

[4 marks]

GO ON TO THE NEXT PAGE

Page 16: I 02234020 I FORM TP 2016282 MAY/JUNE 2016 · - 5 - (ii) Hence, show that an equation with roots a~2 and ~~ 2 is given by lOx2 +2x + 1 = O. [6 marks] GO ON TO THE NEXT PAGE 02234020/CAPE

- 18 -

(ii) Determine the coefficient of the term in x3 in the binomial expansion of(3x + 2)5.

[5 marks]

Total 25 marks

GO ON TO THE NEXT PAGE02234020/CAPE 2016

L 111111111111111111111I111111111111111111111111111111111111110223402018

-.J-

Page 17: I 02234020 I FORM TP 2016282 MAY/JUNE 2016 · - 5 - (ii) Hence, show that an equation with roots a~2 and ~~ 2 is given by lOx2 +2x + 1 = O. [6 marks] GO ON TO THE NEXT PAGE 02234020/CAPE

- 19 -

6,,---;:---4. (a) The function f is defined as f(x) = -\f4x2 + 4x + 1 for -1 < x < 1.

I

(i) Show that f(x) = (1 + 2X)3 .

[3 marks]

GO ON TO THE NEXT PAGE02234020/CAPE 2016

L 111111111111111111111I111111111111111111111111111111111111110223402019

.~

Page 18: I 02234020 I FORM TP 2016282 MAY/JUNE 2016 · - 5 - (ii) Hence, show that an equation with roots a~2 and ~~ 2 is given by lOx2 +2x + 1 = O. [6 marks] GO ON TO THE NEXT PAGE 02234020/CAPE

._------

- 20-

The series expansion of (1 + xt is given as

l+kx+ k(k-l)x2 + k(k-1)(k-2)x3 + k(k-1)(k-2)(k-3)x4 + ...2! 3! 4!

where k E Rand -1 < x <1.

(ii) Determine the series expansion of f up to and including the term in X4.

[5 marks](iii) Hence, approximate f(O.4) correct to 2 decimal places.

[3 marks]

GO ON TO THE NEXT PAGE02234020/CAPE 2016

L 11111111111111111111111111111111111111111111111111111111111I0223402020

Page 19: I 02234020 I FORM TP 2016282 MAY/JUNE 2016 · - 5 - (ii) Hence, show that an equation with roots a~2 and ~~ 2 is given by lOx2 +2x + 1 = O. [6 marks] GO ON TO THE NEXT PAGE 02234020/CAPE

------- ----------- -------c::-=:::: -_-_-_-_-_-_-_------ -------

I~-=-o:-:-:-:.:.:..-------- -------

- ------

~~:::::

::~~:~~:~~~:~:-.~ .....~:-

:~::~:~::~::~:~:Jt~J.:~:::

I~il~~~S;~~I;SI-.~- ....~---- -- - ---- ---- --- -- - ---- -- ---- - --

I§~~~~~~~EI=-5:···-5-·-=-=~-=--=-)~;;.~=-:-----------------::e:::::::C:::-i"'i<:- .i"'i<:.r~::::::~:::

I!;~I~:;:;:~;;t~;;;;;I~~~~~

r-- -21-

(b) The function hex) = x3 + x-I is defined on the interval [0, 1].

(i) Show that hex) = 0 has a root on the interval [0, 1].

[3 marks]

GO ON TO THE NEXT PAGE02234020/CAPE 2016

L 111111111111111111111I111111111111111111111111111111111111110223402021

Page 20: I 02234020 I FORM TP 2016282 MAY/JUNE 2016 · - 5 - (ii) Hence, show that an equation with roots a~2 and ~~ 2 is given by lOx2 +2x + 1 = O. [6 marks] GO ON TO THE NEXT PAGE 02234020/CAPE

02234020/CAPE 2016

L

(ii)

- 22-

Use the iteration x I = 1 with initial estimate XI = 0.7 to estimate the rootn+ x2+1

n

ofh correct to 2 decimal places.

GO ON TO THE NEXT PAGE

111111111111111111111I11111111111111111111111111111111111111

0223402022

-----~.---.---"------------------------~

Page 21: I 02234020 I FORM TP 2016282 MAY/JUNE 2016 · - 5 - (ii) Hence, show that an equation with roots a~2 and ~~ 2 is given by lOx2 +2x + 1 = O. [6 marks] GO ON TO THE NEXT PAGE 02234020/CAPE

- 24-

(c) Use two iterations of the Newton-Raphson method with initial estimate XI = 1 toapproximate the root of the equation g(x) = e4x-3 - 4 in the interval [1,2]. Give youranswer correct to 3 decimal places.

[5 marks]

Total 25 marks

GO ON TO THE NEXT PAGE02234020/CAPE 2016

L 111111111111111111111I111111111111111111111111111111111111110223402024

Page 22: I 02234020 I FORM TP 2016282 MAY/JUNE 2016 · - 5 - (ii) Hence, show that an equation with roots a~2 and ~~ 2 is given by lOx2 +2x + 1 = O. [6 marks] GO ON TO THE NEXT PAGE 02234020/CAPE

~~-------------------------------------------------------- ------

5.

- 25 -

SECTIONC

Module 3

Answer BOTH questions.

(a) A bus has 13 seats for passengers. Eight passengers boarded the bus before it left theterminal.

(i) Determine the number of possible seating arrangements of the passengers whoboarded the bus at the terminal.

[2 marks]

(ii) At the first stop, no passengers will get off the bus but there are eight other personswaiting to board the same bus. Among those waiting are three friends who mustsit together.

