hydrogels for tissue engineering sarah e. eldred stahl/gellman groups march 6, 2003

65
Hydrogels for Tissue Engineering Sarah E. Eldred Stahl/Gellman Groups March 6, 2003

Upload: morgan-barrett

Post on 16-Dec-2015

214 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Hydrogels for Tissue Engineering Sarah E. Eldred Stahl/Gellman Groups March 6, 2003

Hydrogels for Tissue Engineering

Sarah E. Eldred

Stahl/Gellman Groups

March 6, 2003

Page 2: Hydrogels for Tissue Engineering Sarah E. Eldred Stahl/Gellman Groups March 6, 2003

Organ Failure

Transplantation Over 79,000 people in the United States on

organ waitlist in 2002 Over 6,000 waitlist deaths in 2002 15% average fatality rate within one year of

transplant Lifelong immunosuppressant therapy

http://www.ustransplant.org

Page 3: Hydrogels for Tissue Engineering Sarah E. Eldred Stahl/Gellman Groups March 6, 2003

Outline

Background and Introduction

The Use of Hydrogels in Tissue Engineering Implant Persistence – Biodegradability Surgical Issues – Injectable Hydrogels Cell Attachment – Peptide Enhanced Hydrogels

Outlook

Page 4: Hydrogels for Tissue Engineering Sarah E. Eldred Stahl/Gellman Groups March 6, 2003

Treatments for Organ Failure

Surgical Reconstruction Can result in long-term

problems Ineffective

Use of mechanical organ substitutes Cannot replace all

functions of the diseased organ

Usually cannot halt patient deterioration

Langer, R. P.; Vacanti, J. P. Science, 1993, 260, 920

Page 5: Hydrogels for Tissue Engineering Sarah E. Eldred Stahl/Gellman Groups March 6, 2003

Tissue Engineering

A multidisciplinary field aimed at “develop[ing] biological substitutes that restore, maintain, or improve tissue function”

Can involve transplantation of cells in artificial matrices

Could lead to new therapies

Langer, R. P.; Vacanti, J. P. Science, 1993, 260, 920

Page 6: Hydrogels for Tissue Engineering Sarah E. Eldred Stahl/Gellman Groups March 6, 2003

Matrix Based Cell Transplantation

Matrix purposes Maintain structural

integrity of the implant Guide the growth of new

tissue Allow for the invasion of

blood vessels Provide necessary

mechanical forces to cells

Marler, J. L.; Upton, J.; Langer, R.; Vacanti, J. P. Adv. Drug Deliv. Rev., 1998, 33, 165

CellsMatrix

Cell Seeding

ImplantationIncubation

Page 7: Hydrogels for Tissue Engineering Sarah E. Eldred Stahl/Gellman Groups March 6, 2003

Materials Used for Cell Matrices

Ceramics (bone) Steel (arteries) Polymers

Natural Collagen Gelatin

Synthetic Poly(ethylene oxide) Poly(acrylic acid) Poly(vinyl alcohol)

Peppas, N. A.; Langer, R. Science, 1994, 263, 1715

Lee, K. Y.; Mooney, D. J. Chem. Rev., 2001, 101, 1869

Page 8: Hydrogels for Tissue Engineering Sarah E. Eldred Stahl/Gellman Groups March 6, 2003

Why Polymers?

Less likely than metals to harm surrounding tissue

Useful for more varied types of tissue Easier to seed cells into polymers than into

other types of materials More chemical diversity

Peppas, N. A.; Langer, R. Science, 1994, 263, 1715

Page 9: Hydrogels for Tissue Engineering Sarah E. Eldred Stahl/Gellman Groups March 6, 2003

Hydrogels

Hydrophilic polymeric networks that can absorb water without dissolving

Can be composed of natural or synthetic polymers

First suggested for use in biomedical applications in 1960

Hoffman, A. S. Adv. Drug Deliv. Rev., 2002, 43, 3

Wichterle, O.; Lim, D. Nature, 1960, 185, 117

Page 10: Hydrogels for Tissue Engineering Sarah E. Eldred Stahl/Gellman Groups March 6, 2003

Natural vs. Synthetic Hydrogels

Natural Most closely resemble

the tissues they are meant to replace

Almost always biocompatible

Biodegradable Difficult to isolate from

biological tissues Restricted versatility

Synthetic Can be reliably produced Greater control over

polymer structure May not be biocompatible Not always

biodegradable Use of toxic reagents a

problem

Lee, K. Y.; Mooney, D. J. Chem. Rev., 2001, 101, 1869

Page 11: Hydrogels for Tissue Engineering Sarah E. Eldred Stahl/Gellman Groups March 6, 2003

