hv7351 data sheet...2019/05/14  · 8-channel, ±70v, 3a programmable high-voltage...

28
2015-2019 Microchip Technology Inc. DS20005412B-page 1 HV7351 Features Eight Channels with Return-to-Zero (RTZ) Up to ±70V Output Voltage ±3.0A Output Current Stores up to Four Different Patterns Independent Programmable Delays 80-Lead Single 11 x 11 mm VQFN Package Applications Medical Ultrasound Imaging Non-Destructive Testing (NDT) Arbitrary Pattern Generator High-Speed PIN Diode Driver General Description The HV7351 device is an 8-channel, programmable high-voltage ultrasound-transmit beamformer. Each channel is capable of swinging up to ±70V with an active discharge back to 0V. The outputs can source and sink up to 3.0A to achieve fast output rise and fall times. The active discharge is also capable of sourcing and sinking 3.0A for a fast return to ground. The topol- ogy of the HV7351 will significantly reduce the number of I/O logic control lines needed. Each pulser has four associated 64-bit Shift registers for storing predetermined transmit patterns and a 10-bit delay counter for controlling the transmit time. One of four arbitrary patterns can be transmitted with adjust- able delay, depending on the data loaded into these Shift registers and the delay counter. The delay counter can be clocked up to 200 MHz, allowing incremental delays down to 5 ns. Typical Application Circuit Tx128 TRIG Tx127 Tx3 Tx2 Tx1 t DELAY1 TRIG HV7351 8-Channel U1 HV7351 8-Channel U2 HV7351 8-Channel U16 t DELAY2 t DELAY3 t DELAY127 t DELAY128 E3 E1 E2 E127 E128 Array Probe 8-Channel, ±70V, 3A Programmable High-Voltage Ultrasound-Transmit Beamformer

Upload: others

Post on 12-Feb-2021

0 views

Category:

Documents


0 download

TRANSCRIPT

  • HV73518-Channel, ±70V, 3A Programmable High-Voltage

    Ultrasound-Transmit Beamformer

    Features• Eight Channels with Return-to-Zero (RTZ)• Up to ±70V Output Voltage• ±3.0A Output Current• Stores up to Four Different Patterns• Independent Programmable Delays• 80-Lead Single 11 x 11 mm VQFN Package

    Applications• Medical Ultrasound Imaging• Non-Destructive Testing (NDT)• Arbitrary Pattern Generator• High-Speed PIN Diode Driver

    General DescriptionThe HV7351 device is an 8-channel, programmablehigh-voltage ultrasound-transmit beamformer. Eachchannel is capable of swinging up to ±70V with anactive discharge back to 0V. The outputs can sourceand sink up to 3.0A to achieve fast output rise and falltimes. The active discharge is also capable of sourcingand sinking 3.0A for a fast return to ground. The topol-ogy of the HV7351 will significantly reduce the numberof I/O logic control lines needed.

    Each pulser has four associated 64-bit Shift registersfor storing predetermined transmit patterns and a 10-bitdelay counter for controlling the transmit time. One offour arbitrary patterns can be transmitted with adjust-able delay, depending on the data loaded into theseShift registers and the delay counter. The delay countercan be clocked up to 200 MHz, allowing incrementaldelays down to 5 ns.

    Typical Application Circuit

    Tx128

    TRIG

    Tx127

    Tx3

    Tx2

    Tx1 tDELAY1

    TRIG

    HV73518-Channel

    U1

    HV73518-Channel

    U2

    HV73518-Channel

    U16

    tDELAY2

    tDELAY3

    tDELAY127

    tDELAY128

    E3

    E1

    E2

    E127

    E128

    ArrayProbe

    2015-2019 Microchip Technology Inc. DS20005412B-page 1

  • HV7351

    Package Types (Top View)

    HV735111 x 11 mm VQFN*

    DOUT2

    AVDD

    INV

    TCK

    CS1

    A0

    74 71 68 65 6280 77

    81

    73 70 67 64 6179 76 72 69 66 6378 7527 30 33 36 3921 24 28 31 34 37 4022 25 29 32 35 3823 26

    7

    10

    13

    16

    19

    1

    4

    8

    11

    14

    17

    20

    2

    5

    9

    12

    15

    18

    3

    6

    54

    51

    48

    45

    42

    60

    57

    53

    50

    47

    44

    41

    59

    56

    52

    49

    46

    43

    58

    55

    DIN2

    SIZE

    DVDD

    SCK

    EN

    CW

    CS2

    DGNDTRIG

    TCKVLL

    DOUT1

    DIN1

    A1

    PVSS

    VNN

    VPF

    PGND

    VPF

    DGND

    VNF

    VPP

    PVDD

    PGND

    PGND

    DGND

    DVDD

    PVSSPGND

    VNN

    VNF

    DGND

    PVDD

    VPP

    NC

    VR

    N

    PV

    SS

    TX2

    TX3

    VP

    P

    PV

    DD

    PG

    ND

    TX1

    VN

    N

    VN

    F

    VP

    F

    PG

    ND

    VP

    P

    VP

    P

    VN

    N

    VN

    N

    VP

    P

    VN

    N

    TX4

    NC

    VR

    P

    PV

    SS

    TX7

    TX6

    VP

    P

    PV

    DD

    PG

    ND

    TX8

    VN

    N

    VN

    F

    VP

    F

    PG

    ND

    VP

    P

    VP

    P

    VN

    N

    VN

    N

    VP

    P

    VN

    N

    TX5

    VSUB

    * Includes Exposed Thermal Pad (EP); see Table 2-1.

    DS20005412B-page 2 2015-2019 Microchip Technology Inc.

  • HV7351

    Block Diagram

    INVEN/LDCW

    CLK

    16/32-BitSerial

    Shift Reg.

    INVEN/LDCW

    CLK

    16/32-BitSerial

    Shift Reg.

    INVEN/LDCW

    CLK

    16/32-BitSerial

    Shift Reg.

    INVEN/LDCW

    CLK

    16/32-BitSerial

    Shift Reg.

