holomorphic quanta part 2 (14jun18)vixra.org/pdf/1806.0311v1.pdf · 2018. 6. 22. · – frederick...

12
Theodore St. John The Holomorphic Quanta June 10, 2018 1 The Holomorphic Quanta Part 2: Projection Theodore St. John [email protected] “We live in a house of mirrors and think we are looking out the windows” – Frederick Salomon Perls Abstract This is the second part of a four-part presentation. In part 1 I introduced a relational model that allowed me to demonstrate the equivalence of space and time as = ! and showed that S represents energy as the product of scalar space with spatial frequency and T represents energy as the product of time units with temporal frequency. Doing so revealed the equations for quantum energy of a particle to be the inverse domains scaled by Planck’s constant. In this context, they served as two components (base vectors) of a quantum wave function (a composite space-time vector). In this part, I will continue to develop the model and discuss how the projection of a unified concept onto a plane that represents their separation creates a scaling problem that can be dealt with a different ways. Abstract .......................................................................................................................................................... 1 Introduction ................................................................................................................................................. 1 A DROPLET of Energy .............................................................................................................................. 3 The DROPLET App................................................................................................................................ 5 Projection Creates a Scaling Problem .......................................................................................... 6 The Background ...................................................................................................................................... 10 Conclusion.................................................................................................................................................. 10 Bibliography .............................................................................................................................................. 11 Introduction In part 1 of this paper I introduced the space-time-motion diagram, a visual tool for representing the relationships between space and time as two equivalent aspects of motion that are conceptually separated, but in essence two different aspects of the same thing. To analyze this, I superimposed the relativistic space- versus-time plot in the linear domain with the plot of inverse time-versus-inverse space as the frequency domain, linked by the plot of motion itself. This produced the space-time-motion or STM diagram, shown here as Figure 1.

Upload: others

Post on 14-Mar-2021

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Holomorphic Quanta Part 2 (14Jun18)vixra.org/pdf/1806.0311v1.pdf · 2018. 6. 22. · – Frederick Salomon Perls Abstract This is the second part of a four-part presentation. In part

TheodoreSt.John TheHolomorphicQuanta June10,2018 1

TheHolomorphicQuanta

Part2:ProjectionTheodoreSt.John

[email protected]

“Weliveinahouseofmirrorsandthinkwearelookingoutthewindows” –FrederickSalomonPerls

AbstractThisisthesecondpartofafour-partpresentation.Inpart1Iintroducedarelationalmodelthatallowedmetodemonstratetheequivalenceofspaceandtimeas𝑆 = 𝑇𝑐!andshowedthatSrepresentsenergyastheproductofscalarspacewithspatialfrequencyandTrepresentsenergyastheproductoftimeunitswithtemporalfrequency.DoingsorevealedtheequationsforquantumenergyofaparticletobetheinversedomainsscaledbyPlanck’sconstant.Inthiscontext,theyservedastwocomponents(basevectors)ofaquantumwavefunction(acompositespace-timevector).Inthispart,Iwillcontinuetodevelopthemodelanddiscusshowtheprojectionofaunifiedconceptontoaplanethatrepresentstheirseparationcreatesascalingproblemthatcanbedealtwithadifferentways.Abstract..........................................................................................................................................................1Introduction.................................................................................................................................................1ADROPLETofEnergy..............................................................................................................................3TheDROPLETApp................................................................................................................................5ProjectionCreatesaScalingProblem..........................................................................................6

TheBackground......................................................................................................................................10Conclusion..................................................................................................................................................10Bibliography..............................................................................................................................................11

IntroductionInpart1ofthispaperIintroducedthespace-time-motiondiagram,avisual

toolforrepresentingtherelationshipsbetweenspaceandtimeastwoequivalentaspectsofmotionthatareconceptuallyseparated,butinessencetwodifferentaspectsofthesamething.Toanalyzethis,Isuperimposedtherelativisticspace-versus-timeplotinthelineardomainwiththeplotofinversetime-versus-inversespaceasthefrequencydomain,linkedbytheplotofmotionitself.Thisproducedthespace-time-motionorSTMdiagram,shownhereasFigure1.

Page 2: Holomorphic Quanta Part 2 (14Jun18)vixra.org/pdf/1806.0311v1.pdf · 2018. 6. 22. · – Frederick Salomon Perls Abstract This is the second part of a four-part presentation. In part

TheodoreSt.John TheHolomorphicQuanta June10,2018 2

Figure1Thespace-time-motionorSTMdiagraminterposestheinverse-spaceandinverse-timedomains,scaledtounitsofhinthelinearaxis,revealsthedeBroglierelationsforenergy.Sincetheyarebothquantumunits,theyarerepresentedasbaseenergyvectorsinHilbertspace.