Hydrogels as Tissue Engineering Matrices Advantages

Aqueous environment for cells

Porous to allow for nutrient transport

Easily modified

Usually biocompatible

Disadvantages Hard to handle

Physically weak

Difficult to sterilize

Hoffman, A. S. Adv. Drug Deliv. Rev., 2002, 43, 3

Page 12: Hydrogels for Tissue Engineering Sarah E. Eldred Stahl/Gellman Groups March 6, 2003

Some Hydrogel Forming Polymers

O

HOOH

HO2C

O

OHO

NH

HO

O

O

O

HOOH

NaO2C

O

O

O

O

NHO

npoly(hyaluronic acid) poly(sodium alginate)

n

n

poly(ethylene glycol)

n

poly(lactic acid)

n

poly(N-isopropyl acrylamide)

Natural

Synthetic

Page 13: Hydrogels for Tissue Engineering Sarah E. Eldred Stahl/Gellman Groups March 6, 2003

Preparation of Hydrogels

Hoffman, A. S. Adv. Drug Deliv. Rev., 2002, 43, 3

Monomers Copolymerize

Macromers

Crosslink

Prepolymer

Crosslink

Hydrogel

MonomerHydrogel

Polymerize

Interpenetrating Network (IPN)

Crosslink

Copolymerize

Polymerize

Page 14: Hydrogels for Tissue Engineering Sarah E. Eldred Stahl/Gellman Groups March 6, 2003

Outline

Background and Introduction

The Use of Hydrogels in Tissue Engineering Implant Persistence – Biodegradability Surgical Issues – Injectable Hydrogels Cell Attachment – Peptide Enhanced Hydrogels

Outlook

Page 15: Hydrogels for Tissue Engineering Sarah E. Eldred Stahl/Gellman Groups March 6, 2003

Implant Persistence

Problems with non-biodegradable cell matrices Immunoresponse Weakening of surrounding tissues Lack of integration into body

Possibility of additional surgery Ideal degradation of implants over time

Page 16: Hydrogels for Tissue Engineering Sarah E. Eldred Stahl/Gellman Groups March 6, 2003

Incorporating Biodegradability

Using labile bonds in the polymer backbone and/or crosslinkers

Using peptides as labile linkages for enzymatic degradation

O

O N

O

O O

NH

HN

NH

O

O

O

Page 17: Hydrogels for Tissue Engineering Sarah E. Eldred Stahl/Gellman Groups March 6, 2003

Measuring Biodegradation

Fully Swollen Hydrogel

Buffered Aqueous Solution

Remove Hydrogel From Solution

Complete Dissolution of Hydrogel

Page 18: Hydrogels for Tissue Engineering Sarah E. Eldred Stahl/Gellman Groups March 6, 2003

Poly(anhydride) Hydrogels

Slower degradation with more hydrophobic monomers

OO

CH2O

O

xn

x = 1, 4, 7

010

20304050

607080

90100

0 10 20 30

Time (days)%

Deg

rad

atio

n

x = 7

x = 4

x = 1

Domb, A. J.; Gallardo, C. F.; Langer, R. Macromolecules, 1989, 22, 3200

Page 19: Hydrogels for Tissue Engineering Sarah E. Eldred Stahl/Gellman Groups March 6, 2003

Synthesis

Domb, A. J.; Gallardo, C. F.; Langer, R. Macromolecules, 1989, 22, 3200

OHMeO

OBr CH2 COOMe

Ac2O OO

OCH2O

O

OO

OO

CH2O

O

HOOC O CH2 COOH

xn

x = 1, 4, 7

+x

1. MeONa/MeOH

2. NaOH x1

1 + reflux

x2

21. 180 oC

2. vacuum

Page 20: Hydrogels for Tissue Engineering Sarah E. Eldred Stahl/Gellman Groups March 6, 2003

More Poly(anhydride) Hydrogels

O

O

CH2

O

O

O O

8

methacrylated sebacic anhydride

OO

OO CH2 O

O

OO6

n

n1,6-bis(carboxyphenoxy) hexane

Degradation from the surface of the hydrogel inward

Acrylate functionalities for crosslinking

Muggli, D. S.; Burkoth, A. K.; Anseth, K. S. J. Biomed. Mater. Res., 1999, 46, 271

