holekamp,mark final thesis - princeton...

81
Keeping the Lights On: An Analysis of the Dynamic Allocation Problem of Assigning Utility Repair Trucks to Outages Mark Holekamp Advisor: Warren B. Powell Submitted in partial fulfillment of the requirements for the degree of Bachelor of Science in Engineering Department of Operations Research and Financial Engineering Princeton University June 2013

Upload: others

Post on 23-Aug-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Holekamp,Mark final thesis - Princeton Universityenergysystems.princeton.edu/theses/2014/Holekamp... · ! 12! disabled,orsickresidentialcustomers! areanotherexampleofcriticalcustomers!

 

 

Keeping  the  Lights  On:  

An  Analysis  of  the  Dynamic  Allocation  Problem  of  

Assigning  Utility  Repair  Trucks  to  Outages  

 

Mark  Holekamp  

Advisor:  Warren  B.  Powell  

 

Submitted  in  partial  fulfillment  

of  the  requirements  for  the  degree  of  

Bachelor  of  Science  in  Engineering  

Department  of  Operations  Research  and  Financial  Engineering  

Princeton  University  

 

June  2013  

 

 

Page 2: Holekamp,Mark final thesis - Princeton Universityenergysystems.princeton.edu/theses/2014/Holekamp... · ! 12! disabled,orsickresidentialcustomers! areanotherexampleofcriticalcustomers!

 

I  hereby  declare  that  I  am  the  sole  author  of  this  thesis.  

 

 

I  authorize  Princeton  University  to  lend  this  thesis  to  other  institutions  or  

individuals  for  the  purpose  of  scholarly  research.  

 

 

                         /s/  Mark  Holekamp        

Mark  Holekamp    

 

 

 

I  further  authorize  Princeton  University  to  reproduce  this  thesis  by  photocopying  

or  by  other  means,  in  total  or  in  part,  at  the  request  of  other  institutions  or  

individuals  for  the  purpose  of  scholarly  research.  

 

 

                         /s/  Mark  Holekamp        

Mark  Holekamp

Page 3: Holekamp,Mark final thesis - Princeton Universityenergysystems.princeton.edu/theses/2014/Holekamp... · ! 12! disabled,orsickresidentialcustomers! areanotherexampleofcriticalcustomers!

  1  

 

Acknowledgements  

I  would  first  like  to  thank  my  thesis  advisor  Warren  Powell  for  introducing  me  to  

this  project  and  for  his  guidance  throughout.  I  appreciated  the  opportunity  to  

work  on  a  project  that  could  be  applied  to  real  world  issues  with  the  chance  of  

helping  improve  New  Jersey  and  the  Princeton  community.  

 

I  would  also  like  to  thank  Belgacem  Bouzaiene-­‐‑Ayari  for  his  extensive  help  with  

the  programming  in  this  thesis.  Your  patience  with  me  as  I  struggled  to  

familiarize  myself  with  Java  was  appreciated,  and  your  hard  work  in  translating  

PSE&G’s  data  into  a  functional  simulated  grid  made  this  thesis  possible.  

 

I’d  like  to  thank  my  friends  here  at  Princeton  for  making  the  past  four  years  such  

an  unforgettable  journey.  My  experiences  in  club  lacrosse,  club  squash,  and  the  

ever-­‐‑welcoming  Cloister  community  will  stay  with  me  forever.  I’d  especially  like  

to  thank  Bee  Keeler  for  making  my  time  here  so  special.  

 

Lastly  I  would  like  to  thank  my  family  for  their  unwavering  support  and  love.  I  

am  very  thankful  to  my  parents  for  giving  me  the  opportunity  to  attend  such  an  

amazing  University.  

Page 4: Holekamp,Mark final thesis - Princeton Universityenergysystems.princeton.edu/theses/2014/Holekamp... · ! 12! disabled,orsickresidentialcustomers! areanotherexampleofcriticalcustomers!

  2  

Abstract  

For  electrical  providers  like  PSE&G,  the  main  goal  of  the  company  is  to  

provide  consistent  and  reliable  services  to  their  customers.  However,  these  

companies  are  often  challenged  by  an  overwhelming  number  of  outages  

following  a  storm,  and  restoring  power  to  their  customers  as  quickly  and  

efficiently  as  possible  with  a  limited  amount  of  repair  resources  is  their  highest  

priority.  This  thesis  aims  to  analyze  the  process  of  assigning  utility  repair  crews  

to  outages  by  modeling  the  PSE&G  electrical  grid  and  simulating  problems  that  

may  arise  following  a  storm.  It  will  then  test  and  compare  various  dynamic  

allocation  policies  for  assigning  repair  crews  to  outages  to  determine  the  most  

effective  policy  for  resolving  potential  storm-­‐‑based  issues  in  the  future.    

 

 

 

 

 

 

 

 

Page 5: Holekamp,Mark final thesis - Princeton Universityenergysystems.princeton.edu/theses/2014/Holekamp... · ! 12! disabled,orsickresidentialcustomers! areanotherexampleofcriticalcustomers!

  3  

Table  of  Contents  

Acknowledgements  .........................................................................................................  1  

Abstract  ..............................................................................................................................  2  

Table  of  Contents  ..............................................................................................................  3  

Chapter  1:  Introduction  ..................................................................................................  4        1.1        Background  of  PSE&G  ......................................................................................................  4        1.2        Standards  of  PSE&G’s  Electrical  Service  ........................................................................  7        1.3        Critical  Customers  ...........................................................................................................  10        1.4        Impact  of  Storms  on  Electrical  Grid  ..............................................................................  12        1.5        Assignment  of  Repair  Crews  .........................................................................................  15        1.6        Thesis  Overview  ..............................................................................................................  17  

Chapter  2:  Dynamic  Resource  Allocation  Model  ....................................................  18        2.1        Introduction  to  Dynamic  Resource  Allocation  ............................................................  18        2.2        Cost  Function  and  Policy  Function  Approximations  .................................................  20        2.3        Mathematical  Model  .......................................................................................................  23                  2.31        State  Variable  .............................................................................................................  23                  2.32        Decision  Variable  ......................................................................................................  26                  2.33        Exogenous  Information  ...........................................................................................  29                  2.34        Transition  Function  ..................................................................................................  30                  2.35        Objective  Function  ....................................................................................................  32  

Chapter  3:  Policies  and  Simulator  ..............................................................................  34        3.1        Overview  of  Assignment  Policies  .................................................................................  34        3.2        The  Simulator  ...................................................................................................................  39                  3.21        Initial  Truck  Placement  ............................................................................................  40                  3.22        Task  Generation  ........................................................................................................  42                  3.23        Fixed  Parameters  ......................................................................................................  46  

Chapter  4:  Simulation  Data  and  Analysis  ................................................................  49        4.1        Initial  Policy  Search  .........................................................................................................  49                  4.12        Tunable  Parameter  Test  Results  .............................................................................  50        4.2        Policy  Testing  and  Comparison  ....................................................................................  56                  4.21        10  Truck  Scenarios  Results  ......................................................................................  56                  4.22        20  Truck  Scenarios  Results  ......................................................................................  59                  4.23        25  Truck  Scenarios  Results  ......................................................................................  62                  4.24        Policy  Conclusions  ...................................................................................................  65  

Chapter  5:  Conclusion  ..................................................................................................  69  

Appendix  .........................................................................................................................  74  

References  .......................................................................................................................  77    

Page 6: Holekamp,Mark final thesis - Princeton Universityenergysystems.princeton.edu/theses/2014/Holekamp... · ! 12! disabled,orsickresidentialcustomers! areanotherexampleofcriticalcustomers!