Thisshowedenergyexpressedinthetemporalfrequencydomainasaquantumunitinspaceandenergyexpressedinthespatialfrequencydomainasaquantumunitintime.Theeffectofthisflippingofdomainsistherealizationthattheyareasymmetricreflectionsofeachother;thelineardomainbeingrepresentedastherelativisticpartoftheplotandtheinversedomainrepresentedasbasevectors,orunitvectors𝑠inthespacedomainand𝑡inthetimedomain.Inotherwords,withouteverhavingtomentionaparticle,waveorparticle-waveduality,aquantizedunitofemptyspaceandaquantizedunitoftimeareshowntobeequivalentunitsofenergythemselves.

TheSTMdiagramvisuallyillustratedhowseparation,thefirststepinthetransformationprocess,splitstheunifiedconceptofenergyintotwopairsofconceptuallyindependentdomainsthatarehyperlinkedataboundarycalledtheeventreference.Comparingthistoquantuminformationtheory,theseunitsareequivalenttoquantumbitsor“qbits”sinceenergy,aunifiedconcept,wasseparatedintotwoorthogonalyetequivalentmeasures:space–quantifiedasscalarunitsofdisplacement(digitalincrementsof“1”),andtime–quantifiedasscalarunitsof“1clockincrement”,whichtransitionsto“0”ateachevent.InthissectionIwillusetheSTMdiagramtoillustratethesecondstepinthetransformationprocess,projection,andshowthatmotionisasuperpositionofthebasevectors.Motionprojectsthisenergyfromthequantumdomainintotherelativisticdomainproducingadistortionthatcanbeviewedasacurvatureofeitherspaceortime.

Itgetsa“bitconfusing”becausethelabelscrossoverdomains,soyouhavetokeepthemseparateinyourmind.Normallyweintroducenewvariablestohelpkeepthemseparate,butthisintroducesadditionaldistortionfactorssothatwillbe

Page 3: Holomorphic Quanta Part 2 (14Jun18)vixra.org/pdf/1806.0311v1.pdf · 2018. 6. 22. · – Frederick Salomon Perls Abstract This is the second part of a four-part presentation. In part

TheodoreSt.John TheHolomorphicQuanta June10,2018 3

avoided.Instead,Ioccasionallyreflectandremindthereaderoftheintendedmeaning.

ADROPLETofEnergyTheunitvector𝑠isthetemporalfrequencydomainassociatedwith𝐸 = ℎ𝑓

interposedonthespatialaxisand𝑡isthespatialfrequencydomaininterposedonthetemporaldomain.Theyareintegralpartsoftheenergydomainthatisthevectorsumofthetwobasevectors,𝑆 = 𝑠 + 𝑡.

Temporalfrequencyiswhatwenormallythinkofasfrequency.Thetermspatialfrequencyisnotusedinquantumphysicsandrarelyinclassicalphysicsexceptforoptics,especiallyholography.Instead,itisreferredtoaswavenumber(𝑘 = !

!)becauseitisjustanumberthatindicatesacycle.InMedicalPhysics,itis

usedasameasureofimagequalityinlinepairspercm.Butinelectrostatics(FieldTheory),!

!= ∅iscalledthescalarpotentialofaunitcharge.Sothespatialfrequency

couldbeusedtorepresentthepotentialfieldofachargeorthepotentialfieldofgravitysurroundingaunitmass.Infact,apotentialfieldisascalesoitdoesn’tevenneedamassorchargetoexist.AccordingtoQuantumFieldTheorythereisnoneedforapointchargetoprovidethefield,onlyapoint.Instead,the“fieldquanta”islikeanorboradropletofenergy,apartofanunderlyingfieldthatissomehowexcited.

Imagineafieldofabsolutenothingnessandimaginepointsinthisfieldlaidoutinagridwithscales.Scalesthemselves(s=0,1,2,…or𝑓 = 1, !

!, !!…)represent

agradient,∇∅ = !∅!"

𝑜𝑟 !∅!"i.e.somethingischanging,evenifitjustthescaleitself.If

thesizeoftheincrementsischanging,asintheinversescale,thechangeinthegradient–calledthegradientofpotential–representsaforce,𝐹 = −∇∅.