    Divide-by-2

    6-Bit CounterDivide-by-NN = 1 to 64

    LinearRegulator

    LinearRegulator

    ENEN10-Bit Delay

    Counter

    Divide-by-2

    VLL to VDDTranslator

    -

    +

    PGND

    PGND

    VPF

    VPFVNF

    VNF

    PVSS

    PVDD

    PVSS

    PVDD

    VPP

    VPF

    VRN

    VRP

    VNF

    VNN

    VPP

    TX1

    VNN

    PGND

    PVDDPVSS

    VPP

    TX8

    VNN

    PGND

    CW

    fCW

    PIN

    NIN

    ControlLogic

    CW

    fCW

    PIN

    NIN

    ControlLogic

    RTZ GATE DriverSupply Voltages

    6-Bit CounterDivide-by-NN = 1 to 64

    ENEN10-Bit Delay

    Counter

    8 10-Bit Registersfor Delay Counters

    6-Bit forDivide-by-N

    16/32-Bit RegisterPattern 4

    16/32-Bit RegisterPattern 3

    16/32-Bit RegisterPattern 2

    16/32-Bit RegisterPattern 1

    16/32-Bit RegisterPattern 4

    16/32-Bit RegisterPattern 3

    16/32-Bit RegisterPattern 2

    16/32-Bit RegisterPattern 1

    P-Ch. Registers N-Ch. Registers

    Dec

    oder

    VPFVRN

    VPP

    VNFVNN

    VRP

    VLLAVDDDVDD

    EN

    SIZE

    SCKDIN1

    DOUT1

    A0A1

    DIN2DOUT2

    CWINV

    TRIG

    TCK

    DGND

    AGND

    VSUB

    CS2

    CS1

    TCK

    2015-2019 Microchip Technology Inc. DS20005412B-page 3

  • HV7351

    NOTES:

    DS20005412B-page 4 2015-2019 Microchip Technology Inc.

  • HV7351

    1.0 ELECTRICAL CHARACTERISTICS

    Absolute Maximum Ratings†Positive logic supply (VLL)............................................................................................................................ -0.5V to 5.5VPositive logic supply voltage (DVDD)............................................................................................................ -0.5V to 5.5VPositive gate drive supply voltage (PVDD) ................................................................................................... -0.5V to 5.5VPositive analog supply voltage (AVDD)......................................................................................................... -0.5V to 5.5VNegative gate drive supply voltage (PVSS) ................................................................................................ +0.5V to -5.5VHigh-voltage positive supply voltage (VPP) ................................................................................................. -0.5V to +80VHigh-voltage negative supply voltage (VNN) ............................................................................................... +0.5V to -80VDifferential high-voltage supply (VPP – VNN)...........................................................................................................+160VPositive floating supply voltage (VPF) .................................................................................................. VPP – 6.0V to VPPNegative floating supply voltage (VNF).................................................................................................VNN to VNN + 6.0VPositive supply for VNF regulator (VRP)............................................................................................................. 0V to 15VNegative supply for VPF regulator (VRN) .......................................................................................................... 0V to -15VOperating temperature ........................................................................................................................... -40°C to +125°CStorage temperature ............................................................................................................................... -65°C to +150°CESD Rating All Pins .............................................................................................................................................. 0.75 kV

    † Notice: Stresses above those listed under “Maximum Ratings” may cause permanent damage to the device. This isa stress rating only and functional operation of the device at those or any other conditions above those indicated inthe operational sections of this specification is not intended. Exposure to maximum rating conditions for extendedperiods may affect device reliability.

    TABLE 1-1: OPERATING SUPPLY VOLTAGESElectrical Specifications: Unless otherwise specified: TA = +25°C. Boldface specifications apply over the TA range of -20°C to +85°C.

    Parameter Sym. Min. Typ. Max. Units Conditions

    Positive High-Voltage Supply VPP 3.0 — 70 V Note 1Negative High-Voltage Supply VNN -70 — -3.0 VLogic Interface Voltage VLL 2.85 3.30 3.6 VLow-Voltage Positive Analog Supply Voltage

    AVDD 4.75 5.00 5.25 V

    Low-Voltage Positive Digital Supply Voltage

    DVDD 4.75 5.00 5.25 V

    Low-Voltage Positive Gate Drive Supply Voltage

    PVDD 4.75 5.00 5.25 V

    Low-Voltage Negative Gate Drive Supply Voltage

    PVSS -5.25 -5.00 -4.75 V

    Low-Voltage Positive Supply for VNF Regulator

    VRP 4.75 — 12 V

    Low-Voltage Negative Supply for VPF Regulator

    VRN -12 — -4.75 V

    Reference Voltage Logic Trip Point for TCK Pin

    TCK 0.4 VLL 0.5 VLL 0.6 VLL V

    TCK/TCK Input Current ITCK/ITCK — — ±10 µA ITCK = 0 to VLL, TA = +25°C (Note 1)

    Note 1: Specification is obtained by characterization and is not 100% tested.

    2015-2019 Microchip Technology Inc. DS20005412B-page 5

  • HV7351

    TABLE 1-2: REGULATOR OUTPUTSParameter Sym. Min. Typ. Max. Units Conditions

    Positive Floating Gate Drive Voltage

    VPF VPP – 5.25 VPP – 5.00 VPP – 4.00 V 4x1 µF ceramic capacitors across VPF and VPP

    Negative Floating Gate Drive Voltage

    VNF VNN + 4.00 VNN + 5.00 VNN + 5.25 V 4x1 µF ceramic capacitors across VNF and VNN

    ELECTRICAL CHARACTERISTICSElectrical Specifications: Unless otherwise specified: VLL = 3.3V, AVDD = DVDD = PVDD = VRP = 5.0V, PVSS = VRN = -5.0V, VPP = +70V, VNN = -70V, TA = +25°C.

    Parameter Sym. Min. Typ. Max. Units Conditions

    VLL Quiescent Current IVLLQ — 384 500 µA EN = Low, all inputs are static

    AVDD Quiescent Current IAVDDQ — 12 30 µA EN = Low, all inputs are staticDVDD Quiescent Current IDVDDQ — 12 30

    PVDD Quiescent Current IPVDDQ — 70 100VRP Quiescent Current IVRPQ — 0.3 6 µA EN = Low,

    all inputs are staticVRN Quiescent Current IVRNQ — -0.01 6PVSS Quiescent Current IPVSSQ -85 -45 — µA EN = Low,

    all inputs are staticVPP Quiescent Current IVPPQ — 2.6 6 µA EN = Low,

    all inputs are staticVNN Quiescent Current IVNNQ — -1.6 6VLL Enabled Quiescent Current

    IVLLEN — 390 500 µA EN = High, all inputs are static

    AVDD Enabled Quiescent Current

    IAVDDEN — 600 800 µA EN = High, all inputs are static

    DVDD Enabled Quiescent Current

    IDVDDEN — 22 55

    PVDD Enabled Quiescent Current

    IPVDDEN — 44 100 µA EN = High, all inputs are static

    VRP Enabled Quiescent Current

    IVRPEN — 450 650 µA EN = High, all inputs are static

    VRN Enabled Quiescent Current

    IVRNEN -650 -350 —

    PVSS Enabled Quiescent Current

    IPVSSEN -100 -44 — µA EN = High, all inputs are static

    VPP Enabled Quiescent Current

    IVPPEN — 370 620 µA EN = High, all inputs are static

    VNN Enabled Quiescent Current

    IVNNEN -620 -420 —

    VLL Current at 80 MHz Clock IVLLCW — 500 — µA VPP = +5.0V, VNN = -5.0V, EN = High, CW = High, 80 MHz on TCK,0.5 VLL on TCK, all eight channels active at 5.0 MHz, no load (Note 1)

    DVDD Current at CW = 5 MHz IDVDDCW — 25 — mAVPP Current at CW = 5 MHz IVPPCW — 141 — mAVNN Current at CW = 5 MHz IVNNCW — 98 — mA

    Note 1: Specification is obtained by characterization and is not 100% tested.