  4  

Chapter  1:  Introduction  

  This  chapter  is  designed  to  provide  an  extensive  background  on  the  

problem  of  assigning  repair  crews  in  order  to  resolve  any  problems  that  occur  as  

a  result  of  a  storm.  It  will  delve  into  not  only  the  electrical  company  whose  grid  

is  being  modeled  (PSE&G)  but  also  how  storms  can  affect  an  electrical  grid  and  

why  repair  crews  can  be  very  important  to  the  level  of  service  provided  to  

customers.  After  familiarizing  the  reader  with  the  background  issues  of  this  

problem,  this  chapter  will  then  summarize  the  motivation  and  goals  of  this  

thesis.  

     

1.1  Background  of  PSE&G  

PSE&G  is  one  of  the  largest  and  oldest  publicly  owned  gas  and  electric  

companies  in  the  United  States.  Initially  formed  in  1903  and  given  its  current  

name  in  1948,  PSE&G  services  almost  three  quarters  of  New  Jersey’s  population  

including  2.2  million  electric  customers.  This  electrical  provider  covers  a  large  

corridor  of  the  state  including  New  Jersey’s  six  largest  cities  (PSE&G  2014).  For  a  

visual  of  PSE&G’s  area  of  electrical  services,  see  the  following  Figure  1.1  that  

depicts  the  company’s  territory  in  yellow:  

 

Page 7: Holekamp,Mark final thesis - Princeton Universityenergysystems.princeton.edu/theses/2014/Holekamp... · ! 12! disabled,orsickresidentialcustomers! areanotherexampleofcriticalcustomers!

  5  

*  Note:  the  map  is  from  PSE&G’s  Outage  Center,  and  the  blue  triangles  are  

outages  that  were  impacting  the  grid  at  the  time  the  screenshot  was  taken  

 Figure  1-­‐‑1:  PSE&G  Coverage  Map      

  PSE&G’s  electrical  grid  is  part  of  an  East  Coast  power  infrastructure  that  

ranks  among  the  oldest  in  the  nation  (Lavelle  2012).  With  over  22,225  miles  of  

overhead  electricity  wire  and  around  8,000  miles  of  underground  wire,  PSE&G  

has  almost  three  fourths  of  its  electrical  grid  above  ground  (Marques  2014).  This  

(PSEG  Outage  Center)  

Page 8: Holekamp,Mark final thesis - Princeton Universityenergysystems.princeton.edu/theses/2014/Holekamp... · ! 12! disabled,orsickresidentialcustomers! areanotherexampleofcriticalcustomers!

  6  

fact  combined  with  the  age  of  the  infrastructure  makes  PSE&G’s  electrical  grid  

vulnerable  to  power  outages  given  New  Jersey’s  generally  wooded  landscape.  

  In  fact,  a  significant  proportion  of  PSE&G’s  electrical  customer  base  

experiences  power  outages  at  least  once  a  year.  Of  its  2.2  million  customers,  

PSE&G  has  had  an  average  of  1,568,992  customers  experience  blackouts  annually  

over  the  past  ten  years  with  a  low  of  1,339,468  in  2004  and  a  high  of  1,840,608  in  

2010  (Marques).  While  these  numbers  are  not  unusual  for  the  electrical  utility  

industry,  the  high  proportion  of  customers  experiencing  outages  each  year  

makes  electrical  repair  services  an  important  area  for  PSE&G.  The  following  table  

provides  a  breakdown  of  PSE&G’s  customer  base  by  county:  

 

County   Customers  Served  

Camden   161,298  

Somerset   107,769  

Union   201,364  

Bergen   339,387  

Burlington   174,138  

Essex   347,035  

Gloucester   34,497  

Page 9: Holekamp,Mark final thesis - Princeton Universityenergysystems.princeton.edu/theses/2014/Holekamp... · ! 12! disabled,orsickresidentialcustomers! areanotherexampleofcriticalcustomers!

  7  

Hudson   307,623  

Hunterdon   56  

Mercer   148,358  

Middlesex   250,544  

Monmouth   1,663  

Morris   99  

Passaic   173,150  

Total   2,246,981  

                                           Table  1-­‐‑1:  Customer  Numbers  by  County  

 

1.2  Standards  of  PSE&G’s  Electrical  Service  

  PSE&G  measures  the  reliability  of  its  services  using  a  set  of  indices  

defined  in  the  Institute  of  Electrical  and  Electronic  Engineers  (IEEE)  Standard  

1366.  This  standard,  most  recently  revised  in  2012,  is  a  guide  designed  to  identify  

factors  that  affect  service  reliability  and  aid  in  consistent  measurement  and  

reporting  of  service  reliability  in  the  utilities  industry.  Provided  in  the  IEEE  

Xplore  digital  library,  Standard  1366  defines  four  statistical  indices  that  are  

currently  used  by  PSE&G  to  measure  its  reliability.  

 

 

(PSEG  Outage  Center)  

Page 10: Holekamp,Mark final thesis - Princeton Universityenergysystems.princeton.edu/theses/2014/Holekamp... · ! 12! disabled,orsickresidentialcustomers! areanotherexampleofcriticalcustomers!

  8  

Basic  variables  and  terms:  

CN  =  Number  of  distinct  customers  that  experience  interruptions  in  an  

  area  

IMi  =  Number  of  momentary  interruptions  

Momentary  Interruption:  A  loss  of  electrical  services  less  than  five  

  minutes  in  duration  

  Ni  =  Number  of  customers  affected  by  sustained  interruption  event  i  

  Nmi  =  Number  of  customers  affected  by  momentary  interruption  event  i  

  NT  =  Total  number  of  customers  served  in  an  area  

  ri  =  Restoration  time  for  interruption  event  i  

  Sustained  Interruption:  A  loss  of  electrical  services  for  longer  than  five    

    minutes  

 

𝑆𝐴𝐼𝐷𝐼 =  Σ  Customer  Minutes  of  Interruption𝑇𝑜𝑡𝑎𝑙  𝑁𝑢𝑚𝑏𝑒𝑟  𝑜𝑓  𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝑠  𝑆𝑒𝑟𝑣𝑒𝑑 =  

Σ  𝑟!𝑁!  𝑁!

 

SAIDI,  also  called  the  System  Average  Interruption  Duration  Index,  effectively  

measures  the  total  duration  of  sustained  electrical  service  interruption  for  the  

average  customer  in  an  area  during  a  defined  period  of  time.  The  unit  of  this  

measurement  is  typically  minutes  or  hours  of  interruption.  

 

Page 11: Holekamp,Mark final thesis - Princeton Universityenergysystems.princeton.edu/theses/2014/Holekamp... · ! 12! disabled,orsickresidentialcustomers! areanotherexampleofcriticalcustomers!

  9  

𝐶𝐴𝐼𝐷𝐼 =  Σ  𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟  𝑀𝑖𝑛𝑢𝑡𝑒𝑠  𝑜𝑓  𝐼𝑛𝑡𝑒𝑟𝑟𝑢𝑝𝑡𝑖𝑜𝑛

𝑇𝑜𝑡𝑎𝑙  𝑁𝑢𝑚𝑏𝑒𝑟  𝑜𝑓  𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝑠  𝐼𝑛𝑡𝑒𝑟𝑟𝑢𝑝𝑡𝑒𝑑 =  Σ  𝑟!𝑁!Σ  𝑁!

 

CAIDI,  known  as  the  Customer  Average  Interruption  Duration  Index,  calculates  

the  average  time  required  to  restore  electrical  services  to  the  average  customer  

affected  by  a  sustained  interruption  in  an  area.  This  index  is  also  normally  

measured  in  minutes  or  hours  of  interruption.  