Lookingoutward(positiveonthescale)thechangeislinear,andthereisnochangeintheunit∆betweenthelinearscalemarkssothatgradient∇ ∆s ,isconstant.Butthereisstillagradientanditstillhasasenseofdirection,so∇ ∆s =𝑠.However,thechangeinthegradientiszerounlesssomeoutsideactionattemptstochangeit,soitpresentsasinertiaormomentuminclassicalandquantumphysics.Butinrelativisticphysics,itisrecognizedtobethecurvatureofspacethatprovidesadownwardslopeforgravitation.WiththeSTMmodel,nowaveorgravitonisneeded.

Spaceistheimaginaryscale,∅,whichservesasthebaseoftransformation(offormlessenergyintoform).Combiningthelinearscalewiththeinversescaleresultsintwodifferentgradientsinspace.Lookingoutward,inthelineardomainwherewelive,thecurvatureorgradientofstaticspaceisconstantsoitappearsflat,∇∅ = !

!"𝑠 = 1yetdivergesinalldirections.Soeventhoughpotentialisjustthe

inversescale,i.e.ascalar,ithasaninherentdirectioninwhichitchangesandisthusapotentialforce,𝑭 = −∇∅,(thetemporalcomponentofpotentialenergy)thatwillbecomearealforceifactedon.Butmotioncreatesaseparationofspaceandtimeresultinginagradientmadeupoftwopairsofdifferentgradients.Asavector,callit𝐶,thegradienthastwoparts,asshowninFigure2.

Page 4: Holomorphic Quanta Part 2 (14Jun18)vixra.org/pdf/1806.0311v1.pdf · 2018. 6. 22. · – Frederick Salomon Perls Abstract This is the second part of a four-part presentation. In part

TheodoreSt.John TheHolomorphicQuanta June10,2018 4

∇∅⟹ 𝐶 = 𝐶!𝑠 + 𝐶!𝑡 (1)

where𝐶! = 𝐶𝑐𝑜𝑠 𝜗 and𝐶! = 𝐶𝑠𝑖𝑛 𝜗 arethemagnitudeofeachunitvector,definedasoneunit.InDiracnotation,thiswouldbe

|𝜓 = 𝜓!|𝑠 + 𝜓!|𝑡 . (2)Intermsofderivatives,thisis

∇∅ = !∅

!"!"!∅+ !∅

!"!"!∅. (3)

Figure2Scalesthemselvesrepresentgradients.Combiningthelinearscalewiththeinversescaleresultsintwodifferentgradientsoneachaxis.

Theterms!"

!∅and!"

!∅representthemagnitudeofthescaleinthegivendomain,which

isalwaysoneunitbydefinitionofaunitregardlessofwhichdomainyouarein.SotheyarenotneededandEquation(3)becomes

∇∅ = !∅!"+ !∅

!". (4)

alsoshowninFigure2.

Thefirsttermisachangewithrespecttospace,soitreferstosandisthusscaledbythelineardomain,soitisascalarpotentialdivergentinalldirections,i.e.∇ ∙ ∅.Butthesecondterm,thechangewithrespecttotime,istheinversespatialterminterposedinthetemporalaxis.Soitisthederivativewithrespecttotheinverseofspace.FromEquation(1),thisis𝐶𝑠𝑖𝑛(𝜗),whichisthecross-productand

Page 5: Holomorphic Quanta Part 2 (14Jun18)vixra.org/pdf/1806.0311v1.pdf · 2018. 6. 22. · – Frederick Salomon Perls Abstract This is the second part of a four-part presentation. In part

TheodoreSt.John TheHolomorphicQuanta June10,2018 5

comparestoavectorpotentialinFieldTheoryasthecurlofthevector,∇×∅,since𝐶isthevectornotationforthegradient.

∇∅ = !∅

!"+ !∅

! ! != ∇ ∙ ∅+ ∇×∅. (5)

ThisisaformofHelmholtzTheorem(Wangsness1986,pg.37)rearrangedas

𝑭 = −∇∅+ ∇×𝚨 (6)

whereFisthedivergentfield–arealforcesimplyduetothefieldofmotion,pointinginwardtransformingthesquaregridintoacirculardroplet.AccordingtoDavidHestenes,Equation(5)isthefundamentaldecompositionofthegeometricproduct(Hestenes2003,pg.15).Firsthetreatsthecurltermasanimaginarycomponentandthenremovestheimaginarylabelandcallsitthe“outerproduct”,atermfromGeometricAlgebra,andproceedstoderiveallofMaxwell’sequationsasasingleunifiedequation.