Page 21: Hydrogels for Tissue Engineering Sarah E. Eldred Stahl/Gellman Groups March 6, 2003

Degradation Rates

Degradation rate controlled by the ratios of anhydride monomers in the polymerization feed

0

10

20

30

40

50

60

70

80

90

100

0 20 40 60 80 100Time (days)

% M

ass

Lo

ss

100% MSA 50% MSA 40% MSA

25% MSA 0% MSA

Muggli, D. S.; Burkoth, A. K.; Anseth, K. S. J. Biomed. Mater. Res., 1999, 46, 271

O

O

CH2

O

O

O O

MSA

8 n

Page 22: Hydrogels for Tissue Engineering Sarah E. Eldred Stahl/Gellman Groups March 6, 2003

Poly(ethylene glycol) Hydrogels

Ester bonds added to the backbone using poly(lactide)

Constant mass loss rate

Metters, A. T.; Anseth, K. S.; Bowman, C. N. Polymer, 2000, 41, 3993

O

O

O

OO

O

OO

m n m

Page 23: Hydrogels for Tissue Engineering Sarah E. Eldred Stahl/Gellman Groups March 6, 2003

Hydrogel Synthesis

Sawhney, A. S.; Pathak, C. P.; Hubbell, J. A. Macromolecules, 1993, 26, 581

O

O

O

OO

O

OO

m n m

HO CH2 CH2 O Hn

+ O

O

O

O

200 oCO

O

OO

O

OH

m n m

H

Acryloyl Chloride

Triethyl Aminephotopolymerization

O

O

O

OO

O

OO

m n m

[Sn]

Page 24: Hydrogels for Tissue Engineering Sarah E. Eldred Stahl/Gellman Groups March 6, 2003

Controlling the Degradation Rate

Vary the PEG molecular weight

Lower molecular weight monomers, slow degradation due to increased crosslink density

Sawhney, A. S.; Pathak, C. P.; Hubbell, J. A. Macromolecules, 1993, 26, 581

PEG MW Deg. Time

1000 45 days

4000 6 days

6000 5 days

10000 <1 day

Page 25: Hydrogels for Tissue Engineering Sarah E. Eldred Stahl/Gellman Groups March 6, 2003

Hydrogels with Labile Crosslinkers

Adipic acid dihydrazide to crosslink poly(aldehyde guluronate)

Lee, K. Y.; Bouhadir, K. H.; Mooney, D. J. Macromolecules, 2000, 33, 97

O

O

OHNaO2C

OH

OH

NO N

HO

O

H

O HN

O

NH

O

CO2Na

O

O

N

H

NaO2C

OH

OHNaO2C

OHO

HOCO2Na

OOHNaO2C

OH

O

Page 26: Hydrogels for Tissue Engineering Sarah E. Eldred Stahl/Gellman Groups March 6, 2003

Controlling the Degradation Rate

Altering the concentration of adipic acid dihydrazide used for crosslinking

100mM <1 equivalent 150mM = 1 equivalent 200mM >1 equivalent

Lee, K. Y.; Bouhadir, K. H.; Mooney, D. J. Macromolecules, 2000, 33, 97

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50

Time (days)

Wei

gh

t L

oss

(%

)

100mM

150mM

200mM

Page 27: Hydrogels for Tissue Engineering Sarah E. Eldred Stahl/Gellman Groups March 6, 2003

Explanation of the Degradation Rate

Ability of the system to re crosslink with excess crosslinker

Lee, K. Y.; Bouhadir, K. H.; Mooney, D. J. Macromolecules, 2000, 33, 97

Before Degradation After Degradation

100mM

150mM

200mM

Page 28: Hydrogels for Tissue Engineering Sarah E. Eldred Stahl/Gellman Groups March 6, 2003

Hydrogels Degraded by Enzymes

PEG hydrogel with an Ala-Pro-Glu-Leu tetrapeptide as a copolymer block Susceptible to

collagenase enzymes Collagenase

concentration dependent degradation rate

West, J. L.; Hubbell, J. L. Macromolecules, 1999, 32, 241

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0 1 2 3 4 5 6 7

Time (days)W

eig

ht

(g)