 

𝐶𝐴𝐼𝐹𝐼 =  Σ  𝑇𝑜𝑡𝑎𝑙  𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟  𝑆𝑢𝑠𝑡𝑎𝑖𝑛𝑒𝑑  𝐼𝑛𝑡𝑒𝑟𝑟𝑢𝑝𝑡𝑖𝑜𝑛𝑠

𝑇𝑜𝑡𝑎𝑙  𝑁𝑢𝑚𝑏𝑒𝑟  𝑜𝑓  𝐷𝑖𝑠𝑡𝑖𝑛𝑐𝑡  𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝑠  𝐼𝑛𝑡𝑒𝑟𝑟𝑢𝑝𝑡𝑒𝑑 =  Σ  𝑁!𝐶𝑁  

CAIFI,  the  Customer  Average  Interruption  Frequency  Index,  measures  the  

average  frequency  of  sustained  interruptions  for  the  customers  in  an  area  that  are  

experiencing  such  interruptions.  The  unit  of  this  index  is  interruptions  per  

interrupted  customer.  

 

𝑀𝐴𝐼𝐹𝐼 =  Σ  𝑇𝑜𝑡𝑎𝑙  𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟  𝑀𝑜𝑚𝑒𝑛𝑡𝑎𝑟𝑦  𝐼𝑛𝑡𝑒𝑟𝑟𝑢𝑝𝑡𝑖𝑜𝑛𝑠

𝑇𝑜𝑡𝑎𝑙  𝑁𝑢𝑚𝑏𝑒𝑟  𝑜𝑓  𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝑠  𝑆𝑒𝑟𝑣𝑒𝑑 =  Σ  𝐼𝑀! ∗ 𝑁!"

𝑁!  

MAIFI,  also  called  the  Momentary  Average  Interruption  Frequency  Index,  

calculates  the  average  frequency  of  momentary  interruptions  in  an  area.  It  is  

typically  measured  in  interruptions  per  customer.  

 

PSE&G  consistently  measures  the  statistical  factors  that  make  up  these  four  

indices  in  order  to  track  the  reliability  of  its  services  from  year  to  year.  These  

Page 12: Holekamp,Mark final thesis - Princeton Universityenergysystems.princeton.edu/theses/2014/Holekamp... · ! 12! disabled,orsickresidentialcustomers! areanotherexampleofcriticalcustomers!

  10  

indices  allow  the  company  to  calculate  the  duration  of  sustained  outages  for  the  

average  customer  (SAIDI),  the  average  time  required  to  restore  electricity  to  

affected  customers  (CAIDI),  the  frequency  of  sustained  interruptions  for  

customers  experiencing  such  outages  (CAIFI),  and  the  frequency  of  momentary  

interruptions  for  the  average  customer  (MAIFI).  Since  these  indices  measure  the  

extent  to  which  customers  are  affected  by  momentary  and  sustained  electrical  

service  interruptions,  it  is  PSE&G’s  goal  to  minimize  these  indices  in  order  to  

provide  the  most  reliable  service  to  its  customers.  

 

1.3  Critical  Customers  

  Critical  customers  such  as  hospitals,  utilities,  police  stations,  etc.  are  

especially  important  to  PSE&G  because  it  is  vital  that  they  remain  running  and  

operational  for  the  services  they  provide  to  society.  As  electricity  is  the  basis  for  

being  operational,  consistent  electrical  service  is  paramount  for  these  customers.  

This  section  will  discuss  how  PSE&G  values  critical  customers  and  their  

heterogeneous  attributes  and  electrical  requirements.  

  Providing  consistent  electrical  service  to  certain  customers  is  especially  

important  for  PSE&G.  These  critical  customers  can  be  significantly  impacted  by  

prolonged  power  outages;  when  outages  do  occur,  restoring  power  to  them  as  

quickly  as  possible  is  of  utmost  importance  because  the  length  of  the  blackout  

Page 13: Holekamp,Mark final thesis - Princeton Universityenergysystems.princeton.edu/theses/2014/Holekamp... · ! 12! disabled,orsickresidentialcustomers! areanotherexampleofcriticalcustomers!

  11  

may  be  very  impactful  not  only  to  the  critical  customers  themselves  but  also  to  

the  communities  they  serve.  

  Hospitals  are  one  example  of  a  critical  electrical  customer  because  they  are  

constantly  in  need  of  electricity.  Power  is  needed  around  the  clock  to  provide  

lighting  for  surgeries  and  to  run  medical  equipment  such  as  diagnostic  machines  

or  life  support.  Without  electricity,  a  hospital  would  be  unable  to  perform  its  

critical  life-­‐‑saving  functions,  and  as  a  result  the  hospital  and  its  patients  would  

suffer  from  prolonged  power  outages.  Although  most  hospitals  do  in  fact  have  

backup  generators  that  come  online  automatically  in  the  case  of  a  loss  of  power,  

these  are  typically  diesel  generators  with  a  limited  fuel  supply.  Most  hospitals  

would  be  able  to  operate  for  ten  or  twelve  hours  on  electricity  from  these  

generators,  but  in  cases  much  longer  than  this  the  hospital  will  run  out  of  fuel  

and  be  helpless  without  power.  Thus,  it  is  essential  that  PSE&G  utility  repair  

crews  respond  to  and  resolve  grid  problems  affecting  hospitals  as  quickly  as  

possible.  

  Utility  buildings  and  certain  residential  customers  are  also  entities  that  

can  be  especially  sensitive  to  lengthy  blackouts.  Water  plants  depend  on  

electrical  services  to  consistently  provide  its  products  to  its  area.  Although  these  

buildings  often  have  backup  generators  as  well,  again  these  generators  are  

usually  diesel-­‐‑fuelled  and  thus  limited  in  their  time  of  operation.  Elderly,  

Page 14: Holekamp,Mark final thesis - Princeton Universityenergysystems.princeton.edu/theses/2014/Holekamp... · ! 12! disabled,orsickresidentialcustomers! areanotherexampleofcriticalcustomers!

  12  

disabled,  or  sick  residential  customers  are  another  example  of  critical  customers  

for  electrical  providers.  These  customers  are  frequently  immobile  and  susceptible  

to  the  negative  effects  of  blackouts,  especially  during  periods  of  extreme  

temperature  during  the  peak  of  winter  or  summer.  Without  power  for  a  

prolonged  period  of  time  during  such  weather,  their  homes  can  become  

dangerously  hot  or  cold  without  electricity  to  run  their  heating  or  air  

conditioning.  These  residents  would  be  unable  to  leave  their  homes  and  could  

face  significant  health  risks  if  power  is  not  restored  in  a  timely  manner.  

  Because  of  critical  customers,  power  outages  are  not  always  homogeneous  

in  their  time  dependency.  Problems  affecting  certain  areas  of  PSE&G’s  electrical  

grid  need  to  be  resolved  especially  quickly  depending  of  the  composition  of  the  

customers  in  these  locales.  Critical  customers  make  quick  and  efficient  handling  

of  power  outages  by  utility  repair  crews  even  more  important  for  PSE&G.  

   

1.4  Impact  of  Storms  on  Electrical  Grid  

  Storms  are  a  large  and  continual  source  of  concern  for  electrical  providers  

like  PSE&G.  Not  only  are  they  capable  of  causing  direct  physical  damage  to  

electrical  grids  by  themselves  but  also  the  localized  high  winds  often  generated  

by  storms  can  bring  down  trees.  Downed  trees  are  the  main  problem  for  many  

Page 15: Holekamp,Mark final thesis - Princeton Universityenergysystems.princeton.edu/theses/2014/Holekamp... · ! 12! disabled,orsickresidentialcustomers! areanotherexampleofcriticalcustomers!

  13  

electrical  companies  as  a  large  majority  of  transmission  wires  are  strung  above  

ground  in  close  proximity  to  

trees.    

A  single  tree  falling  on  a  

segment  of  wires  as  a  result  of  a  

storm  can  cause  a  power  outage  

for  a  significant  number  of  

customers  depending  on  where  

in  the  line  the  breakage  occurs.  