RememberthatFigure1representedtheflashoflightexpandingin3Dspaceandtime,andtheflashbulbonlyflashedoncesothelightspherewouldactuallybeashell.Theboundaryconditionsoneachaxisarerepresentedbythetipsofthevectors,wheretheboundaryconditionsaresatisfied.Theyarethehyperlinkstothescalardomain,theoneunambiguouspointineitherdomain.Theyallrepresentthesamefield∅,andtheboundaryiswhere∅ = !

∅= ∅!.Onthespatialandtemporal

axestheyarecalledthe“Surfacereference”and“Clockreference”andonthemotionvectoritiscalledthe“Eventreference”.Itistheonlyplacethatactuallyrepresentsthesurfaceofthelightsphere–thepresent(hereandnow).The“Surfacereference”and“Clockreference”areback-projectionsofthepresent.

TheDROPLETAppIfweweretowriteanAppforthat,youcouldclickonahyperlinktoselect

theperspectiveyouwanttoobserve.Clickatthesurfacereference,unitnumber1onthespaceaxis,andanotherwindowwouldopenshowingtheaxisunfoldedwiththeunitenfoldedintoa3-Davatarofthedroplet.Apopupmessagewouldcallthis“Here”.Wecouldclickanddragoutalongthespatialaxis“scrollbar”tozoomoutandmaketheavatarcollapsetoatinyicon(aunitdropofenergyout“There”)andtheS-Tcoordinatesystemexpandinthebackground.Wecouldscrollallthewayintotheorigin,ordoubleclickontheicontoputtheviewpointontheinside(theinverse-timedomainsectionofthespatialaxis)andthescreenwouldgodark.Adda“Direction”buttontoswitchviewinganglefrominwardtooutward,butthescreenwouldstillbedark.Apopupmessagewouldread“Stillness”.

Wecoulddothesamethinginthetimedomain,clickingontheclockreference–unit1onthetemporalaxis.Thisnewwindowwouldopenwiththeinwarddirectionselectedtounfoldthespatialfrequencydomainsectionofthetimeaxisandwewouldbelookingfromtheinsideoutagain.Anotherbuttonlabeled“Viewgridlines”wouldturnonspatialfrequencygridlinesatthesurface.Rather

Page 6: Holomorphic Quanta Part 2 (14Jun18)vixra.org/pdf/1806.0311v1.pdf · 2018. 6. 22. · – Frederick Salomon Perls Abstract This is the second part of a four-part presentation. In part

TheodoreSt.John TheHolomorphicQuanta June10,2018 6

thanzoomingout,thescrollbarwouldjustmovethetimescaletotheleftontheSTMplot.

Sowecouldclicktheplaybuttonandletitrun.Nowifyoulookatthespatialdomainwindow,zoombackoutandchange

viewingdirectiontoinward,witheachincrementoftimeyouwouldseegridlinescollapsinginfromouterspacelabeled“Future”untiltheyreachedthesurface,wheretheywouldflashtheword“Present”.Halfoftheenergy(theywouldchangetoalowerfrequencycolor,sayred)wouldreflectoffthesurfaceandtheotherhalfwouldpaintthesurface.Thelabelwouldchangefrom“Future”asthegridmovedin,flashtheword“Present”foraninstant,thentochangeto“Past”asitmovedoutward.

Sowhatwouldbedisplayedifweclickoff-axis,ontheS-Tplane?Becausethediagonal(composite)vectorstretchesoutbeyondthedashedarcinFigure1andFigure2,thedisplaywouldbeaconformalprojectionofamotionvectorprojectedoutoftheenergydomainandontothebackgroundscalarplane.Soifweclickonthediagonal,anotherslightlylargeravatarwouldappeartoenvelopethefirsticon,onaflat,veryfinebackgroundgrid,linearandevenlyspaced.Ifweclicktheplaybutton,thegridwouldappeartogetcloserandcloser.Thegridspacingwouldgrow(decreasingtemporalfrequency)butremainlinearuntilthedropfitinsideoneunitofthegrid.Theentiregridwouldsuddenlycollapseintothedrop,butanothergridwouldfollowandthenitwouldcollapse.Doubleclickonthesurfacereferencetolookinwardandnow,ratherthanbeingdark,wewouldseethegrid,non-linearlyshrinking,likethefocalpointofalens,towardthesmallericoninside.Again,partofitwouldreflectoffthesurfaceandonespatialunitofredwouldfitbetweenthetwospheres.Thisfrequencysplitwillbepresentedgraphicallyandmathematicallyinpart3.

