hydracap max presentation - abril 2012

32
Solutions You Need. Technologies You Trust. HYDRAcap® MAX Technology Maximum Performance… Optimal Solution Training course April 2012 Antoine Leroux [email protected]

Upload: paulo-cesar-vs

Post on 14-Apr-2016

327 views

Category:

Documents


63 download

DESCRIPTION

A presentation from HydraCap

TRANSCRIPT

Page 1: HYDRAcap MAX Presentation - Abril 2012

Solutions You Need. Technologies You Trust.

HYDRAcap® MAX Technology

Maximum Performance… Optimal Solution

Training course April 2012

Antoine Leroux [email protected]

Page 2: HYDRAcap MAX Presentation - Abril 2012

1. Introduction to the HYDRAcapMAX technology

2. MF process: description of the sequences

CONTENTS

Page 3: HYDRAcap MAX Presentation - Abril 2012

Hydranautics Capillary Technology Product Offering

3

Feed TSS < 20 mg/L;

Feed BOD < 20 mg/L

HYDRAsub®

HYDRAcap®

MBR applications:

Feed TSS > 300 mg/L;

Feed BOD > 100 mg/L

Feed TSS > 20 mg/L;

Feed BOD < 100 mg/L ???

Feed TSS/BOD

Page 4: HYDRAcap MAX Presentation - Abril 2012

Air

HYDRAcap® versus

HYDRAcap® MAX

Feed

Filtrate

Backwash In

Backwash Out

Backwash Out

Filtrate

Filtrate

Feed

HYDRAcap® vs. HYDRAcap® MAX Same look, different operation

4

Drain

Page 5: HYDRAcap MAX Presentation - Abril 2012

HYDRAcap® MAX – Product specification

5

HYDRAcap® MAX Overview

Flow path Outside to inside

Membrane material PVDF

Filtration mode Dead end or crossflow

Membrane configuration

Hollow Fiber

Membrane area* 840 ft2 (78 m2) / 1130 ft2 (105 m²)

Module Height* 71” / 91” (1.8 / 2.3 m)

Module Diameter 10” (250 mm)

Fiber ID/OD 0.6/1.2 mm

Pore size 0.1 µm (Microfiltration)

Physical cleaning mode Air scour

* HYDRAcap® MAX 60 / HYDRAcap® MAX 80

Page 6: HYDRAcap MAX Presentation - Abril 2012

HYDRAcap® MAX Operating Parameters

6

Operating Range

Filtrate Flux, gfd (l/m2/hr) 25 – 70 (43 – 119)

Filtrate Flow, gpm (m3/h) HYDRAcap® MAX 60 HYDRAcap® MAX 80

14.6 – 40.6 (3.3 – 9.3) 19.6 – 55.0 (4.5 – 12.5)

Air scour flowrate, cfm (m3/hr) 7 (12)

Operating pH 4 – 10

Cleaning pH 1 – 13

Instantaneous Chlorine Tolerance, ppm 5,000

Total Chlorine Tolerance, ppm-hr >750,000

Maximum Feed Pressure, psig (bar) 73(5)

Transmembrane Pressure (TMP), psig (bar) 1 -30 (0.07 – 2.0)

Page 7: HYDRAcap MAX Presentation - Abril 2012

HYDRAcap® MAX – Footprint Advantage

Inside-

Out

7

Increase membrane area

HYDRAcap® MAX 60 =

840 ft2 (78 m2)

HYDRAcap® MAX 80 =

1130 ft2 (105 m2)

Outside-In: HYDRAcap® MAX Specifications

Flow path Outside to inside

Ability to treat feed water

up to 300 NTU

Page 8: HYDRAcap MAX Presentation - Abril 2012

HYDRAcap® MAX – Footprint Advantage

8

Basis: 20,000 m3/day production with one rack.

Hydranautics: 120 HYDRAcap® MAX 80 modules

Competitor A: Outside/In flow configuration

Competitor B : Inside/Out flow configuration

Key Benefits:

- Lower CAPEX

- Simplicity

105 m2 per module

Page 9: HYDRAcap MAX Presentation - Abril 2012

HYDRAcap® MAX – Footprint Advantage

9

• Seawater Filtration

• Production: 20,000 m3/day

• Flux: 80 LMH

Page 10: HYDRAcap MAX Presentation - Abril 2012

HYDRAcap® MAX – High Strength Fiber

10

HYDRAcap® MAX Fiber Specifications

Membrane material

PVDF

Membrane configuration

Hollow Fiber

Membrane Manufacturing Method

Thermally Induced Phase Separation (TIPS)

Burst Strength (psi)

300 (Limit of instrument)

Collapse Strength (psi)

300 (Limit of instrument)

Tensile Strength (N/fiber)

9.4 (Typical PES fiber is ~3 N/fiber)