This  event  is  both  impossible  to  predict  and  fairly  common  even  during  a  typical  

storm.  Because  of  this,  storms  are  the  biggest  challenge  in  providing  quality,  

consistent  electrical  services  to  customers  because  they  are  the  most  frequent  

sources  of  blackouts.  

Hurricane  Sandy  in  2012  was  a  perfect  example  of  the  damage  storms  can  

wreak  on  electrical  grids.  Sandy,  the  second  most  costly  storm  in  the  history  of  

the  United  States  with  damages  estimated  to  be  upwards  of  $50  billion,  hit  New  

Jersey  particularly  hard.  Total  business  losses  in  New  Jersey  amounted  to  around  

$8.3  billion,  a  significant  chunk  of  the  state’s  GDP  (Huffington  Post  2013).  This  

staggering  amount  of  physical  damage  caused  by  Hurricane  Sandy  was  not  the  

only  cost  of  the  storm,  however.  Loss  of  electrical  power,  a  critical  part  of  

An  example  of  storm  damage  (Powell  2014)  

Page 16: Holekamp,Mark final thesis - Princeton Universityenergysystems.princeton.edu/theses/2014/Holekamp... · ! 12! disabled,orsickresidentialcustomers! areanotherexampleofcriticalcustomers!

  14  

modern  life,  crippled  not  only  businesses  but  many  New  Jersey  communities  as  

well.  Businesses  without  generators,  especially  smaller  ones,  were  without  

power  for  a  substantial  period  of  time  due  to  Sandy  and  were  unable  to  operate  

without  electricity.  This  resulted  in  further  economic  losses  for  New  Jersey  in  

addition  to  the  physical  damages  since  these  businesses  were  essentially  closed  

as  long  as  they  did  not  have  power.    

PSE&G  itself  was  one  of  the  main  victims  of  this  costly  storm,  as  

Hurricane  Sandy  rolled  through  much  of  its  coverage  area  including  Newark,  

one  of  the  most  populous  areas  in  which  PSE&G  provides  electrical  services.  1.7  

million  PSE&G  customers,  many  in  Newark,  were  without  power  shortly  

following  the  storm  due  to  the  widespread  and  extensive  damage  to  the  grid  

(Swetha  2012).  PSE&G  was  able  to  restore  power  to  large  sections  of  Newark  

within  24  hours,  including  the  critical  area  of  Newark  Airport  (Caroom  2012).  

However,  over  750,000  PSE&G  customers  were  still  without  power  three  days  

after  the  storm  hit,  many  of  these  outages  due  to  fallen  trees  and  downed  lines  

(Gopinath  2012).  Some  customers  experienced  blackouts  lasting  almost  two  

weeks,  an  enormous  amount  of  time  to  be  completely  devoid  of  power.  

Although  Hurricane  Sandy  was  not  a  typical  storm  in  terms  of  its  power  

and  scope,  it  demonstrated  on  a  large  scale  the  difficulties  that  power  companies  

like  PSE&G  face  immediately  following  a  storm.  Repairing  the  damage  done  to  

Page 17: Holekamp,Mark final thesis - Princeton Universityenergysystems.princeton.edu/theses/2014/Holekamp... · ! 12! disabled,orsickresidentialcustomers! areanotherexampleofcriticalcustomers!

  15  

the  electrical  grid  is  time  consuming,  and  the  time  it  takes  to  bring  the  grid  back  

to  100%  functionality  is  very  noticeable  to  the  customers  who  are  experiencing  

blackouts.  Because  of  this,  PSE&G  is  under  extreme  pressure  to  quickly  restore  

power  to  every  single  one  of  its  customers  following  a  storm.  Thus,  minimizing  

the  amount  of  time  it  takes  to  restore  power  to  its  customers  after  a  storm  is  of  

utmost  importance  to  PSE&G.  

 

1.5  Assignment  of  Repair  Crews  

Clark  Gellings,  a  fellow  at  the  Electric  Power  Research  Institute,  points  out  

that  “it  is  virtually  impossible  to  protect  the  system  from  a  storm  like  Sandy  .  .  .  

can  we  do  a  better  job  at  putting  it  all  back  together?”  (qtd.  in  Lavelle  2012).  

Storms  will  always  be  an  issue  for  electrical  providers  like  PSE&G  since  the  

systemic  damage  they  cause  is  simply  unavoidable.  Although  there  are  some  

strategies  for  minimizing  potential  storm  damage  such  as  burying  wires  

underground,  issues  will  simply  always  arise  in  the  electrical  grid  following  

storms.  Thus,  addressing  the  various  problems  that  cause  blackouts  in  the  grid  

through  the  assignment  of  utility  repair  crews  is  an  important  aspect  of  electrical  

companies  like  PSE&G  in  providing  quality  service  to  their  customers.  

In  most  cases  of  outages,  PSE&G  uses  its  own  workforce  of  utility  repair  

crews  to  resolve  the  problem.  Additionally,  the  company  has  a  number  of  “first  

Page 18: Holekamp,Mark final thesis - Princeton Universityenergysystems.princeton.edu/theses/2014/Holekamp... · ! 12! disabled,orsickresidentialcustomers! areanotherexampleofcriticalcustomers!

  16  

call”  contracts  with  local  contractors  throughout  New  Jersey.  These  contracts  

essentially  give  PSE&G  first  priority  in  the  event  that  the  services  of  the  local  

contractors  are  needed.  First  call  contracts  are  generally  used  when  company  

utility  crews  are  insufficient  and  PSE&G  needs  additional  repair  resources  in  a  

certain  area.    

In  more  extreme  cases  when  PSE&G  is  completely  overwhelmed  by  grid  

problems,  the  company  can  make  use  of  its  assistance  group.  PSE&G  is  currently  

a  member  of  the  North  Atlantic  Mutual  Assistance  Group  (NAMAG),  a  

collection  of  21  utility  companies.  NAMAG  is  a  Regional  Mutual  Assistance  

Group  (RMAG)  that  follows  guidelines  dictated  by  the  Edison  Electric  Institutes  

(EII)—members  of  the  group  agree  to  assist  one  another  in  terms  of  utility  repair  

resources.  NAMAG’s  membership  includes  companies  from  Baltimore  at  its  

southern  most  reaches  to  Nova  Scotia  at  its  northern  point  and  companies  as  far  

west  as  Ohio.  In  the  event  of  a  national  event  like  Hurricane  Sandy,  the  EII  will  

supervise  and  coordinate  utility  crew  distribution  to  the  NAMAG  members  as  

needed.  While  NAMAG  offers  a  large  source  of  outside  utility  repair  resources,  

PSE&G  typically  appeals  to  its  mutual  assistance  group  peers  for  support  only  

after  the  rare  major  storm  (Marques  2014).  

 

 

Page 19: Holekamp,Mark final thesis - Princeton Universityenergysystems.princeton.edu/theses/2014/Holekamp... · ! 12! disabled,orsickresidentialcustomers! areanotherexampleofcriticalcustomers!

  17  

1.6  Thesis  Overview  

  PSE&G  faces  the  constant  challenge  of  responding  to  outages  and  

resolving  them  as  quickly  as  possible.  Its  primarily  aboveground,  old  

infrastructure  and  wooded  terrain  means  that  issues  arise  frequently  in  the  grid,  

especially  after  storms.  A  large  proportion  of  PSE&G’s  customers  experience  

power  loss  each  year,  and  restoring  power  through  efficient  use  of  its  utility  

repair  crews  is  of  utmost  importance  to  providing  as  reliable  of  service  as  

possible.  Critical  customers  make  it  even  more  vital  to  address  issues  in  certain  

areas  of  the  grid.    

