hydraulic chapter1

Upload: faraeiin57

Post on 13-Feb-2018

223 views

Category:

Documents


0 download

TRANSCRIPT

  • 7/23/2019 hydraulic Chapter1

    1/40

    BFC21103Hydraulics

    Chapter1.FlowinOpenChannel

    TanLaiWai,WanAfnizan &Zarina Md Ali

    [email protected]

    Updated:September2014

  • 7/23/2019 hydraulic Chapter1

    2/40

    LearningOutcomes

    Attheendofthischapter,studentsshouldbeableto:

    i.

    Defineand

    explain

    on

    types

    and

    states

    of

    flow

    ii. Identifytypesofopenchannels

    iii. Defineopen

    channel

    geometries

    BFC21103Hydraulics

    Tanetal.([email protected])

  • 7/23/2019 hydraulic Chapter1

    3/40

    Openchannel

    flow

    is

    flow

    of

    aliquid

    in

    aconduit

    with

    afree

    surface

    subjectedtoatmosphericpressure.

    Examples:flowofwaterinrivers,canals,partiallyfullsewers and

    drainsandflowofwateroverland.

    Freesurface

    Flow

    Datum

    x

    y

    u

    yA

    B

    T

    Figure.Sketchofopenchannelgeometry

    BFC21103Hydraulics

    Tanetal.([email protected])

  • 7/23/2019 hydraulic Chapter1

    4/40

    Stormwater Managementand

    Road

    Tunnel

    (SMART),KualaLumpur,Malaysia

    Tahan river

    rapids

    Siberianmeandering

    river

  • 7/23/2019 hydraulic Chapter1

    5/40

    Practicalapplications:

    a. flowdepthinrivers,canalsandotherconveyanceconduits,

    b. changesin

    flow

    depth

    due

    to

    channel

    controls

    e.g.

    weirs,

    spillways,andgates,

    c. changesinriverstageduringfloods,

    d. surfacerunofffromrainfalloverland,

    e. optimalchanneldesign,andothers

    BFC21103Hydraulics

    Tanetal.([email protected])

  • 7/23/2019 hydraulic Chapter1

    6/40

    1.1FlowParametersandGeometricElements

    a.Depthofflowyistheverticalmeasureofwaterdepth.

    Normaldepthdismeasurednormaltothechannelbottom.

    d=ycos

    Formostapplications,dywhen10%,e.g.cos 1 =0.9998.

    Freesurface

    FlowQ

    Datum

    x

    y d

    So=bottomslope

    Sw=watersurfaceslope

    BFC21103Hydraulics

    Tanetal.([email protected])

  • 7/23/2019 hydraulic Chapter1

    7/40

    b.FlowordischargeQisthevolumeoffluidpassingacrosssection

    perpendiculartothedirectionofflowperunittime.

    Meanvelocity

    Vis

    the

    discharge

    divided

    by

    the

    cross

    sectional

    area

    A

    QV=

    BFC21103Hydraulics

    Tanetal.([email protected])

  • 7/23/2019 hydraulic Chapter1

    8/40

    c.WettedperimeterPisthelengthofchannelperimeterthatis

    wettedorcoveredbyflowingwater.

    A=crosssectionalarea

    coveredby

    flowing

    water

    B

    =bottom

    width

    T

    =top

    width

    A

    P

    y

    BFC21103Hydraulics

    Tanetal.([email protected])

  • 7/23/2019 hydraulic Chapter1

    9/40

    BFC21103Hydraulics

    Tanetal.([email protected])

    d.HydraulicradiusRistheratiooftheflowareaAtowetted

    perimeterP.

    B

    T

    A

    P

    y

    P

    AR =

    e.HydraulicdepthDistheaveragedepthofirregularcrosssection.

    T

    AD ==

    widthtop

    areaflow

  • 7/23/2019 hydraulic Chapter1

    10/40

    Channelsection Area

    A

    Topwidth

    T

    Wettedperimeter

    P

    By B B+2y

    Table.Openchannelgeometries

    y

    B

    T

    Rectangular

    yz

    T

    Triangular

    1 zy2 2zy

    212 zy +

    By

    +

    zy2 B+2zy 2

    12 zyB ++yz

    T

    Trapezoidal

    1

    B

    y

    T

    Circle

    D ( )

    sin8

    2

    D

    2

    D

    2

    sinD

  • 7/23/2019 hydraulic Chapter1

    11/40

    BFC21103Hydraulics

    Tanetal.([email protected])

    Find:

    (a) TopsurfacewidthT,flowareaA,wettedperimeterP,and

    hydraulicradiusR.

    (b) If

    Q=

    2.4

    m

    3

    /s,

    determine

    the

    state

    of

    flow.(c) IflongitudinallengthL=50m,findthecosttoconstructthe

    channel.Givenexcavationcost=RM3/m3 andliningcost=

    RM5/m2.