Cross section of TIPS fiber

4040 RO element suspended by

2 HYDRAcap® MAX fibers

Page 11: HYDRAcap MAX Presentation - Abril 2012

Feed

Pump

Feed

Water

150

Micron

Screen

Filter

Filtrate

Filtrate

Tank

Drain

No backflush pump

requirement

Chemicals

Air scouring cleans

Chemicals injected

on line

MAXIMIZED

RECOVERY

Up to 98%

Key Benefits:

- Lower CAPEX

- Simplicity

HYDRAcap® MAX – Process simplicity Advantage

Air line

Page 12: HYDRAcap MAX Presentation - Abril 2012

HYDRAcap® MAX - Advantage Summary

12

Features Advantages Benefits

Lower

CAPEX

Lower

OPEX Simplicity Reliability

High membrane area

Smaller footprint / Fewer skids √ √

Reduced skid cost √

Fewer seals / connections √

TIPS fiber technology Reduced fiber breakage √ √

Increased tolerance to aggressive cleans √ √

No backwash

requirement

Higher recovery √

No pump nor ancillary equipment necessary √ √

Internal air diffuser Even distribution of air within the module √

Dual layer potting Delamination prevention √ √

Minimal fiber breakage √ √

PVDF membrane

material

Increased tensile and fatigue strength √

Chlorine and other oxidants tolerant √ √

OUT/IN technology Ability to treat high turbidity feed water √ √

Higher surface area per module volume √ √

Page 13: HYDRAcap MAX Presentation - Abril 2012

1. Introduction to the HYDRAcapMAX technology

2. MF process: description of the sequences

CONTENTS

Page 14: HYDRAcap MAX Presentation - Abril 2012

Operating Modes

14

Operating Mode Typical Duration Typical Frequency

Filtration – Dead End or Cross flow

20 – 60 minutes

AS - Air Scour Clean 60 – 240 seconds 20 – 60 minutes

MC1 - Chlorine Maintenance Clean 20 – 30 minutes 1 – 2/day

MC2 - Caustic Maintenance Clean 20 – 30 minutes 1 – 2/week

MC3 - Acid Maintenance Clean 20 – 30 minutes 1 – 2/week

RCs - Recovery Clean 2 – 3 hours 1/1 – 3 months

MIT - Integrity Test 10 – 15 minutes As needed

Page 15: HYDRAcap MAX Presentation - Abril 2012

Filtration Mode

15

Feed pump

Drain

Air

Filtrate

Concentrate/

Air Vent

Strainer

100-200µm

Operation process:

Dead end mode

Cross flow mode

Page 16: HYDRAcap MAX Presentation - Abril 2012

Filtration flux depends on:

– Water origin (ground water, sea water, surface water, residual water)

– Water analysis (Turbidity, TSS, organic matter, iron, manganese, aluminum, pH, alcalinity…)

– Pre-treatment (use of chemicals, agressive or scaling water)

– Temperature (flux is corrected below 12°C)

Filtration Mode – Filtration flux

Page 17: HYDRAcap MAX Presentation - Abril 2012

Air Scour Mode

17

• Air scouring, instead of backwashing, is the primary means of

physically cleaning the membrane

Air Scour Step Typical Step Duration (s)