TomaketheAppdisplayrelativemotionIwouldjusthidethecollapsinggridlinesandshowthelineargridlinesfromanotherparticle,movinglinearlyacrossthebackgroundinwhateverdirectiontheparticlewasmoving.Iftheotherparticlewerenotmovingrelativetothescreen,wewouldseegridlinescollapsingintoit.Andsincewesharethesamespace,itwouldgravitatetowardthescreen.

SoIwouldcalltheApp,TheDigitalRoundOpticalParticlewithLinearEnergyTransportorDROPLET.

Asaprojectionoutoftheenergydomain,thecompositevectorpresentedasaswollenparticle–stretchedoutincomparisonwiththebasevectors.Relativetoit,thebasevectorsappeartobecontracted.ThisisduetoaparallaxthatisthesamerelationastheLorentzfactor(explainedinthenextsection).

ProjectionCreatesaScalingProblem

AsImentionedbefore,physicistsandmathematicianscanhandlevectorswiththeireyesclosed,soaconformalprojectionisnotaproblem.Butforastudent,itisimportanttorememberthatoneunitofmeasureintheenergydomainisdifferentfromoneunitinthescalardomain.Toillustratethis,IrefertoFigure3.Theareaofthelargesquare(𝑐!)representsoneunitofenergy,𝐸 = 𝑐!(sooneunit

Page 7: Holomorphic Quanta Part 2 (14Jun18)vixra.org/pdf/1806.0311v1.pdf · 2018. 6. 22. · – Frederick Salomon Perls Abstract This is the second part of a four-part presentation. In part

TheodoreSt.John TheHolomorphicQuanta June10,2018 7

ofmass).Itisequalto2unitsofmeasure(oneeachfor𝑠!and𝑡!)inthescalarS-Tdomain.SowhenprojectedontothelinearscalarS-Tdomain,thehypotenuseofthetriangle(c)is𝑐 = 𝑠! + 𝑡!.

Figure3Thesquareofthehypotenuseofatrianglerepresentstheareaofthelargesquare,

whichisfour-timestheareaofthetriangle.

Nowrecallthatthehyperlinkbetweenthetwodomainsistheslope(c)ofthegraphintheS-Tplane,whichisequaltotheratioofthespaceunitwithrespecttothetimeunit.Takentothelimit,speedisthederivative𝑣 = !"

!".Ifthisexample

representsanobjectofunitmass,m,andvelocity𝑣,wewouldcalculatethekineticenergybyusingtheWork-KineticenergyTheoremichangingvariablesandintegratingalongthehypotenuse(unitsofvelocity),sothat𝐾𝐸 = 𝑚 𝑣𝑑𝑣 = !

!𝑚𝑣!!

! .Butthatisonlyhalftheareaofthelargesquareii(𝑚𝑣!).Therefore,togettotalenergyweeitherhavetocorrecttheresultbyascalingfactororbyaddingaconstantofintegrationiii.Thescalingfactorisjusttheratioofoneofthesmallareas(𝑠!sincevelocityisalwaysdenominatedto1unitoftime)tothelargearea.Inthiscase,sincetheareasareequal,theyareeachhalfofthetotal.Sothescalingfactoris2.Butthatwon’tworkforthetotalenergyofanobjectbecauseitstotalenergyincludesrestenergy,whichisnotafunctionofkineticenergy.

Vectorsprovideasolutionbecausetheyallowustorepresenttheentirearea(theintegrationofmorethanoneconcept,inthiscasetwo)inonesymbol.Tofindthetotalenergywecanrepresenttheareaofthelargesquareasavectorofmagnitude𝑐! = 1,asshownontheverticalaxisinFigure4.Itisontheverticalaxistorepresentnorelativemotion,i.e.time-independent;theenergyvectorhasnotbeenseparatedintospaceandtimeiv.Thenintroducetimebyrotatingthevectortoalignwiththehypotenuse(toseparateenergyintotwomeasuresofspaceandtimewitha1:1relation)whilekeepingitsmagnitudeconstant.Comparingitsback-projectiononthespatialaxistotheback-projectionofthe“stretchedout”composite-vector,itappearstobe“contracted”byavalue,callit𝑣!.Theratioofthe

Page 8: Holomorphic Quanta Part 2 (14Jun18)vixra.org/pdf/1806.0311v1.pdf · 2018. 6. 22. · – Frederick Salomon Perls Abstract This is the second part of a four-part presentation. In part

TheodoreSt.John TheHolomorphicQuanta June10,2018 8

actualvector,𝑐!tothecontractedvector,𝑐! − 𝑣!isamagnificationfactor,whichisthesquareofLorentzfactor,𝛾.

