homework #7 problem set t due: wednesday, …... (v 0–e)]/h-bar. (we chose only the negative...

3
HOMEWORK #7 PROBLEM SET DUE: Wednesday, November 16 th 1. Suppose that you have an electron in a one-dimensional infinite (square) well and it could be measured while in its ground state. (a.) What would be the probability of finding it somewhere in the region 0 < x < L/4? (b.) What would be the probability of finding it in a very narrow region ∆x = 0.01*L-wide, centered at x = 5L/8? Assume the well is x = 0 to L. 2. (a.) Find <p> and <p 2 > for the ground-state wave function of the infinite square well potential. (b.) What do you think the results should have been, using logic alone, plain and simple? 3. A beam of electrons, each with energy E = 0.1 * V0, are incident on a potential step with V0 = 2 eV. (This is of the order of magnitude of the work function for electrons at the surface of metals.) Graph the relative probability |Ψ|^2 of particles penetrating the step up to a distance x = 1 nm (or, roughly five atomic diameters). 4. Normalize the wave function for the second excited state of the quantum SHO (simple harmonic oscillator). Note that the second excited state is n = 2, since n = 0 is the ground state in this case. 5. Determine the expectation value of p 2 for a particle in an infinite square well for the third excited state. (a.) Use the operator method and (b.) the energy equation. Note, that the third excited state means n = 4 (because n = 1 is ground state; n = 0 means no wavefunction). 1. (a.) The wavefunction for the n = 1 level, the ground state, is given by the equation from class as Ψ1(x) = √(2/L) * sin ( π*x / L ) a. b.

Upload: vantu

Post on 26-May-2018

214 views

Category:

Documents


0 download

TRANSCRIPT

HOMEWORK#7PROBLEMSET DUE:Wednesday,November16th1.Supposethatyouhaveanelectroninaone-dimensionalinfinite(square)wellanditcouldbemeasuredwhileinitsgroundstate.(a.)Whatwouldbetheprobabilityoffindingitsomewhereintheregion0<x<L/4?(b.)Whatwouldbetheprobabilityoffindingitinaverynarrowregion∆x=0.01*L-wide,centeredatx=5L/8?Assumethewellisx=0toL.2.(a.)Find<p>and<p2>fortheground-statewavefunctionoftheinfinitesquarewellpotential.(b.)Whatdoyouthinktheresultsshouldhavebeen,usinglogicalone,plainandsimple?3.Abeamofelectrons,eachwithenergyE=0.1*V0,areincidentonapotentialstepwithV0=2eV.(Thisisoftheorderofmagnitudeoftheworkfunctionforelectronsatthesurfaceofmetals.)Graphtherelativeprobability|Ψ|^2ofparticlespenetratingthestepuptoadistancex=1nm(or,roughlyfiveatomicdiameters).4.NormalizethewavefunctionforthesecondexcitedstateofthequantumSHO(simpleharmonicoscillator).Notethatthesecondexcitedstateisn=2,sincen=0isthegroundstateinthiscase.5.Determinetheexpectationvalueofp2foraparticleinaninfinitesquarewellforthethirdexcitedstate.(a.)Usetheoperatormethodand(b.)theenergyequation.Note,thatthethirdexcitedstatemeansn=4(becausen=1isgroundstate;n=0meansnowavefunction).1.(a.)Thewavefunctionforthen=1level,thegroundstate,isgivenbytheequationfromclassasΨ1(x)=√(2/L)*sin(π*x/L)

a.

b.

Youareofcoursealsoallowedtodopartb.thelongway,integratingover(5L/8)±0.01*L2.(b.)Theparticleisequallylikelytobemovinginthe–xasinthe+xdirection,soitsAVERAGEmomentumiszero;BUT,itsaveragep^2shouldberelatedtoE,sinceE=p^2/2m(KE,assumingnopotential)as2*m*EandweknewEalreadyfromclassandtextexamples.3.Wecanwritethewavefunctionforaparticleontheinsideofabarrierasarealexponentialaslearnedduringlecture.IfwecalltheregionbeforethestepatleftIandtheregionwithinthestepatrightIIthenΨII(x)=C*e–kII*x,wherekII=√[2*m*(V0–E)]/h-bar.(WechoseonlythenegativeexponentialversionnotpositiveorsumincludingpositivetermsothatΨII->0asx->∞.)ThismakesΨIIadecreasingexponentialtowardstheright.So,theparticledensityinregionIIisproportionalto|ΨII|^2=|C|^2*e–2*kII*xsonowwejustneedtosolveforCusingboundaryconditions,continuity,smoothness,andnormalization.Alternatively,wecanrecognizethatthisequationalreadygetsusthegeneralshape.Thepicturefollowsonthenextpage.ItisNOTnecessarytogetthex-andy-valuesexactlyright,justthecorrectshape,plusthetransmissioncoefficientforoutto1nm,eitherindicatedintheplotorwrittendownseparately.Now,fortransmissionprobabilityweconsiderT=1/[1+V0^2*sinh^2(kII*L)/(4*E*(V0–E))]

a.

a.

kII=√[2*(9.1x10^-31kg)*(3.2x10^-19–3.2x10^-20J)]/[6.6x10^-34J-s/(2*π)]=>T=1/[1+(2eV)^2*sinh^2(6.87x10^9m^-1*10^-9m)/(4*2eV*(2-0.2eV))]=1.5x10-5FullcreditalsoforusinganapproximationforTforacaseofE<<V0(oppositeofclass)4.Y2=A*(2*a*x^2–1)*exp(-a*x^2/2),usingthesecondHermitepolynomial.Theintegralfrom–∞to+∞ofY2^2mustbe1.0Integralfrom–∞to+∞ofA^2*(2*a*x^2–1)^2*exp(-a*x^2)orA^2*[4*a^2*x^4*exp(-a*x^2)–4*a*x^2*exp(-a*x^2)+exp(-a*x^2)].Usingtheintegraltables(morespecificallybothequationA6.2andpageA-11,Appendix6)it’sA^2*[8*a^2*3/(8*a^2)*√(π/a)–4*a*(2/4a)*√(π/a)+(2/2)*√(π/a)]=(3–2+1)*√(π/a)*A^2So,A^2*2*√(π/a)=1andA^2=√(a/π)/2=>A=(a/π)^(1/4)*(1/√2),whichisperfectlyconsistentwithp.224inChapter6,topright.5.(a.)Repeattheprocedurefrompages(21)through(23)oftheChapter6LectureNoteswhichIemailedoutthisweek,exceptnowforn=4,notn=2.(b.)E_n=n^2*π^2*h-bar^2/(2*m*L^2)=n^2*h^2/(8*m*L^2)=>E_4=8*π^2*h-bar^2/(m*L^2)OR2*h^2/(m*L^2)