    DS20005412B-page 6 2015-2019 Microchip Technology Inc.

  • HV7351

    AC ELECTRICAL CHARACTERISTICSElectrical Specifications: Unless otherwise specified: VLL = 3.3V, AVDD = DVDD = PVDD = VRP = 5.0V, PVSS = VRN = -5.0V, VPP = +70V, VNN = -70V, TA = +25°C.

    Parameter Sym. Min. Typ. Max. Units Conditions

    Transmit Clock Frequency

    fTCK 0 — 200 MHz

    Serial Clock Frequency fSCK 0 — 80 MHz No daisy-chain0 — 70 Daisy-chained (Note 2)

    Setup Time Data into SCK

    tSU-DIN 2 — — ns Note 1

    Hold Time SCK to Data In

    tH-DIN 2 — — ns Note 1

    Setup Time CS1 Low to SCK

    tSU-CS1 2 — — ns Note 2

    Setup Time CS2 Low to SCK

    tSU-CS2 2 — — ns Note 2

    Setup Time from TRIG Fall to TCK Rise Edge

    tSU-TRIG 2 — — ns Note 2

    TRIG Pulse Width tW-TRIG 2 x TCK — — Cycle Note 2SCK to Data Out Low to High Delay Time

    tLHDO 3 9 12 ns For DOUT1 (Note 1)3 9 10 For DOUT2 (Note 1)

    SCK to Data Out High to Low Delay Time

    tHLDO 3 9 12 ns For DOUT1 (Note 1)3 9 10 For DOUT2 (Note 1)

    A1A0 Pulse Width tWA1A0 tW-TRIG + 40 — — ns Note 2Setup Time A1A0 to TRIG Rising Edge

    tSUA1A0 — 20 — ns Note 1

    Hold Time A1A0 to TRIG Falling Edge

    tHA1A0 — 20 — ns

    Device Enable Time tEN-ON — 1 — ms 1.0 µF capacitor on every VPF and VNF pin (Note 1)

    Device Disable Time tEN-OFF — — 100 ns Note 1Output Rise Time from 0V to +HV

    tr1 — 9 13 ns Load = 330 pF||2.5 k

    Output Fall Time from 0V to -HV

    tf1 — 9 13 ns

    Damping Output Rise Time from -HV to 0V

    tr2 — 9 13 ns

    Damping Output Fall Time from +HV to 0V

    tf2 — 9 13 ns

    Output Rise Time from -HV to +HV

    tr3 — 17 23 ns

    Output Fall Time from +HV to -HV

    tf3 — 17 23 ns

    CW Output Rise Time trcw — 9 16 ns VPP = +5.0V, VNN = -5.0V,Load = 330 pF||2.5 kCW Output Fall Time tfcw — 9 16 ns

    Note 1: Specification is obtained by characterization and is not 100% tested.2: Specification is for design guidance only.

    2015-2019 Microchip Technology Inc. DS20005412B-page 7

  • HV7351

    Output Propagation Delay Rise Time 1

    tdr1 11 14 18 ns No load

    Output Propagation Delay Fall Time 1

    tdf1 11 14 18 ns

    Output Propagation Delay Rise Time 2

    tdr2 12 15 19 ns

    Output Propagation Delay Fall Time 2

    tdf2 11 15 18 ns

    Output Propagation Delay Rise Time 3

    tdr3 12 15 19 ns

    Output Propagation Delay Fall Time 3

    tdf3 11 15 18 ns

    CW Output Propagation Delay Time from Low-to-High

    tdcwlh 10 13 17 ns VPP = +5.0V, VNN = -5.0V,no load

    CW Output Propagation Delay Time from High-to-Low

    tdcwhl 10 14 17 ns

    Delay Time Matching tdcwhl — ±0.7 — ns P to N, channel-to-channel matching

    Delay Jitter on Rise or Fall

    tJCW — 13 — ps VPP = +5.0V, VNN = -5.0V,Load = 50 (Note 2)

    Latency LAT 3.5 TCK Note 2Output P-Channel MOSFET to VPP, CW = 0Output Saturation Current

    IOUT 2.2 3.2 — A

    Output On-Resistance RON — 4.2 — IOUT = 100 mAOutput Capacitance COSS — 62 — pF VPP – VOUT = 25V,

    f = 1.0 MHz (Note 2)Output N-Channel MOSFET to VNN, CW = 0Output Saturation Current

    IOUT 2.2 3.2 — A

    Output On-Resistance RON — 2.4 — IOUT = -100 mAOutput Capacitance COSS — 50 — pF VNN – VOUT = -25V,

    f = 1.0 MHz (Note 2)Output P-Channel MOSFET to VPP, CW = 1Output Saturation Current

    IOUT 1.2 1.5 — A

    Output On-Resistance RON — 8 — IOUT = 100 mAOutput Capacitance COSS — 62 — pF VPP – VOUT = 25V,

    f = 1.0 MHz (Note 2)

    AC ELECTRICAL CHARACTERISTICS (CONTINUED)Electrical Specifications: Unless otherwise specified: VLL = 3.3V, AVDD = DVDD = PVDD = VRP = 5.0V, PVSS = VRN = -5.0V, VPP = +70V, VNN = -70V, TA = +25°C.

    Parameter Sym. Min. Typ. Max. Units Conditions

    Note 1: Specification is obtained by characterization and is not 100% tested.2: Specification is for design guidance only.

    DS20005412B-page 8 2015-2019 Microchip Technology Inc.