𝛾! = !!

!!!!!= !

!!!!

!!

. (7)

Ifthebaseofthesmalltriangleisscaledbymass,thenit’sareaisthesameequationaskineticenergy.

Figure4TheLorentzfactorisamagnificationfactorthatresultsfromusingscalarquantitiestosetthescaleforavectorquantity.Thecompositevectorismagnifiedto𝒄𝟐𝜸𝟐.Inthiscase𝒄𝟐 = 𝟏.

Ifweapplythistotheexpandinglightsphereexample,butforgetthatthese

vectorsaremapsymbolsthatneedtobescaledtofitthehyperlinkedcoordinatesystem,thisfactormightbeinterpretedasmeaningthattheradiusoftheexpandinglightsphere(themeasureoftheprojectionofthevectorontothespatialaxisinFigure4)issmallerthanitreallyisandthatthereissomeextraenergythatisunaccountedfor.Andwecouldapplythiscorrectionfactorsothatourmeasurementsfittherelativisticmodel,toincludeakineticenergyterm.Thiscanbedonebyscalingthemagnitudeoftotalenergyvectorby𝛾𝑐,whichcanbeseparatedintoasumas

𝛾𝑐 = 𝑐 − 𝑐 + 𝛾𝑐 = 𝑐 + 𝑐(𝛾 − 1). (8)

Wethenusethistoscalemomentum,(i.e.multiplyitbymc)togettheHamiltonian(equationfortotalenergyofaparticle)

Page 9: Holomorphic Quanta Part 2 (14Jun18)vixra.org/pdf/1806.0311v1.pdf · 2018. 6. 22. · – Frederick Salomon Perls Abstract This is the second part of a four-part presentation. In part

TheodoreSt.John TheHolomorphicQuanta June10,2018 9

𝐸!"# = 𝑚𝑐 𝑐 + 𝑐 𝛾 − 1 = 𝑚𝑐! +𝑚𝑐! 𝛾 − 1

(9)

asshowninFigure5(a).The“extraenergy”istherelativistic(kinetic)energythatthelightspherewouldhaveifitwereaparticleitselfmovingrelativetosomethingelseinthescalarplane.

(a) (b)

Figure5(a)Vectorrepresentationofthelightspherescaledbyunitsofspaceandtime.ThesametriangleandrelationsareintheEnergydiagramofFigure1becausetherestenergyEoisequaltothedeBroglieenergyEd.

(b)Arelationaltriangleprovidedbyatextbook(Halliday,ResnickandWalker1993)asamnemonicdevicetohelpthestudentremembertherelativisticrelationsbetweenthetotalenergy(Hamiltonian)andtherestenergy,kineticenergyandmomentum.Thearcinthefigureismeanttoillustratethatthemagnitudeof𝒎𝒄𝟐onthehypotenuseisthesameasthatonthehorizontalleg,regardlessoftheangle𝜽.

Sothisscalingproblemisdealtwithbyapplyingacorrectionfactor.Figure5(a)and(b),showhowthiswasillustratedinaFundamentalsofPhysicstext(Halliday,ResnickandWalker1993).Itisusedasamnemonicdevicetohelpremembertherelativisticrelationsamongthetotalenergy“Hamiltonian”(𝐸!),restenergy(𝐸!),kineticenergy(𝐾𝐸)andmomentum(𝑝).Theangles𝜃and𝜑arerelatedto𝛽 = 𝑣𝑐and𝛾as𝑠𝑖𝑛𝜃 = 𝛽and𝑠𝑖𝑛𝜑 = !

!.Thequantumenergyineither

form(𝐸 = ℎ𝑓or𝐸 = 𝑝𝑐)isequaltotherestenergy,𝐸! = 𝑚𝑐!ofaquantumparticlesoitismorethanamnemonicdevice.ItisanSTMdiagram.FromthelegsofthetriangleinFigure5(a)wegettherelativisticenergydispersionrelation

𝐸!"#! = 𝑝𝑐 ! + 𝑚𝑐! ! (10)

ThetwodiagramsinFigure5(a)and(b)representtheexactsamegeometricrelationships.Thedifferenceisonlyinscalev,since𝑚𝑐! = ℎ𝑓 = !

