‘how would you make an energy storage fibre’

7
‘How would you make an energy storage fibre’ Arne Lüker, 6 th of Sept. 2012, Uxbridge/London [email protected] www.arne-lueker.de 1 GIVEN TOPIC

Upload: mort

Post on 10-Jan-2016

22 views

Category:

Documents


3 download

DESCRIPTION

GIVEN TOPIC. ‘How would you make an energy storage fibre’. Arne L üker , 6 th of Sept. 2012, Uxbridge/London [email protected] www.arne-lueker.de. Overview “Smart textiles, e-textiles”. Potential applications military/aero- or astronautical garment devices - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: ‘How  would you  make an energy storage fibre’

‘How would you make an energy storage fibre’

Arne Lüker, 6th of Sept. 2012, Uxbridge/London

[email protected]

www.arne-lueker.de

1

GIVEN TOPIC

Page 2: ‘How  would you  make an energy storage fibre’

Overview“Smart textiles, e-textiles”

Potential applications• military/aero- or astronautical garment devices

• biomedical/antimicrobial textiles

• personal electronics

2

Limitations (up to date)

• energy harvesting is an easy challenge compared to energy storage using textiles

• conventional batteries and capacitors are too bulky and heavy

• nonwowen and/or electrospun fibres are not directly applicable for direct integration 1, 2

Not a continuous part of the pre-existing textile, expensive and/or toxic, pseudocapacitive materials life cycle?

• carbon nanomaterials (carbon nanotubes, CNTs) are too expensive and ineffective 1,3-5

Example - Mass loading of CNT fabric supercapacitor:

10 µg/cm2 – 2 mg/cm2 per 2-electrode device compared to ~ 5 mg/cm2 per 1-electrode device with nanoparticles

Page 3: ‘How  would you  make an energy storage fibre’

E-textiles in practice

3

e-textiles should be• non-toxic

• inexpensive• washable at 60 °C plus x

• cosy, flexible and breathable• easy to handle and fashionable

active materials should be• stainable

• “sticky n’tacky” (only) to the fabric• easy to apply

Optical photograph of (a) a commercial cotton T-shirt (b) a piece of ACT and (c) a piece of ACT under folding condition, showing its highly flexible nature. (d) and (e) SEM images of cotton T-shirt textile and ACT, and insets are SEM images of individual cellulose fiber and activated carbon fiber, respectively.7

(6)

Page 4: ‘How  would you  make an energy storage fibre’

FT-IR spectra of cotton textile and ACT, showing the conversion of cellulose fibers into activated carbonfibers

SEM images of MnO2 on ACT fibers, an individual ACT fiber coated with a thin film of MnO2 and TEM image of the MnO2-flake

The simple path towards e-Textiles

4

Raw Textile (e.g. Cotton)

Activation (e.g. NaF-dip + drying)

ACT (activated carbon textile)

NaMnO4 Na2C4H2O4

NaxMnO2+y·nH2O„xerogel“

E-Textile

2.5M H2SO4

Water exchange(acetone, cyclohexane and hexane)

& drying „ambigel“

Notes:aqueous sodium permanganate - NaMnO4 aqueous sodium fumarate - Na2C4H2O4

37% 81%(6)

(7)

(8)

Ionic bonding(8)

CV curve of xerogel (– –) and ambigel (—) forms of Na0.35MnO2.02·0.75H2O

Bonding via

Van Der w

aals

forces

weight component of Particles per fiber

Page 5: ‘How  would you  make an energy storage fibre’

The Challenge: The Electrolyte

5

(6)

(7)

(9) (10)

YP 17: Porous activated carbon derived from coconut shells - SWNT: Single-Walled carbon NanoTubes

• Aqueous layers are unwanted in e-Textiles• BUT: Even in SWNT-systems separators and liquids are

needed to prevent electrical short circuits while also allowing the transport of ionic charge carriers

Triple Layer SystemAqueous electrolyte

Technological Limitation to date

Big Challenge and Motivation for the next two years with a Great Impacton different areas of applied sciences!

Page 6: ‘How  would you  make an energy storage fibre’

References

6

1) M. Pasta, F. L. Mantia, L. Hu, H. D. Deshazer and Y. Cui, Nano Res., 2010, 3, 452–458.2) A. Laforgue, J. Power Sources, 2011, 196, 559–564.3) L. B. Hu, M. Pasta, F. La Mantia, L. F. Cui, S. Jeong, H. D. Deshazer, J. W. Choi, S. M. Han

Y. Cui, Nano Lett., 2010, 10, 708–714.4) L. Hu, J. W. Choi, Y. Yang, S. Jeong, F. La Mantia, L. F. Cui,Y. Cui, Proc. Natl. Acad. Sci.

U. S. A., 2009, 106, 21490–21494.5) V. L. Pushparaj, M. M. Shaijumon, A. Kumar, S. Murugesan, L. Ci, R. Vajtai, R. J. Linhardt,

O. Nalamasu ,P. M. Ajayan, Proc. Natl. Acad. Sci. U. S. A., 2007, 104, 13574–13577.6) K. Jost, C.R. Perez, J.K. McDonough, V. Presser, M. Heon, G. Dion, Y. Gogotsi, Energy &

Environmental Science, 20117) L. Bao, X. Li, Adv. Mater. 2012, 24, 3246 – 32528) A. Lüker, Sol–gel MnO2 as an electrode material for electrochemical capacitors,

Research Notes 2634, 20089) Y. Zhai , Y. Dou , D. Zhao , P. F. Fulvio , R. T. Mayes,S. Dai, Adv. Mater. 2011, 23, 4828–485010) L. Hu, M. Pasta, F. L. Mantia, L. Cui, S. Jeong, H. D. Deshazer, J. W. Choi, S. M. Han, Y. Cui,

Nano Lett. 2010, 10, 708-714

Page 7: ‘How  would you  make an energy storage fibre’

Thanks!

7

More information on www.arne-lueker.de