  Since  replacing  its  grid  infrastructure  with  newer  technology  or  burying  

large  parts  of  its  overhead  wires  would  require  an  enormous  investment  of  

capital,  optimizing  its  allocation  of  repair  crews  to  problems  as  they  arise  would  

be  the  easiest  and  most  cost  effective  method  of  improving  the  reliability  of  

PSE&G’s  service.  This  is  the  motivation  for  this  thesis,  as  it  aims  to  find  the  most  

efficient  policy  of  crew  allocation  by  modeling  PSE&G’s  electrical  grid  and  

simulating  post-­‐‑storm  issues.  In  the  following  chapters,  the  development  of  both  

the  grid  model  and  the  simulator  will  be  laid  out  as  well  as  the  results  of  the  

simulations  and  the  policy  analysis.  

 

 

Page 20: Holekamp,Mark final thesis - Princeton Universityenergysystems.princeton.edu/theses/2014/Holekamp... · ! 12! disabled,orsickresidentialcustomers! areanotherexampleofcriticalcustomers!

  18  

Chapter  2:  Dynamic  Resource  Allocation  Model  

  This  chapter  will  first  give  an  introduction  to  dynamic  resource  allocation  

problems.  It  will  then  give  a  summary  of  two  types  of  policies  that  can  be  used  to  

solve  resource  allocation  problems,  followed  by  a  detailed  layout  of  the  

mathematical  model  behind  this  thesis.    

   

2.1  Introduction  to  Dynamic  Resource  Allocation  

  Dynamic  resource  allocation  is  a  fundamental  problem  that  involves  the  

allocation  of  limited  resources  over  a  period  of  time.  These  resources  can  be  

physical—trucks,  raw  materials,  and  specialized  machines—  or  human.  The  

management  of  these  resources  includes  dynamic  information  processes  that  can  

significantly  complicate  the  problem  (Powell  and  Van  Roy  2004).  For  example,  a  

flower  delivery  service  must  consider  a  myriad  of  information  processes  like  

outstanding  customer  orders,  weather,  road  construction,  and  more  when  

allocating  their  drivers  and  vehicles  to  effectively  fulfill  their  business  

commitments.  Although  making  optimal  allocation  decisions  can  be  extremely  

complex,  the  basis  of  dynamic  resource  allocation  problems  can  be  represented  

by  a  fairly  simple  visual:  

Page 21: Holekamp,Mark final thesis - Princeton Universityenergysystems.princeton.edu/theses/2014/Holekamp... · ! 12! disabled,orsickresidentialcustomers! areanotherexampleofcriticalcustomers!

  19  

 

  In  theory,  dynamic  resource  allocation  problems  can  be  regarded  as  

Markov  decision  processes  and  solved  through  dynamic  programming  

algorithms;  however,  solving  dynamic  resource  allocation  problems  on  a  

practical  scale  in  such  a  way  is  often  infeasible  (Powell  and  Van  Roy  2004).  In  

their  paper  titled  “Approximate  Dynamic  Programming  for  High-­‐‑Dimensional  

Resource  Allocation  Problems”,  Powell  and  Van  Roy  point  out  that  there  are  

three  “curses  of  dimensionality”  that  typically  plague  realistic  resource  allocation  

problems:  the  number  of  state  variables,  the  number  of  decision  variables,  and  

the  number  of  random  variables.  As  the  number  of  these  three  entities  grows  in  a  

dynamic  resource  allocation  problem,  the  computation  time  and  memory  

Page 22: Holekamp,Mark final thesis - Princeton Universityenergysystems.princeton.edu/theses/2014/Holekamp... · ! 12! disabled,orsickresidentialcustomers! areanotherexampleofcriticalcustomers!

  20  

required  by  classic  programming  algorithms  grow  exponentially.  Thus,  resource  

problems  on  a  practical  scale—that  is,  problems  that  involve  many  variables—

cannot  be  feasibly  solved  by  typical  dynamic  programming  algorithms.  

 

2.2  Cost  Function  and  Policy  Function  Approximations  

  Instead  of  using  dynamic  programming  algorithms,  resource  allocation  

problems  can  be  approached  as  a  sequential  stochastic  optimization  problem.  In  

the  paper  by  Powell  et  al.  “Approximate  Dynamic  Programming  in  

Transportation  and  Logistics:  A  Unified  Framework”,  two  classes  of  policies  are  

presented  that  can  be  used  to  solve  sequential  stochastic  optimization  problems.  

These  two  classes  of  policies,  cost  function  approximations  and  policy  function  

approximations,  have  distinct  characteristics  but  share  the  same  ability  to  

address  resource  allocation  problems  that  would  otherwise  be  infeasible  with  the  

aforementioned  dynamic  programming  algorithms.  Cost  function  

approximations  and  policy  function  approximations  avoid  the  exponentially  

increasing  time  and  data  requirements  that  would  otherwise  hamper  large  scale  

problems  through  their  simple,  defined  decision  making  processes.  Although  in-­‐‑

depth  discussion  of  the  specific  policies  used  in  this  thesis  will  occur  later  in  

Chapter  3,  the  following  will  give  a  summary  of  the  basic  structure  and  

characteristics  of  these  two  classes  of  policies.  

Page 23: Holekamp,Mark final thesis - Princeton Universityenergysystems.princeton.edu/theses/2014/Holekamp... · ! 12! disabled,orsickresidentialcustomers! areanotherexampleofcriticalcustomers!

  21  

  Cost  function  approximations,  also  called  myopic  policies,  are  a  class  of  

policies  that  optimize  costs/rewards  at  the  current  time  step  and  do  not  consider  

the  future  or  future  decisions.  These  policies  also  commonly  include  tunable  

parameters  that  can  be  changed  to  improve  the  performance  of  the  policy  

(Powell  2010).  The  basic  form  of  cost  function  approximations  is:  

𝑋!"#(𝑆!) =  𝑎𝑟𝑔𝑚𝑖𝑛!!∈!!𝐶(𝑆! , 𝑥!|𝜃)  

Where  XCFA  is  the  cost  function  approximation  policy,  St  is  the  state  variable  at  

time  t,  xt  is  a  decision  variable  at  time  t,  θ  is  the  tunable  parameter,  and  C()  is  a  

cost  function  (Powell  et  al.  2012).  This  type  of  policy  essentially  chooses  the  

decision  xt  that  minimizes  the  cost  function  given  the  current  state  and  the  

tunable  parameter.  If  C()  is  a  reward  function,  then  the  policy  would  choose  a  

decision  xt  that  maximizes  the  function  given  the  state  and  tunable  parameter.  

Cost  function  approximations  are  a  fairly  simple  type  of  policy,  but  they  are  

often  used  in  resource  allocation  problems  because  they  can  handle  high-­‐‑

dimensional  problems.  Since  they  ignore  the  future  and  the  future  effects  of  a  

decision  in  the  current  time  period,  these  policies  can  be  solved  quickly  with  a  

basic  linear  program  (Powell  2010).  A  simple  example  of  a  cost  function  

approximation  policy  would  be  a  policy  that  assigns  salespeople  to  customers  in  

order  to  maximize  a  revenue  function  given  a  current  state  and  tunable  

parameter.  

Page 24: Holekamp,Mark final thesis - Princeton Universityenergysystems.princeton.edu/theses/2014/Holekamp... · ! 12! disabled,orsickresidentialcustomers! areanotherexampleofcriticalcustomers!