  • HV7351

    Output N-Channel MOSFET to VNN, CW = 1Output Saturation Current

    IOUT 1.2 1.5 — A

    Output On-Resistance RON — 6.6 — IOUT = -100 mAOutput Capacitance COSS — 50 — pF VNN – VOUT = -25V,

    f = 1.0 MHz (Note 2)Damping P-Channel MOSFET to PGNDOutput Saturation Current

    IOUT 2.2 3.2 — A

    Output On-Resistance RON — 4 — IOUT = 100 mAOutput capacitance COSS — 62 — pF VPP – VOUT = 25V,

    f = 1.0 MHz (Note 2)Damping N-Channel MOSFET to PGNDOutput Saturation Current

    IOUT 2.2 3.2 — A

    Output On-Resistance RON — 2.3 — IOUT = -100 mAOutput Capacitance COSS — 50 — pF VNN – VOUT = -25V,

    f = 1.0 MHz (Note 2)Logic InputsClock Input Current ITCK — ±1.0 — µA Voltage 0 to VLLClock Input High Voltage

    VIH_TCK VTCK + 0.15 — VLL V TCK = 0.5 VLL (Note 2)

    Clock Input Low Voltage

    VIL_TCK 0 — VTCK – 0.15 V

    Logic Input High Voltage

    VIH 0.8 VLL — VLL V For all logic inputs except clock inputs

    Logic Input Low Voltage

    VIL 0 — 0.2 VLL V

    Input Logic High Current

    IIH — — 1 µA

    Input Logic Low Current

    IIL -1 — — µA

    Output Logic Low Voltage

    VOL 0 — 0.7 V IOUT = 0 to -10 mA

    Output Logic High Voltage

    VOH VLL – 0.7 — VLL V IOUT = 0 to 10 mA

    Input Logic Capacitance

    CIN — — 5.0 pF Note 2

    AC ELECTRICAL CHARACTERISTICS (CONTINUED)Electrical Specifications: Unless otherwise specified: VLL = 3.3V, AVDD = DVDD = PVDD = VRP = 5.0V, PVSS = VRN = -5.0V, VPP = +70V, VNN = -70V, TA = +25°C.

    Parameter Sym. Min. Typ. Max. Units Conditions

    Note 1: Specification is obtained by characterization and is not 100% tested.2: Specification is for design guidance only.

    2015-2019 Microchip Technology Inc. DS20005412B-page 9

  • HV7351

    TEMPERATURE SPECIFICATIONSElectrical Specifications: Unless otherwise specified: VLL = 3.3V, AVDD = DVDD = PVDD = VRP = 5.0V, PVSS = VRN = -5.0V, VPP = +70V, VNN = -70V, TA = +25°C.

    Parameters Sym. Min. Typ. Max. Units Conditions

    Temperature RangesOperating Ambient Temperature Range TA -40 — +125 °CStorage Temperature Range TA -65 — +150 °CMaximum Junction Temperature TJ -40 — +150 °CPackage Thermal ResistancesThermal Resistance, 80L-11x11 mm VQFN JA — 14 — °C/W

    TABLE 1-3: LOGIC TRUTH TABLE

    Mode

    Inputs Outputs

    CommentsEN CW

    10-B

    itC

    ount

    er

    INV NIN PIN N-Ch. P-Ch. RTZ

    Non-CW mode. Outputs not inverted. Outputs are controlled by data in the Shift registers.

    1 0 x x 0 0 OFF OFF ON Return-to-Zero (RTZ) is activated when NIN and PIN are both low. Output is pulled to ground through a series diode.

    1 0 x 0 0 1 OFF ON OFF Not inverted. Logic ‘1’ in the P-Channel register turns on the output P-Channel MOSFET.

    1 0 x 0 1 0 ON OFF OFF Not inverted. Logic ‘1’ in the N-Channel register turns on the output N-Channel MOSFET.

    1 0 x x 1 1 OFF OFF OFF Avoids cross overcurrent. A logic ‘1’ in both P- and N-Channel registers will put the output in a High-Z state.

    Non-CW mode. Outputs are inverted. Outputs are controlled by data in the Shift registers.

    1 0 x 1 0 1 ON OFF OFF Transmit pattern is inverted.1 0 x 1 1 0 OFF ON OFF

    CW mode. Output follows fCW.

    1 x All ‘1’s x x x OFF OFF OFF If 10-bit counter reaches all ‘1’s, then the channel will be turned off.

    1 1 Not all ‘1’s

    x x x OFF/ ON ON/ OFF OFF The channel’s output follows the fCW signal. The Shift registers for PIN and NIN remain static to save power.

    Device disabled. 0 x x x x x OFF OFF OFF High-Z state.Legend: x = Don’t care.

    DS20005412B-page 10 2015-2019 Microchip Technology Inc.

  • HV7351

    1.1 Timing Diagrams

    FIGURE 1-1: Timing Diagram of 3-Level, 1-Cycle Bipolar RTZ TX Pulse.

    FIGURE 1-2: Timing Diagram of 2-Level, 2-Cycle Bipolar non-RTZ TX Pulses with Damping.

    TCK0V

    3.3V

    TRIG

    TX1 0V

    +70V

    Internal CLK(for N = 2)

    0VExample with TX2 Delay havingTwo TCK Cycles more than TX1

    TCK = 1.65V (0.5 VLL)

    TX2

    Delay Time Set byTX2 10-Bit Counter

    Delay Time Set byTX1 10-Bit Counter

    tWTRIG needs to be at least2 Rising Edges of TCK

    0V

    3.3V

    0V

    3.3V

    -70V

    +70V

    -70V

    3.5 TCK Cycles

    tWTRIG

    tSU-TRIG

    tdr1 tdf2

    tdf1

    tr1 tf2

    tdr2

    10% 10%

    90% 90%

    10% 10%

    90% 90%

    tf1 tr2

    Example with TX2 Delay havingOne TCK Cycle more than TX1

    Delay Time Set byTX2 10-Bit Counter

    3.5 TCK Cycles

    tSU-TRIG

    tWTRIG needs to be at least2 Rising Edges of TCK

    tWTRIG

    Delay Time Set byTX1 10-Bit Counter

    tdf390%

    10%10%

    90%

    tf3 tr3

    tdr3

    TCK0V

    3.3V

    TRIG

    TX1 0V

    +70V

    Internal CLK(for N = 2)

    0V

    TCK = 1.65V (0.5 VLL)

    TX2

    0V

    3.3V

    0V

    3.3V

    -70V

    +70V

    -70V

    2015-2019 Microchip Technology Inc. DS20005412B-page 11

  • HV7351

    NOTES:

    DS20005412B-page 12 2015-2019 Microchip Technology Inc.

  • HV7351

    2.0 PIN DESCRIPTIONThe descriptions of the pins are listed in Table 2-1.

    TABLE 2-1: PIN FUNCTION TABLEPin Symbol Description

    1 AVDD Positive analog supply voltage (+5.0V).2 DIN2 Serial data in for delay counters and frequency divider.

    3 CS2 Activates DIN2. Input logic high = off, input logic low = on.4 SIZE Sets pattern width to either 16 bits or 32 bits. Logic low = 16 bits, logic high = 32 bits.5 INV Inverts the TX output waveform. See Table 1-3 for details.6 CW Activates CW mode. Logic low = non-CW mode, logic high = CW mode.

    See Table 1-3 for details.7 DOUT2 Data out for delay counters and frequency divider.8 EN Enables and disables device. Logic low = off, logic high = on.9 SCK Serial clock input for Serial Shift registers.