    Activity1.1

    3m

    2m

    1m

    60

  • 7/23/2019 hydraulic Chapter1

    12/40

    BFC21103Hydraulics

    Tanetal.([email protected])

    5774.060tan

    1==

    o

    z

    zyBT 2+=

    ( )( )25774.023+=T

    m309.5=T

    212 zyBP ++=

    ( ) 25774.01223 ++=P

    m619.7=P

    2zyByA +=

    ( ) ( )225774.023 +=A

    2m309.8=A

    P

    AR =

    619.7

    309.8=R

    m091.1=R

    (a) TopsurfacewidthT,wettedareaA,wettedperimeterPand

    hydraulic

    radius

    R.

  • 7/23/2019 hydraulic Chapter1

    13/40

    BFC21103Hydraulics

    Tanetal.([email protected])

    (b) IfQ=2.4m3/s,determinethestateofflow.

    m/s2888.0309.8

    4.2===

    A

    Qv

    gDV=Fr

    VR=Re

  • 7/23/2019 hydraulic Chapter1

    14/40

    (c) If thelengthofthechannelisL=50m,findthecosttoconstructthe

    channel.

    Given

    excavation

    cost

    =

    RM

    3/m3

    and

    lining

    cost

    =

    RM

    5/m2

    .

    Volumeofexcavation LA = channel

    5035774.033 2 +=

    3m81.709=

    Costofexcavation = costUnit 81.709m/3RM 3 =

    42.2129RM=

    BFC21103Hydraulics

    Tanetal.([email protected])

  • 7/23/2019 hydraulic Chapter1

    15/40

    Areaoflining LPA = channellining

    505774.01323 2

    lining ++=A

    3

    lining m41.496=

    A

    Costoflining liningcostUnit A= 41.496m/5RM 2 =

    05.2482RM=

    Totalcost 05.2482RM42.2129RM += 611.474RM=

    BFC21103Hydraulics

    Tanetal.([email protected])

  • 7/23/2019 hydraulic Chapter1

    16/40

    BFC21103Hydraulics

    Tanetal.([email protected])

    Find:

    (a) Flowarea

    A

    (b) WettedperimeterP

    (c) HydraulicradiusR

    Activity1.2

    3m4m2m1m

    2m

    2m

    1m A1

    A2A

    3

    A4

  • 7/23/2019 hydraulic Chapter1

    17/40

    BFC21103Hydraulics

    Tanetal.([email protected])

    1.2TypesofOpenChannel

    Prismaticandnonprismaticchannels

    Prismaticchannelisthechannelwhichcrosssectionalshape,

    sizeand

    bottom

    slope

    are

    constant.

    Most

    of

    the

    man

    made

    (artificial)channelsareprismaticchannelsoverlong

    stretches.Examplesofmanmadechannelsareirrigation

    canal,

    flume,

    drainage

    ditches,

    roadside

    gutters,

    drop,

    chute,

    culvertandtunnel.

    Allnaturalchannelsgenerallyhavevaryingcrosssectionsand

    thereforearenonprismatic.Examplesofnaturalchannelsare

    tinyhillsiderivulets,throughbrooks,streams,riversandtidalestuaries.

  • 7/23/2019 hydraulic Chapter1

    18/40

    BFC21103Hydraulics

    Tanetal.([email protected])

    Rigidandmobileboundarychannels

    Rigid

    channelsare

    channels

    with

    boundaries

    that

    is

    not

    deformable.Channelgeometryandroughnessareconstant

    overtime.Typicalexamplesarelinedcanals,sewersandnon

    erodibleunlinedcanals.

    Mobileboundarychannelsarechannelswithboundariesthatundergodeformationduetothecontinuousprocessof

    erosionanddepositionduetotheflow.Examplesareunlined

    manmade

    channels

    and

    natural

    rivers.

  • 7/23/2019 hydraulic Chapter1

    19/40

    BFC21103Hydraulics

    Tanetal.([email protected])

    Canalsisusuallyalongandmildsloped

    channelbuiltintheground,which

    maybeunlinedorlinedwith

    stonedmasonry,

    concrete,

    cement,

    woodorbituminousmaterial.

    Griboyedov Canal,St.

    Petersburg,

    Russia

    Terusan WanMuhammadSaman,Kedah

  • 7/23/2019 hydraulic Chapter1

    20/40

    BFC21103Hydraulics

    Tanetal.([email protected])

    ThisflumedivertswaterfromWhiteRiver,

    Washingtontogenerateelectricity BullRunHydroelectricProjectdiversionflume

    Flumesisachannelofwood,metal,concrete,ormasonry,usually

    supportedonorabovethesurfaceofthegroundtocarrywater

    acrossadepression.

  • 7/23/2019 hydraulic Chapter1

    21/40

    BFC21103Hydraulics

    Tanetal.([email protected])

    Openchannel

    flume

    in

    laboratory

  • 7/23/2019 hydraulic Chapter1

    22/40

    BFC21103Hydraulics

    Tanetal.([email protected])

    Chuteisachannelhavingsteepslopes.

