hydraulic turbines (gorla khan, pp.91 141) -...

6
1 Electronic Notes Chapter 51. Hydraulic Turbines (Gorla & Khan, pp.91141) 1. Terminologies Related to A Hydropower Plant 2. Impulse and Reaction Turbines Hoover Dam generates more than 4 billion kilowatt-hours of electricity each year, enough to serve 1.3 million people. Reference: http://www.greennews.com/hydropower.asp Reading/watching materials (Hydraulic turbines): http://en.wikipedia.org/wiki/Hydraulic_turbine http://en.wikipedia.org/wiki/Pelton_wheel http://en.wikipedia.org/wiki/Kaplan_turbine Draft tube Tailrace Tailrace Draft (Tailrace) tube Reading/watching materials (River hydroelectricity): http://www.youtube.com/watch?v=cEL7yc8R42k&feature=related http://www.youtube.com/watch?v=wvxUZF4lvGw&feature=related http://www.youtube.com/watch?v=fvYaCtjpMvk&feature=related http://www.youtube.com/watch?v=Hh2l_tlvZq0&feature=related http://www.youtube.com/watch?v=yRX78izmbE&feature=related Reading/watching materials (Ocean hydroelectricity): http://www.youtube.com/watch?v=HdWwtGB0K8U http://www.youtube.com/watch?v=lzc9V9DSew&feature=related http://www.youtube.com/watch?v=tSBACzRE3Gw&feature=related

Upload: vukiet

Post on 07-Mar-2018

220 views

Category:

Documents


3 download

TRANSCRIPT

Page 1: Hydraulic Turbines (Gorla Khan, pp.91 141) - libvolume3.xyzlibvolume3.xyz/civil/btech/semester4/hydraulicshydraulicmachines/... · 1 Electronic Notes Chapter 5‐1. Hydraulic Turbines

 

Electronic Notes  

Chapter 5‐1. Hydraulic Turbines (Gorla & Khan, pp.91‐141)  

1. Terminologies Related to A Hydropower Plant                                                                               

2. Impulse and Reaction Turbines    

 

Hoover Dam generates more than 4 billion kilowatt-hours of electricity each year, enough to serve 1.3 million people.Reference: http://www.greennews.com/hydropower.asp 

Reading/watching materials (Hydraulic turbines): http://en.wikipedia.org/wiki/Hydraulic_turbine 

http://en.wikipedia.org/wiki/Pelton_wheel 

http://en.wikipedia.org/wiki/Kaplan_turbine 

Draft tube  Tailrace 

Tailrace

Draft (Tailrace) tube 

Reading/watching materials (River hydroelectricity): http://www.youtube.com/watch?v=cEL7yc8R42k&feature=related 

http://www.youtube.com/watch?v=wvxUZF4lvGw&feature=related 

http://www.youtube.com/watch?v=fvYaCtjpMvk&feature=related 

http://www.youtube.com/watch?v=Hh2l_tlvZq0&feature=related 

http://www.youtube.com/watch?v=yRX7‐8izmbE&feature=related Reading/watching materials (Ocean hydroelectricity): http://www.youtube.com/watch?v=HdWwtGB0K8U 

http://www.youtube.com/watch?v=lzc9‐V9DSew&feature=related 

http://www.youtube.com/watch?v=tSBACzRE3Gw&feature=related 

Page 2: Hydraulic Turbines (Gorla Khan, pp.91 141) - libvolume3.xyzlibvolume3.xyz/civil/btech/semester4/hydraulicshydraulicmachines/... · 1 Electronic Notes Chapter 5‐1. Hydraulic Turbines

 

2.1 Impulse Hydraulic Turbines 

Impulse turbines change the velocity of a water jet flow. The jet impinges on the turbine's curved blades which change the direction of the flow. The resulting change in momentum (impulse) causes a force on the turbine blades. Since the turbine is spinning, the force acts through a distance (work) and the diverted water flow is left with diminished energy. 

 Prior to hitting the turbine blades, the water's pressure (potential energy) is converted to kinetic energy by a nozzle and focused on the turbine. No pressure change occurs at the turbine blades, and the turbine doesn't require a housing for operation. 

 Impulse turbines are most often used in very high head (>300m/984ft) applications. Consequently, the size of an impulse turbine can be compact. 

