hst/cos observations of o(he) stars

25
HST/COS Observations of O(He) Stars

Upload: valentine-mcfarland

Post on 03-Jan-2016

21 views

Category:

Documents


2 download

DESCRIPTION

HST/COS Observations of O(He) Stars. O(He) Stars. spectral sub-type O(He) by Méndez et al. (1986) spectra dominated by He II absorption lines CSPN K 1-27 CSPN LoTr 4 HS 1522+6615 HS 2209+8229 HS 0742+6520 preliminary analysis. NLTE analysis by Rauch et al. 1998. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: HST/COS Observations of O(He) Stars

HST/COS Observations of O(He) Stars

HST/COS Observations of O(He) Stars

Page 2: HST/COS Observations of O(He) Stars

EUROWD10, August 17, 2010

O(He) StarsO(He) Stars

spectral sub-type O(He) by Méndez et al. (1986)– spectra dominated by He II absorption lines

• CSPN K 1-27• CSPN LoTr 4• HS 1522+6615• HS 2209+8229

• HS 0742+6520 preliminary analysis

NLTE analysis by Rauch et al. 1998

2

Page 3: HST/COS Observations of O(He) Stars

3

Page 4: HST/COS Observations of O(He) Stars

EUROWD10, August 17, 2010

O(He) Photospheric ParametersO(He) Photospheric Parameters

Teff / kK log g H/He C/He N/He O/He

CSPN K 1-27 105 6.5 < 0.2 < 0.005 0.005

CSPN LoTr 4 120 5.5 0.5 < 0.004 0.001 < 0.008

HS 1522+6615 140 5.5 0.1 0.003 HS 2209+8229 100 6.0 < 0.2

Rauch et al. 1998, A&A 338, 651 based on optical, UV (IUE), and X-ray (ROSAT) spectra

4

Page 5: HST/COS Observations of O(He) Stars

O(He) stars found amongst PG 1159 stars

two pairs of spectroscopic twins– HS 1522+6615 + LoTr 4– HS 2209+8829 + K 1-27

no PN PN

Page 6: HST/COS Observations of O(He) Stars

EUROWD10, August 17, 2010

Evolution of O(He) StarsEvolution of O(He) Stars

Evolutionary models (e.g. Herwig et al. 1999)– PG 1159 abundances (He:C:O=33:50:17 by mass)

are result of late He-shell flash– O(He) cannot be explained

10

Page 7: HST/COS Observations of O(He) Stars

EUROWD10, August 17, 2010

Miller Bertolami & Althaus, 2006, A&A, 454, 845

M = 0.512Mʘ

post early-AGB star

“numerical experiment”

increased mass-loss rates

hydrogen deficiency

11

Page 8: HST/COS Observations of O(He) Stars

EUROWD10, August 17, 2010

O(He) vs. RCrBO(He) vs. RCrB

Teff / kK log g H/He C/He N/He O/He

K 1-27 105 6.5 < 0.2 < 0.005 0.005

LoTr 4 120 5.5 0.5 < 0.004 0.001 < 0.008

HS 1522+6615 140 5.5 0.1 0.003 HS 2209+8229 100 6.0 < 0.2

RCrB < 0.0001 0.010 0.004 0.005

V 854 Cen 0.5 0.030 0.0003 0.003

12

Page 9: HST/COS Observations of O(He) Stars

EUROWD10, August 17, 2010

Evolution of O(He) StarsEvolution of O(He) Stars

evolutionary models (e.g. Herwig et al. 1999)– PG 1159 abundances (He:C:O=33:50:17 by mass)

are result of late He-shell flash– O(He) cannot be explained

third post-AGB evolutionary sequence?– hydrogen-rich– hydrogen-deficient ( [WC] – PG 1159 – DO )– hydrogen-deficient ( RCrB – O(He) – DO ) ?

13

Page 10: HST/COS Observations of O(He) Stars

EUROWD10, August 17, 2010

Spectroscopy of O(He) StarsSpectroscopy of O(He) Stars

high Teff flux maximum in the EUV

precise NLTE spectral analysis needs– metal lines (of highly ionized species)

• ionization equilibria Teff

• abundances– high S/N, high-resolution UV spectra

IUE 1978 - 1996 1150 - 3200Å R < 11 000

GHRS @HST 1990 - 1997 1150 - 3200Å R < 80 000

STIS @HST 1997 - 2004 1150 - 3175Å R < 114 000

FUSE 1999 - 2007 904 - 1190Å R 20 000

14

Page 11: HST/COS Observations of O(He) Stars

EUROWD10, August 17, 2010

UV ObservationsUV Observations

HST STIS– Cy13: accepted (starting from Cy06 …)

first observations scheduled for Aug 9, 2004 STIS failure Aug 3, 2004

HST COS– Cy17: accepted– to be performed late 2010 / 2011– COS: deviation from nominal PSF– all four observations performed May – July 2010

15

Page 12: HST/COS Observations of O(He) Stars

EUROWD10, August 17, 2010

UV ObservationsUV Observations

FUSE– Cy03: accepted

( 4 stars, 25 ksec)– Cy08: accepted

(only 3 stars, 204 ksec)

observations scheduled for summer 2007FUSE failure July 12, 2007

16

Page 13: HST/COS Observations of O(He) Stars

EUROWD10, August 17, 2010

FUSE resolution reduced to 7Å

17

Page 14: HST/COS Observations of O(He) Stars

EUROWD10, August 17, 2010 18

Page 15: HST/COS Observations of O(He) Stars

EUROWD10, August 17, 2010 19

Page 16: HST/COS Observations of O(He) Stars

EUROWD10, August 17, 2010

hydrostatic models

20

Page 17: HST/COS Observations of O(He) Stars

EUROWD10, August 17, 2010

HotBlast “wind” modelsradiation-driven mass-loss rates (Pauldrach et al. 1988)

-7.6

-7.7

-9.1

-9.5

21

Page 18: HST/COS Observations of O(He) Stars

EUROWD10, August 17, 2010

Models with Fe group lines

25

Page 19: HST/COS Observations of O(He) Stars

HS1522+6615

Elke Reiff

diploma thesis

Page 20: HST/COS Observations of O(He) Stars

EUROWD10, August 17, 2010

ConclusionsConclusions

mass-loss rates of O(He) stars are not higher than predicted by radiation-driven wind theory

change of surface composition due to wind unlikely

FUSE spectra do not show isolated metal lines and thus, allow to give only upper limits for abundances

iron-group abundances are (probably) solar

UV spectroscopy with HST COS!– determination of C, N, O, and Si abundances to

corroborate link to RCrBs

28

Page 21: HST/COS Observations of O(He) Stars
Page 22: HST/COS Observations of O(He) Stars
Page 23: HST/COS Observations of O(He) Stars

EUROWD10, August 17, 2010 31

Page 24: HST/COS Observations of O(He) Stars

EUROWD10, August 17, 2010

Conclusions IIConclusions IIlow-mass O(He) stars

– post early-AGB stars– first thermal pulse (TP) after departure from AGB– higher mass-loss rates hydrogen deficiency

high-mass O(He) stars– “normal” born-again scenario– (V)LTP hydrogen deficiency

alternative O(He) scenario– double-degenerate merger

• similar H/He surface composition suggests that the O(He) stars are the progeny of RCrB stars

– RCrB O(He) non-DA WD

32

Page 25: HST/COS Observations of O(He) Stars

KPD 0005+5106

is a successor of high-mass O(He) stars?

Poster #71 on KPD 0005+5106