2mg/mL 0.2mg/mL Control

Page 29: Hydrogels for Tissue Engineering Sarah E. Eldred Stahl/Gellman Groups March 6, 2003

Outline

Background and Introduction

The Use of Hydrogels in Tissue Engineering Implant Persistence – Biodegradability Surgical Issues – Injectable Hydrogels Cell Attachment – Peptide Enhanced Hydrogels

Outlook

Page 30: Hydrogels for Tissue Engineering Sarah E. Eldred Stahl/Gellman Groups March 6, 2003

Surgical Issues

Large incisions necessary for implantation of tissue engineering hydrogels

Difficult to fill irregularly shaped spaces (cartilage, bone)

Implantation without major surgery is desirable

Page 31: Hydrogels for Tissue Engineering Sarah E. Eldred Stahl/Gellman Groups March 6, 2003

Fabrication of Injectable Hydrogels

Exploitation of the sol-gel phase transition upon cooling

Adjustment of the lower critical solution temperature (LCST) to be below body temperature

Crosslinking the polymer in vivo

Page 32: Hydrogels for Tissue Engineering Sarah E. Eldred Stahl/Gellman Groups March 6, 2003

Measuring the Phase Change

% Transmittance – solutions are transparent, gels are opaque

Swelling Ratio = Swollen Weight – Dry Weight

Dry Weight

Page 33: Hydrogels for Tissue Engineering Sarah E. Eldred Stahl/Gellman Groups March 6, 2003

Manipulating the Sol-Gel Transition Temperature Temperature dependent gel-sol phase

transition in PEG-PLA block copolymers

Gelation from packing of PLA segments Injectable at 45°C and would gel upon

cooling to body temperature (~37°C)

Jeong, B.; Bae, Y. H.; Lee, D. S.; Kim, S. W. Nature, 1997, 388, 860

O O

On m

Page 34: Hydrogels for Tissue Engineering Sarah E. Eldred Stahl/Gellman Groups March 6, 2003

Interpenetrating Networks

Made from poly(N-acryloylglycinamide) (PAG) and poly(acrylic acid) (PAAc)

Hydrogen bonding between the two types of polymer at low temperatures

NH

O NH2

O

HO OPAAcnPAG

n

Sasase, H.; Aoki, T.;Katono, H.;Sanui, K.; Ogata, N.; Ohta, R.; Kondo, T.; Okano, T.; Sakurai, Y. Makromol. Chem., Rapid Commun., 1992, 13, 577

Page 35: Hydrogels for Tissue Engineering Sarah E. Eldred Stahl/Gellman Groups March 6, 2003

Addition of Urea

Temperature dependent gel-sol phase transition that can be altered by the addition of urea

Sasase, H.; Aoki, T.;Katono, H.;Sanui, K.; Ogata, N.; Ohta, R.; Kondo, T.; Okano, T.; Sakurai, Y. Makromol. Chem., Rapid Commun., 1992, 13, 577

H2N NH2

O -20

0

20

40

60

80

100

0 10 20 30 40 50 60

Temp (oC)%

Tra

ns

mit

tan

ce

PAG PAAc 3M urea 2M urea

0.5M urea 0.1M urea 0.01M urea 0M urea

Urea

Page 36: Hydrogels for Tissue Engineering Sarah E. Eldred Stahl/Gellman Groups March 6, 2003

Other IPNs

From poly(acrylamide), PAAm, and PAAc which form hydrogen bonds at low temperature

Katono, H.; Maruyama, A.; Sanui, K.; Ogata, N.; Okano, T.; Sakurai, Y. J. Controlled Release, 1991, 16, 215

PAAc

PAAm

OO

H

n

HN O

H

n

Page 37: Hydrogels for Tissue Engineering Sarah E. Eldred Stahl/Gellman Groups March 6, 2003

Explanation of the LCST

LCST = Lower Critical Solution Temperature

The temperature at which a phase transition occurs from a solution to a gel

Taylor, L. T.; Cerankowski, L. D. J. Polym. Sci., Polym. Chem. Ed., 1975, 13, 2551

Gel + Water

Solution

Weight fraction solute

T

Page 38: Hydrogels for Tissue Engineering Sarah E. Eldred Stahl/Gellman Groups March 6, 2003

Effect of Pendant Groups on LCST

Different monomers to adjust the LCST of a polymeric system

NO

O

RNH2 NH

NHR

O

O

+

Taylor, L. T.; Cerankowski, L. D. J. Polym. Sci., Polym. Chem. Ed., 1975, 13, 2551