  22  

  Policy  function  approximations  are  a  class  of  policies  that  choose  a  

decision  given  a  state,  without  any  form  of  internal  optimization  or  consideration  

of  the  future  (Powell  2010).  These  types  of  policies  are  generally  used  when  there  

is  a  desired  policy  structure.  The  basic  form  of  policy  function  approximations  

can  vary  depending  on  the  problem.  One  example  from  this  class  of  policies  is  an  

inventory  reordering  policy  that  is  discussed  in  Powell  et  al.’s  “Approximate  

Dynamic  Programming  in  Transportation  and  Logistics”  paper:  

𝑋!"# 𝑅! =   0                          𝑖𝑓  𝑅!  ≥ 𝑞𝑄 − 𝑅!      𝑖𝑓  𝑅!  < 𝑞    

Where  XPFA  is  the  policy  function  approximation,  Rt  is  the  inventory  of  some  

good  at  time  t,  q  is  some  predetermined  lower  limit  of  inventory,  and  Q  is  

another  preselected  quantity  of  inventory.  This  policy  essentially  does  nothing  if  

the  inventory  is  above  the  lower  limit  and  orders  an  amount  Q  minus  the  current  

inventory  Rt  if  the  inventory  falls  below  the  lower  limit.  This  policy  function  

approximation  has  an  obvious  structure  to  it  and  does  not  have  any  sort  of  

optimization  like  in  the  cost  function  approximations.  Rather,  it  only  depends  on  

the  state,  which  in  the  example  above  is  the  inventory  of  some  good  at  time  t.  

However,  policy  function  approximations  are  similar  to  cost  function  

approximations  in  that  they  require  little  computational  time  or  data,  making  

them  applicable  for  complicated  problems  like  resource  allocation  that  would  

otherwise  be  overwhelming.  

Page 25: Holekamp,Mark final thesis - Princeton Universityenergysystems.princeton.edu/theses/2014/Holekamp... · ! 12! disabled,orsickresidentialcustomers! areanotherexampleofcriticalcustomers!

  23  

2.3  Mathematical  Model  

  The  aim  of  this  thesis  is  to  determine  the  optimal  policy  for  assigning  

electric  repair  crews  to  problems  following  a  storm  by  modeling  PSE&G’s  

electrical  grid  and  comparing  assignment  policies  through  simulation.  However,  

before  this  problem  can  be  solved,  it  must  first  be  carefully  modeled  

mathematically.  Sequential  stochastic  decision  problems  can  be  broken  down  

into  five  components:  state  variable,  decision  variable,  exogenous  information,  

transition  functions,  and  objective  function.  The  following  sections  will  lay  out  

these  five  components  of  this  thesis’  mathematical  model.  

 

2.31  State  Variable  

  Although  there  are  a  number  of  definitions  for  the  state  variable  in  the  

academic  community,  in  this  case  it  will  be  defined  as  the  minimally  

dimensioned  function  of  history  that  is  necessary  and  sufficient  to  compute  the  

decision  function,  the  transition  function,  and  the  contribution  function  (Powell  1  

Oct.  2013).  In  other  words,  the  state  variable  is  the  information  you  need  to  make  

a  decision,  calculate  its  impact,  and  move  on  to  the  next  time  step  and  nothing  

more.  The  information  required  to  do  these  steps  includes  not  only  static  

information  but  also  dynamic  information  that  changes  as  time  progresses.  

However,  only  dynamic  information  is  typically  included  in  the  state  variable  

Page 26: Holekamp,Mark final thesis - Princeton Universityenergysystems.princeton.edu/theses/2014/Holekamp... · ! 12! disabled,orsickresidentialcustomers! areanotherexampleofcriticalcustomers!

  24  

while  static  information  is  stated  separately  to  keep  the  model  and  the  state  

variable  succinct.  For  this  thesis  the  state  variable  will  be  referred  to  as  St,  and  it  

is  defined  in  this  model  as  follows:  

𝑆! = 𝛤!,𝛶!  

Where  

  Γt  =  the  list  of  available  repair  trucks  at  time  t  

Υt  =  the  list  of  unassigned  or  uncompleted  tasks  (outages)  at  time  t  

 

Each  of  these  elements  of  the  state  variable  is  a  dynamic  set  of  information  whose  

individual  elements  have  multiple  attributes.  The  truck  and  task  elements  will  be  

detailed  below.  

  The  repair  truck  element  Γt  includes  all  trucks  that  are  available  for  

assignment  in  the  current  time  step  t.  In  other  words,  all  trucks  included  in  this  

list  are  not  working  on  a  task  at  time  t.  A  given  truck  in  this  list,  Tri,  has  a  set  of  

attributes  that  provide  important  information  about  the  truck  at  time  t.  

Γ! = (Tr!,Tr!,… ,Tr!,… )  

Where  

Tri  =  (t,  Lt,i,  IDi)  

    t  =  the  current  time  

Lt,i  =  the  current  location  of  the  truck  

Page 27: Holekamp,Mark final thesis - Princeton Universityenergysystems.princeton.edu/theses/2014/Holekamp... · ! 12! disabled,orsickresidentialcustomers! areanotherexampleofcriticalcustomers!

  25  

IDi  =  the  unique  identification  tag  for  the  particular  truck  

 

The  current  time  t  and  the  current  location  Lt,i  are  dynamic  attributes  while  IDi  is  

static  and  does  not  change,  but  it  is  necessary  to  keep  the  identification  

information  because  the  trucks  need  to  be  able  to  be  recognized  as  individuals.  

  The  task  element  Υt  includes  all  tasks  that  are  awaiting  service  at  the  

current  time  step  t  and  have  not  yet  been  assigned  a  truck.  A  given  task  in  this  

list,  Tsi,  has  various  attributes:  

Υ! = (Ts!,Ts!,…   ,Ts!,… )  

Where  

Ts! = (t, L!,!, ID,T!"!#$,!,D!,P!,N!)  

    t  =  the  current  time  

    Lt,i  =  the  current  location  of  the  task  

    IDi  =  the  identification  tag  for  the  particular  task  

    Tevent,i  =  time  at  which  the  task  was  learned  about  

    Di  =  the  duration  of  the  task  

    Pi  =  priority  of  the  task  

    Ni  =  the  number  of  customers  affected  by  the  task  

 

Page 28: Holekamp,Mark final thesis - Princeton Universityenergysystems.princeton.edu/theses/2014/Holekamp... · ! 12! disabled,orsickresidentialcustomers! areanotherexampleofcriticalcustomers!

  26  

Of  the  above  attributes  of  the  task,  only  the  current  time  is  dynamic  information.  

All  of  the  other  attributes  are  static  and  do  not  change  as  time  progresses,  but  

they  are  very  important  in  the  decision  making  process.  

 

2.32  Decision  Variable  

  At  the  simplest  level,  the  decision  being  made  in  this  thesis’  mathematical  

model  during  a  given  time  step  is  to  what  unassigned  task  is  an  available  truck  

being  allocated.  Since  there  can  be  multiple  repair  resources  available  at  the  same  

time,  in  some  cases  multiple  decisions  are  made  in  a  single  time  step.  While  the  

decision  itself  is  fairly  simple,  the  decision  variable  xt  is  in  fact  a  multifaceted  

variable  with  several  elements.  Each  of  these  elements  is  an  important  piece  of  

information:  

x! = (T!"#$",T!"#, L!"#$#%, L!"#$, ID!"#$%, ID!"#$,C)  

Where  

  Tstart  =  the  start  time  of  the  decision  (essentially  the  current  time)  

  Tend  =  the  end  time  of  the  decision,  i.e.  when  the  task  will  be  completed  

  Lorigin  =  the  current  location  of  the  truck  being  assigned  

  Ldest  =  the  current  location  of  the  task  being  resolved  

  IDtruck  =  the  identification  tag  of  the  truck  being  assigned  

  IDtask  =  the  identification  tag  of  the  task  being  resolved  

Page 29: Holekamp,Mark final thesis - Princeton Universityenergysystems.princeton.edu/theses/2014/Holekamp... · ! 12! disabled,orsickresidentialcustomers! areanotherexampleofcriticalcustomers!