Determine the number of possible groups of five of the waiting passengers thatcan join the bus.

[4 marks]

GO ON TO THE NEXT PAGE02234020/CAPE 2016

L 111111111111111111111111111111111111111111111111111111111111

0223402025

Page 23: I 02234020 I FORM TP 2016282 MAY/JUNE 2016 · - 5 - (ii) Hence, show that an equation with roots a~2 and ~~ 2 is given by lOx2 +2x + 1 = O. [6 marks] GO ON TO THE NEXT PAGE 02234020/CAPE

- 26-

(b) Gavin and his best friend Alexander are two of the five specialist batsmen on his school'scricket team.

Given that the specialist batsmen must bat before the non-specialist batsmen and thatall five specialist batsmen may bat in any order, what is the probability that Gavin andAlexander are the opening pair for a given match?

[5 marks]

02234020/CAPE 2016GO ON TO THE NEXT PAGE

L 111111111111111111111I111111111111111111111111111111111111110223402026

-.-.-.-.--i----------J-·-·-·-·-·i-·-·-·-·--1-·-·-·-·--1+.+.+.+.--i-·-·-·-·--i

Page 24: I 02234020 I FORM TP 2016282 MAY/JUNE 2016 · - 5 - (ii) Hence, show that an equation with roots a~2 and ~~ 2 is given by lOx2 +2x + 1 = O. [6 marks] GO ON TO THE NEXT PAGE 02234020/CAPE

- 27 -

(c) A matrix A is given as

I~! ~lll-l 6 0

(i) Find the IAI, determinant of A.

02234020/CAPE 2016

L 111111111111111111111I111111111111111111111111111111111111110223402027

[4 marks]

GO ON TO THE NEXT PAGE

Page 25: I 02234020 I FORM TP 2016282 MAY/JUNE 2016 · - 5 - (ii) Hence, show that an equation with roots a~2 and ~~ 2 is given by lOx2 +2x + 1 = O. [6 marks] GO ON TO THE NEXT PAGE 02234020/CAPE

r - 28 -

[10 marks]

Total 25 marks

GO ON TO THE NEXT PAGE

..J

(ii) Hence, or otherwise, find A-I, the inverse of A.

02234020/CAPE 2016

L 111111111111111111111I11111111111111111111111111111111111111

0223402028

Page 26: I 02234020 I FORM TP 2016282 MAY/JUNE 2016 · - 5 - (ii) Hence, show that an equation with roots a~2 and ~~ 2 is given by lOx2 +2x + 1 = O. [6 marks] GO ON TO THE NEXT PAGE 02234020/CAPE

6.

L

- 29 -

(a) Two fair coins and one fair die are tossed at the same time.

(i) Calculate the number of outcomes in the sample space.

(ii) Find the probability of obtaining exactly one head.

[3 marks]

[2 marks]

02234020/CAPE 2016GO ON TO THE NEXT PAGE

111111111111111111111I111111111111111111111111111111111111110223402029

Page 27: I 02234020 I FORM TP 2016282 MAY/JUNE 2016 · - 5 - (ii) Hence, show that an equation with roots a~2 and ~~ 2 is given by lOx2 +2x + 1 = O. [6 marks] GO ON TO THE NEXT PAGE 02234020/CAPE

- 30 -

(iii) Calculate the probability of obtaining at least one head on the coins and an evennumber on the die on a particular attempt.

[4 marks]

GO ON TO THE NEXT PAGE02234020/CAPE 2016

111111111111111111111111111111111111111111111111111111111111

0223402030 --.JL

Page 28: I 02234020 I FORM TP 2016282 MAY/JUNE 2016 · - 5 - (ii) Hence, show that an equation with roots a~2 and ~~ 2 is given by lOx2 +2x + 1 = O. [6 marks] GO ON TO THE NEXT PAGE 02234020/CAPE

r-- -31-

(b) Determine whether y = C1x + C2X2 is a solution to the differential equation

~2y" - xy' + Y = 0, where Cj

and C2

are constants.

[6 marks)

GO ON TO THE NEXT PAGE02234020/CAPE 2016

L 1111111111111111111111111111111111111111111111111111111111110223402031

Page 29: I 02234020 I FORM TP 2016282 MAY/JUNE 2016 · - 5 - (ii) Hence, show that an equation with roots a~2 and ~~ 2 is given by lOx2 +2x + 1 = O. [6 marks] GO ON TO THE NEXT PAGE 02234020/CAPE

- 32-

(c) (i) Show that the general solution to the differential equation

3 (~ + x) : = 2y (1 + 2x) is

y=C~(~+X)2, whereCER

02234020/CAPE 2016

L 111111111111111111111111111111111111111111111111111111111111

0223402032

[7 marks]

GO ON TO THE NEXT PAGE

Page 30: I 02234020 I FORM TP 2016282 MAY/JUNE 2016 · - 5 - (ii) Hence, show that an equation with roots a~2 and ~~ 2 is given by lOx2 +2x + 1 = O. [6 marks] GO ON TO THE NEXT PAGE 02234020/CAPE

L

- 33 -

(ii) Hence, given thaty (1) = 1, solve 3 (x2 + x)~ = 2y (1 + 2x).

END OF TEST

[3 marks]

Total 25 marks

IF YOU FINISH BEFORE TIME IS CALLED, CHECK YOUR WORK ON THIS TEST.

02234020/CAPE 2016

111111111111111111111I111111111111111111111111111111111111110223402033

~;;.;.:.;.;.:J.. ..