Examples of Impulse Hydraulic Turbines (Pelton Turbines/Wheels)  

        

      

    

Page 3: Hydraulic Turbines (Gorla Khan, pp.91 141) - libvolume3.xyzlibvolume3.xyz/civil/btech/semester4/hydraulicshydraulicmachines/... · 1 Electronic Notes Chapter 5‐1. Hydraulic Turbines

 

               2.2 Reaction Hydraulic Turbines 

Reaction turbines are acted on by water, which changes pressure as it moves through the turbine and gives up its energy. They must be encased to contain the water pressure (or suction), or they must be fully submerged in the water flow.  In reaction turbines, pressure drop occurs in both fixed and moving blades.  Most water turbines in use are reaction turbines and are used in low (<30m/98ft) and medium (30‐300m/98‐984ft) head applications. For this reason, the size of a reaction turbine is usually larger than an impulse turbine (the latter of which is used for high‐head applications).    Typical reaction hydraulic turbines include: Kaplan turbines and Francis turbines. 

The Francis turbine is a type of water turbine that was developed by James B. Francis. It is an inward flow reaction turbine that combines radial and axial flow concepts. 

Francis turbines are the most common water turbine in use today. They operate in a head range of ten meters to several hundred meters and are primarily used for electrical power production. 

The Kaplan turbine is a propeller‐type water turbine which has adjustable blades. It was developed in 1913 by the Austrian professor Viktor Kaplan.  Kaplan turbines are now widely used throughout the world in high‐flow, low‐head power production. The Kaplan turbine was an evolution of the Francis turbine. Its invention allowed efficient power production in low‐head applications that was not possible with Francis turbines.  A Kaplan turbine is used where a large quantity of water is available at low heads and hence the blades must be long and have large chords so that they are strong enough to transmit the very high torque that arises. 

       Viktor Kaplan (Nov. 27, 1876 – Aug 23, 1934) Kaplan was an Austrian engineer and the inventor of the Kaplan turbine.

                  Lester Allan Pelton (Sept. 5, 1829 – Mar. 14, 1908) Pelton made his living as a carpenter and a millwright. He created the most efficient form of impulse water turbine.

          James Bicheno Francis (May 18, 1815 – Sept. 18, 1892) Francis was a British-American engineer.

Reading/watching materials: http://www.youtube.com/watch?v=2WQ2Va1iICA&feature=related 

http://www.youtube.com/watch?v=4vGeUmbvcDk&feature=related 

http://www.youtube.com/watch?v=HzQPNpP55xQ 

http://www.youtube.com/watch?v=Nwpdc2DYlrg 

http://www.youtube.com/watch?v=hGI5c8JfT9Y 

Page 4: Hydraulic Turbines (Gorla Khan, pp.91 141) - libvolume3.xyzlibvolume3.xyz/civil/btech/semester4/hydraulicshydraulicmachines/... · 1 Electronic Notes Chapter 5‐1. Hydraulic Turbines

 

Examples of Reaction Hydraulic Turbine (Francis Turbines/Wheels)  

            Francis runner, Three Gorges Dam Guide vanes at full flow setting  

                          Francis Inlet Scroll, Grand Coulee Dam                                                       Small Swiss‐made Francis turbine  

                       

Page 5: Hydraulic Turbines (Gorla Khan, pp.91 141) - libvolume3.xyzlibvolume3.xyz/civil/btech/semester4/hydraulicshydraulicmachines/... · 1 Electronic Notes Chapter 5‐1. Hydraulic Turbines

 

Examples of Reaction Hydraulic Turbine (Kaplan Turbines/Wheels) 

                   

                   

                        

Page 6: Hydraulic Turbines (Gorla Khan, pp.91 141) - libvolume3.xyzlibvolume3.xyz/civil/btech/semester4/hydraulicshydraulicmachines/... · 1 Electronic Notes Chapter 5‐1. Hydraulic Turbines

 

Comparison the Pelton, Francis and Kaplan Turbines

Schematic layout of hydro plant (revised from Fig.3.3 from Gorla and Khan) 

                  Pelton wheel (losses and efficiencies)  Concepts: pipe line transmission efficiency, jet efficiency, mechanical efficiency, and overall efficiency. • Pipe line transmission efficiency (to reflect losses in the penstock due to viscous fluid frictions and turbulence) 

1

2

1

f1tr H

HH

hHreservoir at availableEnergy

pipe of end the atEnergy=

−==η  

• The nozzle efficiency  

2

21

j gH2C

inlet nozzle the atEnergy outlet nozzle the at Energy

==η  

Nozzle velocity coefficient 

2

1V gH2

Cvelocity jet lTheoretica

velocity jet ActualC ==  

Therefore,  2Vj C=η . 

H1 

hf 

                          (pp.95, Gorla and Khan) 

A concept related to Pelton turbines:  Bucket‐Jet Speed Ratio (Blade‐Jet Speed Ratio): 

SpeedJet SpeedBucket

CUR

1

==  

H2 

Leakage in a hydraulic turbine