    10, 50 DVDD Positive digital supply voltage (+5.0V).11, 43, 51, 58 DGND Digital ground.

    12 TRIG Toggles all TX outputs to transmit. Needs to be high for two rising edges of TCK. Delay counters will start on the rising edge of the TCK pin right after the falling edge of the TRIG signal. See Section 1.1 “Timing Diagrams” for details.

    13 TCK The TCK and TCK pins can be driven by LVDS or SSTL types of output in a differential manner. The TCK pin can be driven by LVCMOS single-ended output while setting the TCK to GND (or DC value of 0.4V to 0.6V). The logic trip point is on the TCK rising edge and on the TCK falling edge, crossing in the differential manner. In the single-ended case, the trip point is on the TCK rising edge.

    14 TCK

    15 VLL Logic interface supply voltage (3.3V).

    16 CS1 Activates DIN1. Input logic high = off, input logic low = on.17 DOUT1 Data out for P-Channel and N-Channel Pattern registers.18 A0 Decoded to select one of four patterns to be loaded.19 A120 DIN1 Serial data in for P-Channel and N-Channel Pattern registers.21 VRN Negative supply for VPF regulator (-5.0V).

    22, 49, 52, 79 PVDD Positive gate drive supply voltage for RTZ output transistors (+5.0V).23, 24, 46, 48,53, 55, 77, 78

    PGND Power ground path for RTZ output transistors.

    25, 47, 54, 76 PVSS Negative gate drive supply voltage for RTZ output transistors (-5.0V).26, 45, 56, 75 VPF Linear regulator output gate drive voltage for the P-Channel output transistors. A

    low-voltage 1.0 µF ceramic capacitor needs to be connected across every VPF and VPP pins. There are four capacitors required in total.

    27 NC No connection.28, 42, 59, 73 VNF Linear regulator output gate drive voltage for the N-Channel output transistors. A

    low-voltage 1.0 µF ceramic capacitor needs to be connected across every VNF to VNN pins. There are four capacitors required in total.

    29, 34, 35, 40,41, 60, 61, 66,

    67, 72

    VNN Negative high-voltage supply (-3.0V to -70V).

    30 TX1 Transmit pulser outputs for Channel 1.31, 32, 37, 38, 44, 57, 63, 64,

    69, 70

    VPP Positive high-voltage supply (+3.0V to +70V).

    2015-2019 Microchip Technology Inc. DS20005412B-page 13

  • HV7351

    33 TX2 Transmit pulser outputs for Channel 2.36 TX3 Transmit pulser outputs for Channel 3.39 TX4 Transmit pulser outputs for Channel 4.62 TX5 Transmit pulser outputs for Channel 5.65 TX6 Transmit pulser outputs for Channel 6.68 TX7 Transmit pulser outputs for Channel 7.71 TX8 Transmit pulser outputs for Channel 8.74 NC No connection.80 VRP Positive supply for VNF regulator (+5.0V).81 VSUB Exposed center pad must be externally connected to the ground (GND, 0V) on

    PCB (DGND).

    TABLE 2-1: PIN FUNCTION TABLE (CONTINUED)Pin Symbol Description

    DS20005412B-page 14 2015-2019 Microchip Technology Inc.

  • HV7351

    3.0 DEVICE DESCRIPTION

    3.1 Loading Data into the Four 16/32-Bit Pattern Registers

    A detailed circuit diagram of the Pattern registers isshown in Figure 3-1. There are four programmable pat-terns that can be stored. One of four patterns can be

    selected via the two input logic decoder pins, A1 andA0. Data can be loaded on the selected pattern. Eachpattern can be either 16 or 32 bits wide. The SIZE pindetermines whether they are 16 or 32 bits wide.SIZE = H will set the pattern to be 32 bits wide whileSIZE = L will set it to 16 bits wide. DIN1 is the input datafor the register. When CS1 is high, data will not beshifted in. Data are shifted in only when CS1 is low.

    FIGURE 3-1: Pattern Register Circuit Diagram.

    With SIZE = H, the circuit is effectively a 64-bit SerialShift register. The data first enter into the P-Channel reg-ister and continue to be shifted though to the N-Channelregister. Data are clocked in during the rising edge of theclock. There is no activity during the falling edge of theclock. The DIN1 data enter into the S64 of the P-Channelregister and exit the S1 of the N-Channel register fromDOUT1. The SPI writing operation of the WaveformPattern registers is LSB first.

    EXAMPLE 3-1:

    Data are shifted in during the rising edge of the clock.S1 is the first bit shifted in, entering the P-Channelregister. After 64 clock cycles, S1 will be located in theN-Channel register, as shown in Figure 3-2; it will alsobe clocked out to DOUT1.

    FIGURE 3-2: Waveform Pattern Register.

    2-to-4Decoder

    DOUT1

    SCK

    DIN1

    SIZEENDIN

    SCK

    SIZE

    16-/32-BitShift Register

    P-Ch. Pattern 1

    CS116-/32-Bit

    Shift RegisterP-Ch. Pattern 2

    16-/32-BitShift Register

    P-Ch. Pattern 3

    16/32-BitShift Register

    P-Ch. Pattern 4

    16/32-BitShift Register

    N-Ch. Pattern 4

    16-/32-BitShift Register

    N-Ch. Pattern 3

    16-/32-BitShift Register

    N-Ch. Pattern 2

    16-/32-BitShift Register

    N-Ch. Pattern 1

    SIZEENDIN

    SCK

    SIZEENDIN

    SCK

    SIZEENDIN

    SCK

    A1 A0 CS1

    A1 A0 CS1

    A1 A0 CS1

    A1 A0 CS1

    A1

    A0

    A1 A0 CS1

    A1 A0 CS1

    A1 A0 CS1

    A1 A0 CS1

    For: SIZE = High, 32 bits wideSIZE = Low, 16 bits wide

    A1 = A0 = Low, Pattern 1 selectedCS1 = Low, data can be shifted in

    64-Bit Serial Shift Register:32 bits for the P-Channeland32 bits for the N-Channel

    DOUT1DIN1

    SCK

    32 Bits for P-Ch Pattern 1 32 Bits for N-Ch Pattern 1

    32 Bits forP-Ch Pattern 1

    32 Bits forN-Ch Pattern 1

    S64 S63 S34 S33 S31S32 S2 S1

    2015-2019 Microchip Technology Inc. DS20005412B-page 15

  • HV7351

    A 2-to-4 decoder is provided to select which of the fourpatterns is to be used for all of the outputs. Logic inputs,A1 and A0, determine which patterns are selected, asshown in Table 3-1. Once A1 and A0 are set, a risingedge on the trigger logic input pin will automaticallyload the selected pattern to all of the outputs.