  27  

  C  =  the  contribution  of  the  decision  

 

All  of  the  above  elements  are  in  fact  static  information  as  none  of  them  change  as  

time  progresses  from  the  time  step  that  this  decision  is  made,  which  is  time  t  in  

this  case.  Both  Tend  and  C  are  slightly  more  complicated  than  the  other  elements,  

as  they  involved  some  calculation  using  other  bits  of  information.  The  

calculations  that  define  these  elements  are  detailed  below:  

C  =  (Ntask,  Dtotal)  

Where    

  Ntask  =  the  number  of  customers  affected  by  the  task  being  resolved  by  the    

                           decision  

  Dtotal  =  Tend  –  Tevent,  task  

  Tevent,  task  =  the  time  at  which  the  task  being  resolved  was  learned  about  

 

The  contribution  of  a  decision  effectively  holds  two  pieces  of  information—the  

number  of  customers  being  affected  by  the  task  being  resolved  by  this  decision  

and  the  total  time  it  took  to  resolve  the  problem  since  it  was  first  learned  about.  

These  two  elements  are  important  because  they  are  part  of  the  objective  function,  

discussed  later  in  section  2.35.  The  calculation  of  Tend,  the  end  time  of  the  

decision,  is  a  little  more  complicated:  

Page 30: Holekamp,Mark final thesis - Princeton Universityenergysystems.princeton.edu/theses/2014/Holekamp... · ! 12! disabled,orsickresidentialcustomers! areanotherexampleofcriticalcustomers!

  28  

Tend  =  t  +  Ttravel  +  Di  

Where  

  Di  =  duration  of  the  task  being  resolved,  in  this  case  task  i  

  Ttravel  =  d/s  

    d  =  distance  between  Lorigin  and  Ldest  

    s  =  speed  at  which  a  truck  travels  

 

The  speed  at  which  the  truck  travels  is  a  fixed  parameter  in  the  simulation,  and  it  

will  be  discussed  further  in  the  next  chapter.  The  distance  between  Lorigin  and  

Ldest,  essentially  the  distance  between  the  truck  being  assigned  and  its  task  at  the  

time  the  decision  is  being  made,  is  calculated  using  the  haversine  formula  to  

determine  the  great-­‐‑circle  distance  between  two  points.  In  other  words,  this  

distance  is  the  shortest  distance  over  the  surface  of  the  earth  between  the  two  

points  (Veness  2014).  It  is  calculated  using  the  following  equation:  

d = R ∗ 2 ∗ atan2( b, 1− b)  

Where  

b = sind!"#2 ∗ sin

d!"#2 + sin

d!"#2 ∗ sin

d!"#2 ∗ cos lat!!"#$#% ∗ cos lat!!"#$  

R  =  Earth’s  radius  in  miles  =  3961  miles  (Rosenberg  2012)  

  d!"# = lat!!"!! − lat!!"#$#%  

  d!"# = lon!!"#$ − lon!!"#$#%  

Page 31: Holekamp,Mark final thesis - Princeton Universityenergysystems.princeton.edu/theses/2014/Holekamp... · ! 12! disabled,orsickresidentialcustomers! areanotherexampleofcriticalcustomers!

  29  

  lat!!"#$ = latitude  of  the  location  L!"#$  

  lat!!"#$#% = latitude  of  the  location  L!"#$#%  

  lon!!"#$ = longitude  of  the  location  L!"#$  

  lon!!"#$ = longitude  of  the  location  L!"#$#%  

 

2.33  Exogenous  Information  

Exogenous  information  in  this  model  is  any  information  that  arrives  at  a  

time  period  t.  It  is  helpful  to  model  the  new  information  coming  into  the  system  

as  a  single  variable,  which  in  this  case  will  be  Wt.  This  variable  represents  a  

realization  of  the  information  that  arrives  at  time  period  t  (Powell  1  Oct.  2013).  

This  variable  is  not  random,  but  it  contains  information  that  is  very  important  to  

making  a  decision  during  the  time  step.  The  exogenous  information  in  a  given  

time  step  t  is  detailed  below:  

W! = (ΔΓ!,ΔΥ!)  

Where  

  ΔΓt  =  the  trucks  that  come  into  the  available  truck  list  at  time  step  t  

  ΔΥt  =  the  tasks  that  come  into  the  unassigned  task  list  at  time  step  t  

 

The  lists  of  available  trucks  and  unassigned  tasks,  parts  of  the  state  variable,  are  

constantly  changing  as  we  progress  through  time.  While  the  trucks  and  tasks  

Page 32: Holekamp,Mark final thesis - Princeton Universityenergysystems.princeton.edu/theses/2014/Holekamp... · ! 12! disabled,orsickresidentialcustomers! areanotherexampleofcriticalcustomers!

  30  

removed  from  the  list  as  a  result  of  decisions  are  not  considered  exogenous  

information  in  this  model  (this  will  be  covered  more  in  the  next  section),  the  

trucks  and  task  that  are  added  to  the  list  are  included  in  Wt.  Trucks  reenter  the  

available  truck  list  as  they  finish  working  on  a  task,  and  previously  unknown  

tasks  are  added  to  the  list  of  uncompleted  tasks  as  they  are  learned  about.  The  

exogenous  information  coming  in  during  time  steps  is  extremely  important  

because  they  impact  the  state  variable  and  determine  which  trucks  and  tasks  can  

be  considered.  The  exact  way  in  which  exogenous  information  is  taken  into  

account  is  discussed  in  the  following  section  on  transition  functions.  

 

2.34  Transition  Function  

  The  transition  function  is  essentially  a  function  that  captures  the  evolution  

of  the  system  over  time  (Powell  1  Oct.  2013).  The  form  of  the  transition  function  

at  its  most  overarching  level  in  this  thesis  is:  

S!!! = S!(S!, x!,W!!!)  

 

This  function  embodies  the  transition  that  goes  on  in  the  model  when  it  shifts  

between  time  step  t  and  time  step  t+1.  In  this  thesis,  the  difference  in  time  

between  two  time  steps  is  actually  five  minutes,  but  for  the  sake  of  simplicity  this  

change  will  be  referenced  as  going  from  time  step  t  to  t+1.    The  function  above,  

Page 33: Holekamp,Mark final thesis - Princeton Universityenergysystems.princeton.edu/theses/2014/Holekamp... · ! 12! disabled,orsickresidentialcustomers! areanotherexampleofcriticalcustomers!

  31  

however,  is  just  the  general  form  of  the  transition  function.  The  transition  

function  actually  includes  additional  equations  that  illustrate  more  specifically  

how  the  state  variable  evolves  as  time  changes.  Suppose  that  decision  xt,1,  xt,2,  …  ,  

xt,n  are  made  during  time  step  t.  Also,  exogenous  information  Wt+1=(ΔΓt,  ΔΥt)  

arrives  at  the  start  of  time  step  t+1.  The  way  in  which  the  lists  of  available  trucks  

and  uncompleted  tasks  in  the  state  variable  change  is:  

Γ!!! =  Γ! − Tr!!,!

!

!!!

+ ΔΓ!!!  

Υ!!! =  Υ! − Ts!!,!

!

!!!

+ ΔΥ!!!  

Where  

  Tr!!,! = the  truck  being  assigned  by  decision  x!,!  

  Ts!!,! = the  task  being  resolved  by  decision  x!,!  

 

Again,  ΔΓt  and  ΔΥt  are  the  trucks  and  tasks  that  are  becoming  available  as  a  

result  of  the  exogenous  information  Wt+1.  As  the  functions  above  demonstrate,  

the  truck  and  task  list  elements  of  the  state  variable  are  updated  as  decisions  are  

made  in  the  current  time  step  t  and  as  exogenous  information  comes  in  as  time  

moves  to  t+1.  Any  trucks  and  tasks  that  are  included  in  the  decisions  are  

removed  from  the  list,  and  any  that  come  into  availability  as  the  exogenous  

information  rolls  in  are  added  to  the  list.  Although  the  transitions  functions  seem  

Page 34: Holekamp,Mark final thesis - Princeton Universityenergysystems.princeton.edu/theses/2014/Holekamp... · ! 12! disabled,orsickresidentialcustomers! areanotherexampleofcriticalcustomers!

