how to make a sensor network live longer?

46
How to make a sensor network live longer? Presentator: Yibo Sun Course prof.: Kyoung-Don Kang

Upload: unity

Post on 15-Jan-2016

46 views

Category:

Documents


0 download

DESCRIPTION

How to make a sensor network live longer?. Presentator: Yibo Sun Course prof.: Kyoung-Don Kang. Agenda. The definition of Lifetime of sensor networks To make the whole network live longer -- Energy balancing strategy To make an application live longer - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: How to make a sensor network live longer?

How to make a sensor network live longer?Presentator: Yibo SunCourse prof.: Kyoung-Don Kang

Page 2: How to make a sensor network live longer?

Agenda

The definition of Lifetime of sensor networks

To make the whole network live longer -- Energy balancing strategy To make an application live longer -- Energy optimization for target area

Page 3: How to make a sensor network live longer?

What is the lifetime?

The time till all nodes die out? The average of nodes’ lifetime? The time for the system to work

properly? The time for an application to work

properly?

Page 4: How to make a sensor network live longer?

Some definition of Lifetime

[Blough,et al. 02], defines the Lifetime of the sensor network as

min {t1,t2,t3} t1 is the time it takes for the cardinality of the larges

t connected components to drop below c1*n(t), where n(t) is the number of alive nodes at time t

t2 is the time it takes for n(t) to drop below c2*n(0) t3 is the time it takes for the area covered to drop be

low c3*L^d 0 <= c1 ,c2, c3 <= 1

Page 5: How to make a sensor network live longer?

setting c1 =0 and c2 = 1 corresponds to defining lifetime as the time it takes for the first node to die

setting c1 =1 and c2 =0 corresponds to defining lifetime as the time to network disconnection.

Page 6: How to make a sensor network live longer?

E.GNode#1 is the only sinkNode#6’s lifetime = The Lifetime

Page 7: How to make a sensor network live longer?

Definition by coverage ratio

By setting c1=c2=0, and c3=q, then we obtain the definition of network lifetime given in [Zhang,et al. 04] , which defines lifetime as:

the entire interval in which at least q portion of the region R is covered by at least one sensor node. (q =1 indicates full coverage)

Page 8: How to make a sensor network live longer?

Definition by target node/area [Duarte-Melo, et al. 02] defines the lifetime of a sens

or network as the expected lifetime of any given sensor in the network. In a densely deployed sensor network this definition is extend to be the time until a certain percentage of the sensors died.

In [Ye, et al. 02] The lifetime is defined as the time it takes for the coverage (defined as the ratio of the area covered by working nodes to the total area) to drop below, and never exceed again, a pre-determined threshold.

Page 9: How to make a sensor network live longer?

“The Lifetime”

Hence, different application has different lifetime definition

“The Lifetime” here is defined by how long the target function unit works properly.

i.e. The lifetime of a subgraph G’(V) in whole graph G(V)

Page 10: How to make a sensor network live longer?

Target Function Unit The nodes near the event together

with the notes on the route (red line)

The target nodes’ lifetime = The lifetime

Page 11: How to make a sensor network live longer?

How to make a whole network live longer? Main ideas:

Reduce the total power consumptionEfficiently transmit the data packetsSynchronously consuming all nodes’ ene

rgy [Joongseok, et al, 2005] Maximum lifet

ime is NP-hard!

Page 12: How to make a sensor network live longer?

Minimum Energy vs. Maximum Lifetime

Lifetime under minimum energy routing is 67% of that under maximum lifetime routing

Page 13: How to make a sensor network live longer?

Some assumptions

Energy consumption model: consider packet sending and receiving

only Simplified Radio Model:

Radio transceiver, Micro Controller, Energy Source

Page 14: How to make a sensor network live longer?

In fixed transmit radio power level, energy used to send/receive one bit is

Transmiting a k-bit packet a distance d costs

Receive a k-bit packet costs

In real propagation model, E = k*dc, 2<c<4

bitnJEelec /502//100 mbitpJamp

2) *),()(,( dkkEdkEkEdkE electxamptxelectx

kEkEkE elecrxelecrx *)(( )

Page 15: How to make a sensor network live longer?

An experiment on lifetime of routing protocols of different category Direct communication protocol Minimum-transmission-energy

routing protocol Clustering

Page 16: How to make a sensor network live longer?

Direct communication can be generated to protocols based on

multiple base stations or anchor nodes Energy used on sending one k-bit message

is: 2) *),()(,( dkkEdkEkEdkE electxamptxelectx

Page 17: How to make a sensor network live longer?

MTE Shortest path GPSR Energy used on sending one k-bit message is:

Each node consumes:)'(**))',()((*',( 2

) dEkndkEkEndkE elechopstxamptxelechopstx

)'*(*)',()(',( 2) dEkdkEkEdkE electxamptxelectx

Page 18: How to make a sensor network live longer?
Page 19: How to make a sensor network live longer?

Clustering Energy consumed when sending a k-bit

message:

Each node consumes:

)*(**)),()((*,(2''''

)'' dEkmdkEkEmdkE elecsclusterhoptxamptxelecsclusterhoptx

)*(*),()(,(2''''

)'' dEkdkEkEdkE electxamptxelectx

Page 20: How to make a sensor network live longer?
Page 21: How to make a sensor network live longer?

The application dies long before the last node dies!

Page 22: How to make a sensor network live longer?

How about energy awaring routing? Minimum Total Transmission Power Routing

(MTPR) Attempts to reduce the total transmission power per

packet. Prefers routes with more hops with short transmission

ranges than few hops with longer transmission rage.