R Cloud point of polymer (°C)

Methyl 35

Ethyl 20

Isopropyl 3

Ethyl Methoxy 55

Page 39: Hydrogels for Tissue Engineering Sarah E. Eldred Stahl/Gellman Groups March 6, 2003

Thermosensitivity of P(NIPAAm) Hydrogels

OHN

P(NIPAAm)

OHO

P(AAc)

n n

Stile, R. A.; Burghardt, W. R.; Healy, K. E. Macromolecules, 1999, 32, 7370

Page 40: Hydrogels for Tissue Engineering Sarah E. Eldred Stahl/Gellman Groups March 6, 2003

Thermosensitivity of P(NIPAAm) Hydrogels

OHN

P(NIPAAm)

OHO

P(AAc)

n n

Stile, R. A.; Burghardt, W. R.; Healy, K. E. Macromolecules, 1999, 32, 7370

0

20

40

60

80

100

24 26 28 30 32 34 36 38 40

Temperature (oC)

%T

ran

smit

tan

ce

P(NIPAAm) P(NIPAAm-co-Aac)

Page 41: Hydrogels for Tissue Engineering Sarah E. Eldred Stahl/Gellman Groups March 6, 2003

Changing the LCST of P(NIPAAm) Hydrogels Copolymers with different amounts of AAm

Yoshida, R.; Sakai, K.; Okano, T.; Sakurai, Y. J. Biomater. Sci. Polymer Edn., 1994, 6, 585

0

5

10

15

20

25

30

10 15 20 25 30 35 40 45 50

Temperature (oC)

Sw

ellin

g R

atio

30% AAm 20% AAm 10% AAm 5% AAm 0% AAm

Page 42: Hydrogels for Tissue Engineering Sarah E. Eldred Stahl/Gellman Groups March 6, 2003

Altering the Thermosensitivity

Thermosensitivity of different acrylamide polymers

OHN

P(NIPAAm)

O N

P(DMAAm)

OHN O N

nnn

P(EAAm)n

P(DEAAm)

Okano, T.; Bae, Y. H.; Jacobs, H.; Kim, S. W. J. Controlled Release, 1990, 11, 255

0

2

4

6

8

10

12

14

16

18

20

0 10 20 30 40 50 60

Temperature (oC)

Sw

ellin

g R

atio

Page 43: Hydrogels for Tissue Engineering Sarah E. Eldred Stahl/Gellman Groups March 6, 2003

Increasing Thermosensitivity

Hydrophilic groups moved further away from the backbone

Aoyagi, T.; Ebara, M.; Sakai, K.; Sakurai, Y.; Okano, T. J. Biomater. Sci., Polym. Edn., 2000, 11, 101

OHN

NIPAAm

OHN

OHO

CIPAAm

Page 44: Hydrogels for Tissue Engineering Sarah E. Eldred Stahl/Gellman Groups March 6, 2003

CIPAAm Synthesis

Aoyagi, T.; Ebara, M.; Sakai, K.; Sakurai, Y.; Okano, T. J. Biomater. Sci., Polym. Edn., 2000, 11, 101

OH

NH2 OHO

O

NH2 OCl

O

CIPAAm

NH

O

O

O

NH

O

OH

O

NEt3/Et2O

1. NaOH

2. HCl/H2O

Page 45: Hydrogels for Tissue Engineering Sarah E. Eldred Stahl/Gellman Groups March 6, 2003

Changing the LCST?

Ebara, M.; Aoyagi, T.; Sakai, K.; Okano, T. Macromolecules, 2000, 33, 8312

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 10 20 30 40 50

Temperature (oC)

Sw

elli

ng

Rat

io

P(NIPAAm)

P(NIPAAm-co-CIPAAm)

Page 46: Hydrogels for Tissue Engineering Sarah E. Eldred Stahl/Gellman Groups March 6, 2003

Phase Changes in Acrylamide-Based Hydrogels

Ebara, M.; Aoyagi, T.; Sakai, K.; Okano, T. J. Polym. Sci.: Part A: Polym. Chem., 2001, 39, 335

0 sec

60 sec

80 sec

90 sec

100 sec

120 sec

NIPAAmNIPAAm –

co-AAmNIPAAm –

co- CIPAAm

Page 47: Hydrogels for Tissue Engineering Sarah E. Eldred Stahl/Gellman Groups March 6, 2003