!,thetimeaxisis

scaledby

Page 10: Holomorphic Quanta Part 2 (14Jun18)vixra.org/pdf/1806.0311v1.pdf · 2018. 6. 22. · – Frederick Salomon Perls Abstract This is the second part of a four-part presentation. In part

TheodoreSt.John TheHolomorphicQuanta June10,2018 10

𝑡 = !!!!

, (11)

whichisaPlanck-secondtimes2𝜋,i.e.onecycle(periodorwavelength).Inpart3ofthispaper,thiswillbeaccountedforbyusingyetanotherdomainandcoordinatesystem:polarcoordinates.

TheBackgroundThereisnosuchthingasaparticleatrest,isolatedfromtherelativistic

background.Anyandeveryparticlecanpotentiallybeprojectedontothebackgroundandcomparedtoanyothermovingparticleintheuniverse,seeminglygivingitkineticenergyinstantly.Whatwenormallycallpotentialenergyisactually“potential-energy-of-motion”.Nothinghappenstotheparticlewhenyoudecidetoincludethemovingbackground;itisjustadifferenceinperspectivethatchangesourmethodofquantification.

Inclassicalphysics,wetendtothinkofthebackgroundasnothingmorethanascale,separatefromtheparticle.Butinmechanics,thebackgroundaroundmassisthegravitationalpotentialfield.Inelectromagnetics,thebackgroundisthepotentialfieldofapointcharge,anditiswhatgivestheparticleitsforminspace(asmomentum 𝑝 = !

!),whichisresistanttode-form 𝐹 = !"

!"= ℎ !!!

!",whereFisforce.

AccordingtotheSTMdiagram,energyisprojectedontothebackgroundbymotion,andthatenergyisthenreflectedbacktothequantumdomainattheeventreferenceasaunitofspatialfrequency.Thisgivesenergytotheboundaryandformtothedroplet.Soinessence,thebackgroundistrulypartoftheparticle.

ConclusionOurperceptionoftheworldisbothquantumandrelativistic,sotheSTM

modelrepresentsbothperspectives.Equalrepresentationoftimeandspaceaswellastheirmirrorimages,spatialandtemporalfrequency,allowsthemodeltomorphbetweenthetwoperspectives.

Understandingthisopensthedoortoabetterunderstanding(part3ofthispresentation)ofhowthescalarquantitiespersistintheformofthewaveequationandhowstatisticalequationsusedinquantummechanicsgivethesameresultsasvectoroperations.Italsoprovidesinsightintowhythespeedoflightisnotrelativetothespeedofitssource,howanelectronseemstotakeformasawavepatterninthedouble-slitexperiment,andhowquanta(pairsofquantumparticles)canbedescribedasasphericalstandingwave(TheHolomorphicQuanta)discussedinpart4.

Page 11: Holomorphic Quanta Part 2 (14Jun18)vixra.org/pdf/1806.0311v1.pdf · 2018. 6. 22. · – Frederick Salomon Perls Abstract This is the second part of a four-part presentation. In part