    3.2 Loading Data into the Delay Counters and the Divide-by-N Counter

    Each output channel (TX) has its own programmable10-bit delay counter. For eight channels, 80 bits areneeded. A 6-bit divide-by-N counter is also provided toprogram the desired TX frequency. To program all theindividual delay counters and the divide-by-N counter, an86-bit Serial Shift register is provided. It uses the sameclock input that the Pattern registers use. DIN2 is theinput data for this register. When CS2 is high, data will notbe shifted in. Data are shifted in only when CS2 is low.

    As shown in Figure 3-3, the data first enter into the10-bit register for the TX8 delay counter and continueto be shifted through to the 6-bit register for thedivide-by-N counter. Data are clocked in during therising edge of the clock. There is no activity during thefalling edge of the clock. The MSB bit in the 6-bitDivide-by-N register is clocked out into DOUT2 forcascading multiple devices, if desired.

    FIGURE 3-3: Delay and Divide-by-N Registers.

    TABLE 3-1: DECODER TRUTH TABLELogic Decoder Input

    Pattern SelectedA1 A2

    0 0 10 1 21 0 31 1 4

    10 bits TX8 10 bits TX7 10 bits TX6 10 bits TX5 10 bits TX4 DOUT2

    LSB

    DIN2SCK

    LSB

    86-Bit Serial Shift Register: 80 Bits for the Delay Counters and 6 Bits for the Divide-by-N

    10 bits TX3 10 bits TX2 10 bits TX1 6 bits Divide-by-N

    10 bits TX8 Delay Counter 10 bits TX7 Delay Counter 6 bits Divide-by-N

    LSBMSB MSBMSB

    S86 S85 S84 S83 S82 S81 S80 S79 S78 S77 S76 S75 S74 S73 S72 S71 S70 S69 S68 S67 S6 S5 S4 S3 S2 S1

    DS20005412B-page 16 2015-2019 Microchip Technology Inc.

  • HV7351

    3.3 10-Bit Delay CounterThe TCK and TCK pins are the input clock for the 10-bitdelay counter. The maximum capable clock frequencyis up to 200 MHz. The counter counts upward.

    TABLE 3-2: DELAY COUNTERMSB LSB Delay Time

    0 0 0 0 0 0 0 0 0 0 1023 TCK Cycles0 0 0 0 0 0 0 0 0 1 1022 TCK Cycles0 0 0 0 0 0 0 0 1 0 1021 TCK Cycles0 0 0 0 0 0 0 0 1 1 1020 TCK Cycles•••

    •••

    •••

    •••

    •••

    •••

    •••

    •••

    •••

    •••

    •••

    1 1 1 1 1 1 1 1 0 0 3 TCK Cycles1 1 1 1 1 1 1 1 0 1 2 TCK Cycles1 1 1 1 1 1 1 1 1 0 1 TCK Cycle1 1 1 1 1 1 1 1 1 1 No trigger

    (Output of the channel is disabled when related

    delay is all ‘1’s)

    2015-2019 Microchip Technology Inc. DS20005412B-page 17

  • HV7351

    3.4 6-Bit Divide-by-N CounterThe TCK and TCK pins are the input clock for the 6-bitdivide-by-N counter. It generates the clock frequencyfor the 16-/32-bit Serial Shift register for the outputP-Channel and N-Channel patterns. Each clock cyclewill set the TX output to be either at VPP, VNN,ground or high-impedance, depending on what waspre-programmed in their corresponding registers.

    TABLE 3-3: 6-BIT DIVIDE-BY-N COUNTER REGISTER

    MSB LSB N N-Ch, P-Ch and RTZ Output Pulse Width(s)

    0 0 0 0 0 0 64 64 ÷ fTCK0 0 0 0 0 1 63 63 ÷ fTCK0 0 0 0 1 0 62 62 ÷ fTCK0 0 0 0 1 1 61 61 ÷ fTCK•••

    •••

    •••

    •••

    •••

    •••

    •••

    •••

    1 1 1 1 0 0 4 4 ÷ fTCK1 1 1 1 0 1 3 3 ÷ fTCK1 1 1 1 1 0 2 2 ÷ fTCK1 1 1 1 1 1 1 1 ÷ fTCK

    DS20005412B-page 18 2015-2019 Microchip Technology Inc.

  • HV7351

    4.0 PACKAGING INFORMATION

    4.1 Package Marking Information

    Legend: XX...X Product Code or Customer-specific informationY Year code (last digit of calendar year)YY Year code (last 2 digits of calendar year)WW Week code (week of January 1 is week ‘01’)NNN Alphanumeric traceability code Pb-free JEDEC designator for Matte Tin (Sn)* This package is Pb-free. The Pb-free JEDEC designator ( )

    can be found on the outer packaging for this package.

    Note: In the event the full Microchip part number cannot be marked on one line, it willbe carried over to the next line, thus limiting the number of availablecharacters for customer-specific information. Package may or may not includethe corporate logo.

    3e

    3e

    XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXYYWWNNN

    35 mils

    3e

    80-Lead VQFN (11x11x0.9 mm)

    HV7351K61933256 35 mils

    3e

    Example

    2015-2019 Microchip Technology Inc. DS20005412B-page 19

  • HV7351

    BA

    0.15 C

    0.15 C

    0.10 C A B

    (DATUM B)(DATUM A)

    NOTE 1

    2XTOP VIEW

    SIDE VIEW

    BOTTOM VIEW

    For the most current package drawings, please see the Microchip Packaging Specification located athttp://www.microchip.com/packaging

    Note:

    NOTE 1

    12

    N

    0.10 C A B

    0.10 C A B

    0.10 C

    0.08 C

    Microchip Technology Drawing C04-301A-8FX Sheet 1 of 2

    80-Lead Plastic Quad Flat, No Lead Package (8FX) – 11x11x0.9 mm Body [VQFN]

    2X

    80X

    D

    E

    12

    N

    e

    80X L

    80X K

    E2

    D2

    80X b

    (A3)A

    CSEATING

    PLANE

    A1

    DS20005412B-page 20 2015-2019 Microchip Technology Inc.

  • HV7351

    For the most current package drawings, please see the Microchip Packaging Specification located athttp://www.microchip.com/packaging

    Note:

    Dimension LimitsUnits

    D

    Overall Width

    Overall LengthExposed Pad Length

    Exposed Pad Width

    Terminal Thickness

    D2

    E2E

    9.70

    MILLIMETERS

    0.203 REF

    MIN

    (A3)

    MAX

    11.00 BSC

    Terminal LengthTerminal Width

    Lb

    0.500.30

    Notes:1.

    KTerminal-to-Exposed Pad 0.20

    NOM

    BSC: Basic Dimension. Theoretically exact value shown without tolerances.3.2.

    REF: Reference Dimension, usually without tolerance, for information purposes only.