Another Thermoresponsive Hydrogel

Jeong, B.; Kibbey, M. R.; Birnbaum, J. C.; Won, Y.-Y.; Gutowska, A. Macromolecules, 2000, 33, 8317

HOO

H

n+

OO O

120 oC OO OH

HO

O O

O O

n

OO

O O

mO O O

O O

OHn m

O

O

O

OO

O

O

O

O O O

O O

O

n m

O

O

O

Ox y

130 oC, [Sn]120 oC

Page 48: Hydrogels for Tissue Engineering Sarah E. Eldred Stahl/Gellman Groups March 6, 2003

Phase Diagram of Graft Copolymer

Jeong, B.; Kibbey, M. R.; Birnbaum, J. C.; Won, Y.-Y.; Gutowska, A. Macromolecules, 2000, 33, 8317

Gel

Sol20

25

30

35

40

45

12 14 16 18 20 22 24 26

Concentration (wt%)

Tem

per

atu

re (

oC

)

Gel

Sol

Page 49: Hydrogels for Tissue Engineering Sarah E. Eldred Stahl/Gellman Groups March 6, 2003

Phase Diagram of Block Copolymer

Copolymer = PEG-PLGA-PEG

Same shape as that of graft copolymer

More hydrophobic – more gelation

Jeong, B.; Bae, Y. H.; Kim, S. W. Macromolecules, 1999, 32, 7064

Page 50: Hydrogels for Tissue Engineering Sarah E. Eldred Stahl/Gellman Groups March 6, 2003

Thermoresponsive Hydrogels

Image of a hydrogel on either side of its LCST

Lin, H.-H.; Cheng, Y.-L. Macromolecules, 2001, 34, 3710

25 °C 37 °C

Page 51: Hydrogels for Tissue Engineering Sarah E. Eldred Stahl/Gellman Groups March 6, 2003

In vivo Hydrogel Formation

Elisseeff, J.; Anseth, K.; Sims, D.; McIntosh, W.; Randolph, M.; Yaremchuk, M.; Langer, R. Journal of Plastic and Reconstructive Surgery, 1999, 104, 1014

Isolate and culture cells

Inject polymer/cell solution into

mouse

UV lightHydrogel/cell construct in mouse

O

O On

Cells +

Page 52: Hydrogels for Tissue Engineering Sarah E. Eldred Stahl/Gellman Groups March 6, 2003

Use of Thermoresponsive Hydrogels to Create an Artificial Organ Injectable tissue engineering matrix to

implant Islets of Langerhans Clear solutions in water at 25°C and

immobile gels at 35°C Continued to produce insulin for several

weeks

Gutowska, A.; Kim, S. W.; Bae, Y. H. Macromol. Symp., 1996, 109, 155

Bae, Y. H.; Vernon, B.; Han, C. K.; Kim, S. W. J. Controlled Release, 1998, 53, 249

OHONH

O

P(NIPAAm) P(AAc)

nn

Page 53: Hydrogels for Tissue Engineering Sarah E. Eldred Stahl/Gellman Groups March 6, 2003

A Proof-of-Principle Experiment

Bae, Y. H.; Vernon, B.; Han, C. K.; Kim, S. W. J. Controlled Release, 1998, 53, 249

Room Temperature

Body Temperature

Solution Phase Cells

Port for Cell Reseeding and Removal

Membrane

Gel Phase

Page 54: Hydrogels for Tissue Engineering Sarah E. Eldred Stahl/Gellman Groups March 6, 2003

Outline

Background and Introduction

The Use of Hydrogels in Tissue Engineering Implant Persistence – Biodegradability Surgical Issues – Injectable Hydrogels Cell Attachment – Peptide Enhanced Hydrogels

Outlook

Page 55: Hydrogels for Tissue Engineering Sarah E. Eldred Stahl/Gellman Groups March 6, 2003

Peptide Enhanced Hydrogels

Hydrogels in tissue engineering applications = extracellular matrices

PEG’s lack of cell adhesiveness

Cell adhesion peptides on hydrogels

Page 56: Hydrogels for Tissue Engineering Sarah E. Eldred Stahl/Gellman Groups March 6, 2003

Proteins for Cell Attachment Integrins – membrane bound receptors in

cells that bind to cell adhesion proteins Bind to the peptide sequence Arg-Gly-Asp

(RGD)