1 Air Scour 30

2 Air Scour and Drain 40

3 Air Scour and Refill 50

4 Air Scour and Drain 40

5 Refill 50

*In low feed TSS applications, steps 4 and 5 are omitted

Page 18: HYDRAcap MAX Presentation - Abril 2012

18

Air Scour Step

1 Stop Filtration

2 Air Scour

3 Air Scour and Drain

4 Air Scour and Refill

5 Air Scour and Drain

6 Refill

7 Resume Filtration

Feed Drain

Air

Filtrate

Concentrate/

Air Vent

1 Stop Filtration

Air Scour Mode

Page 19: HYDRAcap MAX Presentation - Abril 2012

19

Air Scour Step

1 Stop Filtration

2 Air Scour

3 Air Scour and Drain

4 Air Scour and Refill

5 Air Scour and Drain

6 Refill

7 Resume Filtration

Feed Drain

Air

Filtrate

Concentrate/

Air Vent

2 Air Scour

Air Scour Mode

Page 20: HYDRAcap MAX Presentation - Abril 2012

20

Air Scour Step

1 Stop Filtration

2 Air Scour

3 Air Scour and Drain

4 Air Scour and Refill

5 Air Scour and Drain

6 Refill

7 Resume Filtration

Feed Drain

Air

Filtrate

Concentrate/

Air Vent

3 Air Scour and Drain

Air Scour Mode

Page 21: HYDRAcap MAX Presentation - Abril 2012

21

Air Scour Step

1 Stop Filtration

2 Air Scour

3 Air Scour and Drain

4 Air Scour and Refill

5 Air Scour and Drain

6 Refill

7 Resume Filtration

Feed Drain

Air

Filtrate

Concentrate/

Air Vent

4 Air Scour and Refill

Air Scour Mode

Page 22: HYDRAcap MAX Presentation - Abril 2012

22

Air Scour Step

1 Stop Filtration

2 Air Scour

3 Air Scour and Drain

4 Air Scour and Refill

5 Air Scour and Drain

6 Refill

7 Resume Filtration

Feed Drain

Air

Filtrate

Concentrate/

Air Vent

5 Air Scour and Drain

Air Scour Mode

Page 23: HYDRAcap MAX Presentation - Abril 2012

23

Air Scour Step

1 Stop Filtration

2 Air Scour

3 Air Scour and Drain

4 Air Scour and Refill

5 Air Scour and Drain

6 Refill

7 Resume Filtration

Feed Drain

Air

Filtrate

Concentrate/

Air Vent

6 Refill

Air Scour Mode

Page 24: HYDRAcap MAX Presentation - Abril 2012

24

Air Scour Step

1 Stop Filtration

2 Air Scour

3 Air Scour and Drain

4 Air Scour and Refill

5 Air Scour and Drain

6 Refill

7 Resume Filtration

Feed Drain

Air

Filtrate

Concentrate/

Air Vent

7 Resume Filtration

Air Scour Mode

Page 25: HYDRAcap MAX Presentation - Abril 2012

Maintenance Clean Mode

25

Maintenance cleaning, instead of chemical backwashing, is the primary

means of chemically cleaning the membrane

Air Scour Step Typical Step Duration (s)

1 Air Scour 30

2 Air Scour and Drain 40

3 Fill with Chemical Solution 60

4 Chemical Soak 600

5 Air Scour and Chemical Soak 600

6 Air Scour, Pressurization and Drain 60

7 Rinse chemical 60

8 Refill 30

• MC1 = 200 ppm chlorine

• MC2 = 0.2% caustic

• MC3 = 0.2% sulfuric/hydrochloric acid

Page 26: HYDRAcap MAX Presentation - Abril 2012

Maintenance Clean Mode

26

Feed Drain

Air

Filtrate

A. Chemical

Air Scour Step

1 Air Scour

2 Air Scour and Drain

3 Fill with Chemical Solution

4 Chemical Soak

5 Air Scour and Chemical Soak

6 Air Scour, Pressurization and Drain

7 Rinse chemical

8 Refill

A. Injection by the feed

B. Injection by the permeate

B. Chemical

Page 27: HYDRAcap MAX Presentation - Abril 2012

27

Feed Drain

Air

Filtrate

Concentrate/

Air Vent Air Scour Step

1 Air Scour

2 Air Scour and Drain

3 Fill with Chemical Solution

4 Chemical Soak

5 Air Scour and Chemical Soak

6 Air Scour, Pressurization and Drain

7 Rinse chemical

8 Refill

Maintenance Clean Mode

Low

pressure air

Page 28: HYDRAcap MAX Presentation - Abril 2012

Recovery Clean/CIP Mode

28

Air Scour Step Typical Step Duration (s)

1 Air Scour 60

2 Air Scour and Drain 40

3 Refill with Chemical Solution 60

4 Chemical Soak 1800

5 Air Scour and Chemical Soak 1800

6 Air Scour, Pressurization and Drain 60

7 Rinse chemical 120

8 Refill 30

• RC1 = 1000 ppm chlorine

• RC2 = 0.5 % caustic

• RC3 = 0.5% sulfuric/hydrochloric acid or 1 – 2% citric acid

Page 29: HYDRAcap MAX Presentation - Abril 2012

Integrity Test

29

1.Pressurize inside of fiber with air to ~15 psi 2.Monitor pressure decay rate 3.Look for bubbles in concentrate line (top vertical

port)

Similar to HYDRAcap, the integrity test mode

consists of the following steps:

Page 30: HYDRAcap MAX Presentation - Abril 2012

30

Country Application Delivery expected Number of modules

Flow capacity (m3/d)

Type of module Feed water quality Flux (Lmh) Filtration timer

(min) Recovery

expected (%)

China Well water 01-Jun-12 76 9,600 HYDRAcapMAX60 5 NTU 79.4 30 97.8

Singapore Recycled water 02-May-12 8 960 HYDRAcapMAX60 < 2 NTU 73 40 98

China Well water 01-Jul-12 76 9,600 HYDRAcapMAX60 5 NTU 79.4 30 97.8

India Surface water 01-Jun-12 8 640 HYDRAcapMAX80 100 NTU 50 30 95

Spain Surface water 28-May-12 2 240 HYDRAcapMAX80 30 NTU, 10 ppm COD 45.3 50 97.6

Reference list

Page 31: HYDRAcap MAX Presentation - Abril 2012

HYDRAcap® vs. HYDRAcap® MAX - Applications Application HYDRAcap® HYDRAcap® MAX

Well water X

Raw seawater X

Pretreated seawater X

Wastewater X

Raw surface water X

Pretreated Surface water X

Drinking water X

31

Page 32: HYDRAcap MAX Presentation - Abril 2012

Maximum Performance… Optimal Solution

• High membrane area

– Reduced skid cost

– Reduced footprint

• TIPS fiber technology

– Increased strength and chemical tolerance

– Longer life

• Process Simplicity

– Maximized recovery

– No backwash equipment

• Ability to treat high turbidity feed waters 32