    Standoff A1 -Overall Height A 0.85Pitch e 0.50 BSCNumber of Terminals N 80

    0.300.18

    9.50

    0.000.80

    0.250.40

    -

    9.6011.00 BSC

    0.050.90

    -

    Pin 1 visual index feature may vary, but must be located within the hatched area.

    Dimensioning and tolerancing per ASME Y14.5M.Package is saw singulated.

    Microchip Technology Drawing C04-301A-8FX Sheet 2 of 2

    80-Lead Plastic Quad Flat, No Lead Package (8FX) – 11x11x0.9 mm Body [VQFN]

    9.709.50 9.60

    2015-2019 Microchip Technology Inc. DS20005412B-page 21

  • HV7351

    RECOMMENDED LAND PATTERN

    For the most current package drawings, please see the Microchip Packaging Specification located athttp://www.microchip.com/packaging

    Note:

    Dimension LimitsUnits

    C2

    Optional Center Pad Width

    Contact Pad Spacing

    Optional Center Pad Length

    Contact Pitch

    Y2X2

    9.709.70

    MILLIMETERS

    0.50 BSCMIN

    EMAX

    11.00

    Contact Pad Length (X20)Contact Pad Width (X80)

    Y1X1

    0.800.30

    Microchip Technology Drawing C04-2301A-8FX

    NOM

    SILK SCREEN

    12

    80

    C1

    C2

    E

    X1

    Y1

    G2

    Y2

    X2

    C1Contact Pad Spacing 11.00

    Contact Pad to Center Pad (X80) G2 0.20Thermal Via Diameter VThermal Via Pitch EV

    0.331.200

    ØV

    EV

    EV

    80-Lead Plastic Quad Flat, No Lead Package (8FX) – 11x11x0.9 mm Body [VQFN]

    G1

    Contact Pad to Contact Pad (X76) G1 0.20

    BSC: Basic Dimension. Theoretically exact value shown without tolerances.

    Notes:Dimensioning and tolerancing per ASME Y14.5M

    For best soldering results, thermal vias, if used, should be filled or tented to avoid solder loss duringreflow process

    1.

    2.

    DS20005412B-page 22 2015-2019 Microchip Technology Inc.

  • HV7351

    APPENDIX A: REVISION HISTORY

    Revision B (October 2019)• Updated Figure 3-3.• Updated Table 3-2 and Table 3-3.

    Revision A (June 2015)• Original Release of this Document.

    2015-2019 Microchip Technology Inc. DS20005412B-page 23

  • HV7351

    NOTES:

    DS20005412B-page 24 2015-2019 Microchip Technology Inc.

  • HV7351

    PRODUCT IDENTIFICATION SYSTEMTo order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

    PART NO. XX

    PackageDevice

    Device: HV7351: 8-Channel, ±70V, 3A Programmable High-Voltage Ultrasound-Transmit Beamformer

    Package: K6 = 80-Lead Plastic Quad Flat, No Lead Package (8FX) – 11x11x0.9 mm Body (VQFN)

    Environmental: G = Lead (Pb)-free/ROHS-compliant package

    Examples:a) HV7351K6-G: Programmable High-Voltage

    Ultrasound-Transmit Beamformer, 80-Lead 11x11 mm VQFN package

    -X

    Environmental

    2015-2019 Microchip Technology Inc. DS20005412B-page 25

  • HV7351

    NOTES:

    DS20005412B-page 26 2015-2019 Microchip Technology Inc.

  • Note the following details of the code protection feature on Microchip devices:• Microchip products meet the specification contained in their particular Microchip Data Sheet.

    • Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.

    • There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.

    • Microchip is willing to work with the customer who is concerned about the integrity of their code.

    • Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as “unbreakable.”

    Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of ourproducts. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such actsallow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

    Information contained in this publication regarding deviceapplications and the like is provided only for your convenienceand may be superseded by updates. It is your responsibility toensure that your application meets with your specifications.MICROCHIP MAKES NO REPRESENTATIONS ORWARRANTIES OF ANY KIND WHETHER EXPRESS ORIMPLIED, WRITTEN OR ORAL, STATUTORY OROTHERWISE, RELATED TO THE INFORMATION,INCLUDING BUT NOT LIMITED TO ITS CONDITION,QUALITY, PERFORMANCE, MERCHANTABILITY ORFITNESS FOR PURPOSE. Microchip disclaims all liabilityarising from this information and its use. Use of Microchipdevices in life support and/or safety applications is entirely atthe buyer’s risk, and the buyer agrees to defend, indemnify andhold harmless Microchip from any and all damages, claims,suits, or expenses resulting from such use. No licenses areconveyed, implicitly or otherwise, under any Microchipintellectual property rights unless otherwise stated.

    2015-2019 Microchip Technology Inc.

    For information regarding Microchip’s Quality Management Systems, please visit www.microchip.com/quality.

    TrademarksThe Microchip name and logo, the Microchip logo, Adaptec, AnyRate, AVR, AVR logo, AVR Freaks, BesTime, BitCloud, chipKIT, chipKIT logo, CryptoMemory, CryptoRF, dsPIC, FlashFlex, flexPWR, HELDO, IGLOO, JukeBlox, KeeLoq, Kleer, LANCheck, LinkMD, maXStylus, maXTouch, MediaLB, megaAVR, Microsemi, Microsemi logo, MOST, MOST logo, MPLAB, OptoLyzer, PackeTime, PIC, picoPower, PICSTART, PIC32 logo, PolarFire, Prochip Designer, QTouch, SAM-BA, SenGenuity, SpyNIC, SST, SST Logo, SuperFlash, Symmetricom, SyncServer, Tachyon, TempTrackr, TimeSource, tinyAVR, UNI/O, Vectron, and XMEGA are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

    APT, ClockWorks, The Embedded Control Solutions Company, EtherSynch, FlashTec, Hyper Speed Control, HyperLight Load, IntelliMOS, Libero, motorBench, mTouch, Powermite 3, Precision Edge, ProASIC, ProASIC Plus, ProASIC Plus logo, Quiet-Wire, SmartFusion, SyncWorld, Temux, TimeCesium, TimeHub, TimePictra, TimeProvider, Vite, WinPath, and ZL are registered trademarks of Microchip Technology Incorporated in the U.S.A.

    Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any Capacitor, AnyIn, AnyOut, BlueSky, BodyCom, CodeGuard, CryptoAuthentication, CryptoAutomotive, CryptoCompanion, CryptoController, dsPICDEM, dsPICDEM.net, Dynamic Average Matching, DAM, ECAN, EtherGREEN, In-Circuit Serial Programming, ICSP, INICnet, Inter-Chip Connectivity, JitterBlocker, KleerNet, KleerNet logo, memBrain, Mindi, MiWi, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, PowerSmart, PureSilicon, QMatrix, REAL ICE, Ripple Blocker, SAM-ICE, Serial Quad I/O, SMART-I.S., SQI, SuperSwitcher, SuperSwitcher II, Total Endurance, TSHARC, USBCheck, VariSense, ViewSpan, WiperLock, Wireless DNA, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

    SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.The Adaptec logo, Frequency on Demand, Silicon Storage Technology, and Symmcom are registered trademarks of Microchip Technology Inc. in other countries.GestIC is a registered trademark of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries. All other trademarks mentioned herein are property of their respective companies.