Can be attached to synthetic substrates to promote cell attachment

Massia, S. P.; Hubbell, J. A. Cytotechnology, 1992, 10, 189

NH

HN

NH

O

O

O

HN

HN NH2

O

OH

Page 57: Hydrogels for Tissue Engineering Sarah E. Eldred Stahl/Gellman Groups March 6, 2003

Attaching RGD to Polymers

GRGDY was covalently attached to PAG hydrogels

No cell adhesion assay attempted

Bouhadir, K. H.; Hausman, D. S.; Mooney, D. J. Polymer, 1999, 40, 3575

O

O OH

NaO2COH

OHN

OHNO

NaO2C

OO

O

OH

OHNaO2C

= Peptide

Page 58: Hydrogels for Tissue Engineering Sarah E. Eldred Stahl/Gellman Groups March 6, 2003

Attaching RGD to Poly(urethane)

Lin, H.-B.; Garcia-Echeverria, C.; Asakura, S.; Sun, W.; Mosher, D. F.; Cooper, S. L. Biomaterials, 1992, 13, 905

NHO

O

NO

O

O OH

NaH

TFA

NO

O

H2N

O

O

NO

O

OHN

NO

O

OHN

NO

O

O ONa+

n

-

n

+

-

n

n

+

n

n= Peptide

Page 59: Hydrogels for Tissue Engineering Sarah E. Eldred Stahl/Gellman Groups March 6, 2003

Cell Adhesion Assay

Lin, H.-B.; Garcia-Echeverria, C.; Asakura, S.; Sun, W.; Mosher, D. F.; Cooper, S. L. Biomaterials, 1992, 13, 905

0

2000

4000

6000

8000

10000

12000

0 50 100 150 200 250 300

Time (min)

# A

ttac

hed

cel

ls/a

rea

PEU-GRGDVY PEU-GRGDSY PEU-COOH PEU

Page 60: Hydrogels for Tissue Engineering Sarah E. Eldred Stahl/Gellman Groups March 6, 2003

Attaching RGD to Hydrogels

ON

OO

O

OCH2CH2

O

O

ON

O

O

H2N

NH

O

OCH2CH2

O

NH

O

+

n

+

n

H2N

The hydrogels with the PEG spacer exhibited superior cell adhesion to those without it

Hern, D. L.; Hubbell, J. A. J. Biomed. Mater. Res., 1998, 39, 266

= Peptide

Page 61: Hydrogels for Tissue Engineering Sarah E. Eldred Stahl/Gellman Groups March 6, 2003

Another Method of RGD Attachment

Random copolymer generated from the following monomers and peptide attached

Capable of trapping cells

Moghaddam, M. J.; Matsuda, T. J. Polym. Sci.: Part A: Polym. Chem., 1993, 31, 1589

O

NO

O

O O O

ON

OO

O

Page 62: Hydrogels for Tissue Engineering Sarah E. Eldred Stahl/Gellman Groups March 6, 2003

Synthesis and Crosslinking of Monomer Units

Moghaddam, M. J.; Matsuda, T. J. Polym. Sci.: Part A: Polym. Chem., 1993, 31, 1589

O OHOK2CO3

O

O

Br

O O

OO

O

O

O O O

hvCopolymer

Page 63: Hydrogels for Tissue Engineering Sarah E. Eldred Stahl/Gellman Groups March 6, 2003

Outline

Background and Introduction

The Use of Hydrogels in Tissue Engineering Implant Persistence – Biodegradability Surgical Issues – Injectable Hydrogels Cell Attachment – Peptide Enhanced Hydrogels

Outlook

Page 64: Hydrogels for Tissue Engineering Sarah E. Eldred Stahl/Gellman Groups March 6, 2003

The Future of Tissue Engineering

Current use of tissue engineered materials Far cry from whole organs Key issues for future work

Materials Science and Chemistry Better scaffolds

Biology and Medicine Cell differentiation Surgical techniques

Zandonella, C. Nature, 2003, 421, 884

Page 65: Hydrogels for Tissue Engineering Sarah E. Eldred Stahl/Gellman Groups March 6, 2003

Acknowledgements

Shannon Stahl and Sam Gellman The Gellman Group and the Stahl Group Greg Hanson Neil Strotman

Reagan Miller Sharon Beetner

Nate Bowling Erin Sabath

Matt Bowman Stephen Seitz

Jeff Johnson Will Lee