Problem: cost more extra energy , delay, not scalable Min-Max Battery Cost Routing (MMBCR)

Consider the remaining battery power of nodes as metric. Nodes with high residual capacity participate in routing

more often. And prefers to choose a path whose weakest node has the maximum remaining power.

Page 23: How to make a sensor network live longer?

Conditional MMBCR

Set a parameter as threshold, if no node in the chosen route with MMBCR algorithm, whose battery capacity is lower than , MMBCR applied, else, use MTPR.

Page 24: How to make a sensor network live longer?

Seems end-to-end optimization is not practical.

Page 25: How to make a sensor network live longer?

Hop-to-Hop Optimization

Take energy consumption in routing metric

NADV [Seungjoon et al, MobiHoc’05] Select neighbors with optimal trade-off be

tween proximity and link cost

Page 26: How to make a sensor network live longer?

Advance: advantage by greedy option

Normalized Advance: Cost(n) = fraction of successful data tra

nsmission to neighbor n

Page 27: How to make a sensor network live longer?

GEAR (Geographically and Energy Aware Routing) Each node maintains a neighbor table

Energy levels and locations of each neighbor

Cost to transmit to each neighbor Packet is forwarded to neighbor with s

mallest cost

Page 28: How to make a sensor network live longer?

Why not balance the energy? Make clusters to be balanced in member

Balanced k-clustering [Soheil, et,al.Sensors 2002]

Make every node to be key nodeLow-Energy Adaptive Clustering Hierarchy

(LEACH) Combine direct communication and MTE

[Martin Haegnni, ISCAS '03 ]

Page 29: How to make a sensor network live longer?

Balanced K-clustering

Minimum cost flow question, O((n+k)3)

Page 30: How to make a sensor network live longer?

LEACH

Using randomization to distribute the energy load evenly

Break up operation into rounds Set-up phase

Cluster-head Advertisement Cluster Set-Up Transmission schedule creation

Steady-state phase Data transmission to cluster head Signal prosessing (Data fusion) Data transmission to the base station

Page 31: How to make a sensor network live longer?
Page 32: How to make a sensor network live longer?

Combine direct communication and MTE Node i transmits locally generated pac

ket to next neighbor with probability ai

,and directly to the sink with bi = 1 - ai .

Incoming packet always forward to the neighbor

Goal: choose ai to achieve energy balancing

Page 33: How to make a sensor network live longer?

Assume distance between node is the same

By solving

In 5 nodes: b1…b5 are 0.0301,0.0438,0.0694,0.1250,0

In 10 nodes: 14% lifetime increased with an extra energy consumption: 60%~80%

To make all the nodes live same shorter???

1

11

)1)1(()1(i

iki

i

kkii bbiNiabiNE

Page 34: How to make a sensor network live longer?

How to make an application live longer? Here, “an application” implies it car

es more about a set of nodes instead of allTurn off the redundant nodes down or ma

ke them to sleep…can be a choiceSet priority to different nodes and conside

r as a factor in routing. Thus to divide a subgraph from the graph.

Page 35: How to make a sensor network live longer?

An application-oriented GPSR version Set a VIP-rate p (0<=p<=1) to every node,

initially 0 Set a threshold h (not carefully

considered!) When event arises, nodes near the spot

are set their priority to a higher value, say 0.8And it send a VIP-awareness packet to its

neighbor

Page 36: How to make a sensor network live longer?

When an intermediate node want forward a packet

if there exists a greedy option, it compares the VIP-ratesIf higher, then do greedy forwardIf lower, then do primeter forward

If no greedy option, follow right hand rule

Page 37: How to make a sensor network live longer?

Maintenance all nodes maintain a single-hop neighbor table

At source: mode = greedy

Intermediate node: if (mode == greedy) {

greedy forwarding;if (no_greedy_option||greedy_option_VIPrate - this.VIPrat

e>h) mode = perimeter;

}if (mode == perimeter) {

if (have left local maxima && local maxima’s VIPrate - this.VIPrate<h) mode = greedy;

else (right-hand rule);}

Page 38: How to make a sensor network live longer?

Original Networks

Page 39: How to make a sensor network live longer?

Earthquake happen0.8

0.8

What we need is to optimize lifetime of this

subgraph

Page 40: How to make a sensor network live longer?

Spread the VIPrate or not?0.8

0.8

This node still suffers from large traffic

Page 41: How to make a sensor network live longer?

Earthquake moves…0.8

0.8

0.8

0.8

What we need is to optimize lifetime of this

subgraph

Page 42: How to make a sensor network live longer?

After optimization0.8

0.8

0.8

0.8

Work in lower cycle

Page 43: How to make a sensor network live longer?

A analysis by hand Before

optimization

23

1

7

5

1

1

5

9

1 3 21

1

7

1

3

3

Send 1 packet

Receive 1 packetForward 1 packet

Send 1 pakcet

Energy consume: 55

Whole energy: 92

Page 44: How to make a sensor network live longer?

After optimization

23

11

7

5

1

1

3

13

1 21

3

11

1

1

7

Energy consume: 49

Whole energy: 100Save for subgraph:

6Extra energy: 8

Page 45: How to make a sensor network live longer?

11

11

17

15

1

11

3

9

1

7

1

5

3 9

3

Energy consume: 32Whole energy: 98

Save for subgraph: 24Extra energy: 6

Page 46: How to make a sensor network live longer?

Thanks