    Naturalchute(falls)ontheleftandmanmadeloggingchuteontheright

    ontheCoulonge River,Quebec,Canada

  • 7/23/2019 hydraulic Chapter1

    23/40

    BFC21103Hydraulics

    Tanetal.([email protected])

    Dropissimilartoachute,butthechangeinelevationiswithina

    shortdistance.

    ThespillwayofLeasburgDiversionDamisaverticalhard

    basindropstructuredesignedtodissipateenergy

  • 7/23/2019 hydraulic Chapter1

    24/40

    BFC21103Hydraulics

    Tanetal.([email protected])

    Stormwater sewer

    isadrainordrainsystem

    designedtodrainexcessrain

    frompavedstreets,parkinglots,

    sidewalksand

    roofs.

    Stormdrain

    receiving

    urban

    runoff

    Stormsewer

  • 7/23/2019 hydraulic Chapter1

    25/40

  • 7/23/2019 hydraulic Chapter1

    26/40

    BFC21103Hydraulics

    Tanetal.([email protected])

    Openchannel

    flow

    conditions

    can

    be

    characterised

    with

    respect

    to

    space(uniformornonuniformflows)andtime(steadyorunsteady

    flows).

    Space howdotheflowconditionschangealongthereachofan

    openchannelsystem.

    a.Uniform

    flow

    depth

    of

    flow

    is

    the

    same

    at

    every

    sectionoftheflowdy/dx=0

    b.Nonuniformflow depthofflowvariesalongtheflow

    dy/dx0

  • 7/23/2019 hydraulic Chapter1

    27/40

    BFC21103Hydraulics

    Tanetal.([email protected])

    a.Uniform

    flow

    b.Nonuniformflowy1

    y2 Depthchanges

    along

    the

    channel

    yy Constant

    waterdepth

    x

    Depthof

    flow

    is

    the

    same

    at

    every

    section

    along

    the

    channel, 0

    dd =y

    Depthofflowvariesatdifferentsectionsalongthechannel, 0d

    d

    x

    y

  • 7/23/2019 hydraulic Chapter1

    28/40

    BFC21103Hydraulics

    Tanetal.([email protected])

    Time howdotheflowconditionschangeovertimeataspecific

    sectioninanopenchannelsystem.

    c.Steady

    flow

    depth

    of

    flow

    does

    not

    change/

    constant

    duringthetimeintervalunder

    considerationdy/dt=0

    d.Unsteady

    flow

    depth

    of

    flow

    changes

    with

    time

    dy/dt0

  • 7/23/2019 hydraulic Chapter1

    29/40

    BFC21103Hydraulics

    Tanetal.([email protected])

    c.Steady

    flow

    d.Unsteadyflow

    y1

    Time

    =

    t1

    y2

    Time

    =

    t2

    y1

    t3

    t2

    t1

    Depthofflowisthesameateverytimeinterval, 0d

    d=

    t

    y

    Depthofflowchangesfromtimetotime, 0d

    d

    t

    y

    y1=y2

    y1y2y3

  • 7/23/2019 hydraulic Chapter1

    30/40

    BFC21103Hydraulics

    Tanetal.([email protected])

    Theflowisrapidlyvariedifthedepthchangesabruptlyovera

    comparativelyshortdistance.Examplesofrapidlyvariedflow

    (RVF)arehydraulicjump,hydraulicdrop,flowoverweirandflow

    underasluice

    gate.

    Theflowisgraduallyvariedifthedepthchangesslowlyovera

    comparativelylongdistance.Examplesofgraduallyvariedflow

    (GVF)are

    flow

    over

    amild

    slope

    and

    the

    backing

    up

    of

    flow

    (backwater).

  • 7/23/2019 hydraulic Chapter1

    31/40

    BFC21103Hydraulics

    Tanetal.([email protected])

    RVF RVFGVF RVFGVF RVFGVF

    Sluice

    Hydraulic

    jumpFlowover

    weir

    Hydraulic

    dropContraction

    below

    the

    sluice

  • 7/23/2019 hydraulic Chapter1

    32/40

    BFC21103Hydraulics

    Tanetal.([email protected])

    1.4StateofFlow

    Thestateorbehaviourofopenchannelflowisgovernedbasicallybytheviscosityandgravityeffectsrelativetotheinertialforcesof

    theflow.

    Effectofviscosity dependingontheeffectofviscosityrelativeto

    inertialforces,theflowmaybeinlaminar,

    turbulent,ortransitionalstate.

    Reynoldsnumberrepresentstheeffectof

    viscosityrelativetoinertia,

    VR=Re

    whereVisthevelocity,Risthehydraulicradiusofa

    conduitandisthekinematicviscosity(forwaterat

    20C,=1.004106 m2/s,dynamicviscosity=

    1.00210

    3 Ns/m2 anddensity

    =

    998.2

    kg/m3).

  • 7/23/2019 hydraulic Chapter1

    33/40

    BFC21103Hydraulics

    Tanetal.([email protected])

    Re