TheodoreSt.John TheHolomorphicQuanta June10,2018 11

BibliographyBaggott,Jim.FarewelltoReality.HowModernPhysicsHasBetrayedtheSearchforScientificTruth.Kindle.PegasusBooks,2013.Barbour,Julian.TheEndofTime:TheNextRevolutioninPhysics.Kindle.OxfordUniversityPress,1999.Bohm,David.WholenessandtheImplicateOrder.1980.Burtt,E.A.TheMetaphysicalFoundationsofModernScience.Mineola,NY:DoverPublications,2003.Carlström,Stefanos,JohanMauritsson,KennethJSchafer,AnneL’Huillier,andMathieuGisselbrecht."Quantumcoherenceinphoto-ionisationwithtailoredXUVpulses."J.Phys.B:At.Mol.Opt.Phys.51(2018).Germine,Mark."TheHolographicPrincipleofMindandtheEvolutionofConsciousness."WorldFutures64,no.3(2008).Grof,Stanislav.TheHolotropicMind.NewYork:HarperCollinsPublishersInc,1993.Halliday,David,RobertResnick,andJearlWalker.FundamentalsofPhysics,Fourthedition,Extended.JohnWileyandSons,Inc,1993.Hawking,Stephen.ABriefHistoryofTime;FromtheBigBangtoBlackHoles.NewYork:BantamBooks,1990.Hestenes,David."OerstedMedalLecture2002:ReformingtheMathematicalLanguageofPhysics."Am.J.Phys.71,no.2(Feb2003):104-121.Kreyszig,Erwin.AdvancedEngineeringMathematics.4th.NewYork:JohnWileyandSons,1979.Krijten-Lewerissa,K.,H.J.Pol,A.Brinkman,andW.R.vanJoolingen."Insightsintoteachingquantummechanicsinsecondaryandlowerundergraduateeducation."Phys.Rev.Phys.Educ.Res13,no.010109(Feb2017).Mantz,ChristiaanL.M.,andTomislavProkopec."ResolvingCurvatureSingularitiesinHolomorphicGravity."Found.Phys.41(2011):1597-1633.Morrison,MichaelA.UnderstandingQuantumPhysics:AUser'sManual.NewJersey:PrenticeHall,1990.Pribram,Karl."TheHolographicHypothesisofBrainFunction:Ameetingofminds."KarlPribram.1984.http://www.karlpribram.com/data-papers/(accessed2018).ScienceDaily."ElectronGetsFilmDebutInFirst-everVideoOfItsKind."ScienceNewsFromresearchOrganizations.https://www.sciencedaily.com/releases/2008/02/080222095358.htm(accessedApr25,2018).Shanahan,Daniel."ACaseforLorentzianRelativity."FoundationsofPhysics,Sep2014:21.Smolin,Lee.TheTroublewithphysics.Boston:HoughtonMifflinCompany,2006.—.TimeReborn:FromtheCrisisinPhysicstotheFutureoftheUniverse.Kindle.HoughtonMifflinHarcourt,2013.St.John,Theodore."TheUnityofSpaceandTime."viXra.2014.http://vixra.org/abs/1401.0218.StJohn,Theodore."TheSpace-Time-MotionModel."viXra.2014.http://vixra.org/abs/1402.0045.

Page 12: Holomorphic Quanta Part 2 (14Jun18)vixra.org/pdf/1806.0311v1.pdf · 2018. 6. 22. · – Frederick Salomon Perls Abstract This is the second part of a four-part presentation. In part

TheodoreSt.John TheHolomorphicQuanta June10,2018 12

Suskind,Leonard."TheWorldasaHologram."JournalofMathematicalPhysics36(1995):6377.Talbot,Michael.TheHolographicUniverse.NewYork:HarperCollins,1991.Tong,David."QuantumFields."TheRoyalInstitution.Cambridge,Feb15,2017.Various."HowvalidisMiloWolff'sSpaceResonance/WaveStructureofMatterTheory?."Quora;Physics.Sep2,2013.https://www.quora.com/How-valid-is-Milo-Wolffs-Space-Resonance-Wave-Structure-of-Matter-Theory-Does-WSM-supplant-Quantum-Mechanics-as-Wolff-and-de-Broglie-before-him-suggests-Is-it-a-candidate-for-GUT(accessed2018).Wangsness,RonaldK.ElectromagneticFields.2nd.NewYork:JohnWileyandSons,1986.Wolff,Milo."TheWaveStructureofMatter."2006.http://wsminfo.org/index.htm(accessed2018).iSee(Halliday,ResnickandWalker1993,pg.172)forexampleiiHadwenotchangedvariableswewouldhavecalculatedtheareaofthesmalltriangle,whichisone-fourththatofthelargetriangle.iiiInEMtheory,thisishandledbyagaugetransformation∇𝜒(𝒓)addedtoavectorpotential,where𝜒(𝒓)isascalarpotentialfieldthesatisfiesLaplace’sequation,∇!𝜒 𝒓 = 0.Inthiscase,𝜒(𝒓)representsthescalarmeasureoftheextensionbeyondthearcinFigure2ivThescalarrepresentationofzeromotionwouldbezeroslope,sothevectorwouldbeonthehorizontalaxis.vScalesareveryuseful,buttheycanbeconfusing.Itmakesperfectsensetosaythatabowlingballisbiggerthanamarble.Butwhatifsomeonesaidthatredisbiggerthanviolet?Inphysics,theformorwavelengthofred(620–750nm)isabouttwiceasbigasviolet(380–450nm)andtherefore,itisbiggerinthisform.Sothinkingintermsofphysicalsizecreatesconfusion.Itismuchclearertorefertoenergyquantization.Redlightisalowerenergythanvioletlight.Itisabouthalfthespatialfrequency,halfthetemporalfrequencyandhalfasmuchenergy.Frequencyimpliescomparison:perunittimeorperunitspace.Thus,itisdirectlyproportionaltoenergy.Andtheminimumquantitythatdescribesafrequencyisonecycle(perunittimeorperunitlength).