    © 2015-2019, Microchip Technology Incorporated, All Rights Reserved.

    ISBN: 978-1-5224-5138-9

    DS20005412B-page 27

    www.microchip.com/qualitywww.microchip.com/quality

  • DS20005412B-page 28 2015-2019 Microchip Technology Inc.

    AMERICASCorporate Office2355 West Chandler Blvd.Chandler, AZ 85224-6199Tel: 480-792-7200 Fax: 480-792-7277Technical Support: http://www.microchip.com/supportWeb Address: www.microchip.comAtlantaDuluth, GA Tel: 678-957-9614 Fax: 678-957-1455Austin, TXTel: 512-257-3370 BostonWestborough, MA Tel: 774-760-0087 Fax: 774-760-0088ChicagoItasca, IL Tel: 630-285-0071 Fax: 630-285-0075DallasAddison, TX Tel: 972-818-7423 Fax: 972-818-2924DetroitNovi, MI Tel: 248-848-4000Houston, TX Tel: 281-894-5983IndianapolisNoblesville, IN Tel: 317-773-8323Fax: 317-773-5453Tel: 317-536-2380Los AngelesMission Viejo, CA Tel: 949-462-9523Fax: 949-462-9608Tel: 951-273-7800 Raleigh, NC Tel: 919-844-7510New York, NY Tel: 631-435-6000San Jose, CA Tel: 408-735-9110Tel: 408-436-4270Canada - TorontoTel: 905-695-1980 Fax: 905-695-2078

    ASIA/PACIFICAustralia - SydneyTel: 61-2-9868-6733China - BeijingTel: 86-10-8569-7000 China - ChengduTel: 86-28-8665-5511China - ChongqingTel: 86-23-8980-9588China - DongguanTel: 86-769-8702-9880 China - GuangzhouTel: 86-20-8755-8029 China - HangzhouTel: 86-571-8792-8115 China - Hong Kong SARTel: 852-2943-5100 China - NanjingTel: 86-25-8473-2460China - QingdaoTel: 86-532-8502-7355China - ShanghaiTel: 86-21-3326-8000 China - ShenyangTel: 86-24-2334-2829China - ShenzhenTel: 86-755-8864-2200 China - SuzhouTel: 86-186-6233-1526 China - WuhanTel: 86-27-5980-5300China - XianTel: 86-29-8833-7252China - XiamenTel: 86-592-2388138 China - ZhuhaiTel: 86-756-3210040

    ASIA/PACIFICIndia - BangaloreTel: 91-80-3090-4444 India - New DelhiTel: 91-11-4160-8631India - PuneTel: 91-20-4121-0141Japan - OsakaTel: 81-6-6152-7160 Japan - TokyoTel: 81-3-6880- 3770 Korea - DaeguTel: 82-53-744-4301Korea - SeoulTel: 82-2-554-7200Malaysia - Kuala LumpurTel: 60-3-7651-7906Malaysia - PenangTel: 60-4-227-8870Philippines - ManilaTel: 63-2-634-9065SingaporeTel: 65-6334-8870Taiwan - Hsin ChuTel: 886-3-577-8366Taiwan - KaohsiungTel: 886-7-213-7830Taiwan - TaipeiTel: 886-2-2508-8600 Thailand - BangkokTel: 66-2-694-1351Vietnam - Ho Chi MinhTel: 84-28-5448-2100

    EUROPEAustria - WelsTel: 43-7242-2244-39Fax: 43-7242-2244-393Denmark - CopenhagenTel: 45-4450-2828 Fax: 45-4485-2829Finland - EspooTel: 358-9-4520-820France - ParisTel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79 Germany - GarchingTel: 49-8931-9700Germany - HaanTel: 49-2129-3766400Germany - HeilbronnTel: 49-7131-72400Germany - KarlsruheTel: 49-721-625370Germany - MunichTel: 49-89-627-144-0 Fax: 49-89-627-144-44Germany - RosenheimTel: 49-8031-354-560Israel - Ra’anana Tel: 972-9-744-7705Italy - Milan Tel: 39-0331-742611 Fax: 39-0331-466781Italy - PadovaTel: 39-049-7625286 Netherlands - DrunenTel: 31-416-690399 Fax: 31-416-690340Norway - TrondheimTel: 47-7288-4388Poland - WarsawTel: 48-22-3325737 Romania - BucharestTel: 40-21-407-87-50Spain - MadridTel: 34-91-708-08-90Fax: 34-91-708-08-91Sweden - GothenbergTel: 46-31-704-60-40Sweden - StockholmTel: 46-8-5090-4654UK - WokinghamTel: 44-118-921-5800Fax: 44-118-921-5820

    Worldwide Sales and Service

    05/14/19

    http://support.microchip.comhttp://www.microchip.com

    FeaturesApplicationsGeneral DescriptionTypical Application CircuitPackage Types (Top View)Block Diagram1.0 Electrical CharacteristicsAbsolute Maximum Ratings†TABLE 1-1: Operating Supply VoltagesTABLE 1-2: Regulator Outputs

    Electrical CharacteristicsAC Electrical CharacteristicsTemperature SpecificationsTABLE 1-3: Logic Truth Table1.1 Timing DiagramsFIGURE 1-1: Timing Diagram of 3-Level, 1-Cycle Bipolar RTZ TX Pulse.FIGURE 1-2: Timing Diagram of 2-Level, 2-Cycle Bipolar non-RTZ TX Pulses with Damping.

    2.0 Pin DescriptionTABLE 2-1: Pin Function Table

    3.0 Device Description3.1 Loading Data into the Four 16/32-Bit Pattern RegistersFIGURE 3-1: Pattern Register Circuit Diagram.EXAMPLE 3-1:FIGURE 3-2: Waveform Pattern Register.TABLE 3-1: Decoder Truth Table

    3.2 Loading Data into the Delay Counters and the Divide-by-N CounterFIGURE 3-3: Delay and Divide-by-N Registers.

    3.3 10-Bit Delay CounterTABLE 3-2: Delay Counter

    3.4 6-Bit Divide-by-N CounterTABLE 3-3: 6-Bit Divide-by-N Counter Register

    4.0 Packaging Information4.1 Package Marking Information

    Appendix A: Revision HistoryRevision B (October 2019)Revision A (June 2015)

    Product Identification SystemWorldwide Sales and Service