  32  

rather  straightforward  and  obvious,  these  functions  are  key  because  they  allow  

the  model  to  change  and  update  as  time  progresses  from  step  to  step.  

 

2.35  Objective  Function  

  The  objective  function  is  essentially  the  same  as  the  goal  of  this  thesis:  to  

find  the  best  policy  of  allocating  repair  crews  to  outages.  The  mathematical  

definition  of  the  objective  function  is:  

min!E!{ C S!,X! S! }!

 

Where  

  C(St,  Xµμ(St))  =  a  cost  function  

  Xµμ(St)  =  the  decision  function  based  on  policy  π  

 

The  entire  expression  is  a  minimum  with  µμ  as  an  argument  because  the  objective  

is  to  find  the  policy  µμ  that  minimizes  the  expected  cost  over  all  the  time  periods  

being  examined  (represented  by  Σt).  In  this  thesis,  the  cost  function  is  based  on  

the  indices  used  by  PSE&G  to  measure  its  reliability  that  are  defined  in  section  

1.2.  Specifically,  SAIDI  and  CAIDI  will  be  considered  by  the  cost  function  

because  they  track  the  total  duration  of  outage  time  for  the  average  customer  and  

the  average  time  required  to  restore  electrical  services  to  the  average  customer  

affected  by  outages  respectively.  These  two  statistics  are  directly  influenced  by  

Page 35: Holekamp,Mark final thesis - Princeton Universityenergysystems.princeton.edu/theses/2014/Holekamp... · ! 12! disabled,orsickresidentialcustomers! areanotherexampleofcriticalcustomers!

  33  

how  a  policy  allocates  repair  crews,  and  will  give  a  good  indication  of  how  

effective  the  policy  is.  CAIFI  and  MAIFI,  on  the  other  hand,  are  not  considered  in  

this  thesis  because  they  measure  the  frequency  at  which  customers  experience  

outages,  which  is  not  influenced  by  how  well  repair  trucks  are  managed.  Thus,  

since  SAIDI  and  CAIDI  depend  on  the  number  of  customers  affected  by  outages  

and  the  cumulative  duration  of  customer  outages,  the  cost  function  C  takes  into  

account  the  contribution  element  of  each  decision  made  since  it  holds  the  

information  needed  to  calculate  these  indices  (see  section  2.32  for  contribution  

element  definition).  

 

 

 

 

 

 

 

 

 

 

 

Page 36: Holekamp,Mark final thesis - Princeton Universityenergysystems.princeton.edu/theses/2014/Holekamp... · ! 12! disabled,orsickresidentialcustomers! areanotherexampleofcriticalcustomers!

  34  

Chapter  3:  Policies  and  Simulator  

  Chapter  3  will  revolve  around  the  simulation  of  the  storm  itself,  both  how  

the  simulation  will  work  and  its  parameters.  It  will  be  designed  to  provide  the  

reader  with  an  understanding  of  the  simulation  before  the  data  and  results  of  the  

simulations  are  presented.  

 

3.1  Overview  of  Assignment  Policies  

  Two  classes  of  policies  were  discussed  back  in  section  2.2:  cost  function  

approximations  and  policy  function  approximations.  Cost  function  

approximations,  also  called  myopic  policies,  make  decisions  based  on  

straightforward  optimization  of  cost/rewards  in  the  current  time  period.  Policy  

function  approximations,  on  the  other  hand,  revolve  around  clearly  structured  

decisions  based  on  the  state  of  the  system  at  the  current  time  step  without  any  

optimization.  

  The  four  assignment  policies  being  tested  and  compared  in  this  thesis  are  

all  hybrid  policies.  That  is,  each  of  them  does  not  fall  under  a  single  

categorization  of  either  cost  function  approximation  or  policy  function  

approximation.  Rather,  they  all  include  optimizations  in  a  given  time  step  but  are  

based  on  a  desired  structure  at  their  root.  The  four  resource  allocation  policies  of  

Page 37: Holekamp,Mark final thesis - Princeton Universityenergysystems.princeton.edu/theses/2014/Holekamp... · ! 12! disabled,orsickresidentialcustomers! areanotherexampleofcriticalcustomers!

  35  

this  thesis,  which  will  be  called  FIFO,  Distance  Exploitation,  Weighted  Priority  

and  Weighted  Priority  Plus  Distance,  are  discussed  in  detail  below.  

  The  first  policy  that  will  be  examined,  FIFO,  stands  for  First  In  First  Out.  

A  common  system  for  servicing  retail  customers,  this  assignment  policy  is  based  

on  the  desired  structure  that  the  customer  who  has  been  waiting  the  longest  for  

service  should  get  served  first.  In  terms  of  this  thesis’  resource  allocation  

problem,  that  means  that  the  outage  that  was  learned  about  first  will  have  first  

priority  for  repair  truck  assignment.  The  practical  application  of  this  desired  

assignment  structure  depends  on  a  simple  optimization  in  the  current  time  step:  

ID!"#$ =  max!" t− T!"#$%,!    for  all  i ∈ Υt  

To  translate  the  above  expression  into  words,  the  ID  of  the  task  that  is  chosen  for  

a  decision  is  the  ID  of  the  task  in  the  list  of  unassigned  tasks  that  has  been  

waiting  the  longest  for  service.  This  length  of  waiting  is  calculated  by  subtracting  

the  time  at  which  the  task  was  learned  about  from  the  current  time.  FIFO  ensures  

that  customers  who  have  been  experiencing  outages  the  longest  get  service  first,  

a  policy  which  is  generally  considered  to  be  “fair”  to  the  customers.  

  Distance  Exploitation  also  includes  both  a  desired  baseline  structure  and  

internal  optimization.  The  basic  thinking  behind  this  policy  is  that  repair  trucks  

should  be  assigned  to  tasks  that  are  the  closest  to  them  in  order  to  get  repair  

work  started  as  quickly  as  possible  after  the  truck  is  available.  Distance  

Page 38: Holekamp,Mark final thesis - Princeton Universityenergysystems.princeton.edu/theses/2014/Holekamp... · ! 12! disabled,orsickresidentialcustomers! areanotherexampleofcriticalcustomers!

  36  

Exploitation  seeks  to  minimize  the  time  wasted  while  a  repair  truck  travels  to  its  

outage  destination.  This  assignment  policy  is  referred  to  as  “exploitation”  

because  it  makes  a  decision  based  simply  on  what  appears  to  be  best  at  the  

current  time  step.  It  identifies  the  task  that  is  closest  to  an  available  truck  and  

picks  this  as  the  best  task  to  address  right  now.  Distance  Exploitation  is  carried  

out  in  practice  by  actually  generating  all  possible  decisions  based  on  Γt  and  Υt  

and  performing  the  following  optimization:  

x! =  min! d!    for  all  i ∈ X!  

Where  

  Xt  =  the  list  of  all  possible  decisions  

  di  =  distance  between  L!"#$#%!  and  L!"#$!  

  L!"#$#%!=  the  current  location  of  the  truck  that  would  be  assigned  in      

                               decision  i  

  L!"#$!=  the  current  location  of  the  task  that  would  be  resolved  in  decision  i  

The  distance  di  above  would  be  calculated  using  the  haversine  formula  (see  

section  2.32  for  details).  The  decision  picked  by  Distance  Exploitation  is  the  one  

in  the  list  of  possible  decisions  that  has  the  smallest  distance  di  between  the  truck  

and  the  task  that  would  be  involved  with  the  decision.  

  Weighted  Priority  is  the  third  hybrid  assignment  policy  that  is  considered  

in  this  thesis.  The  desired  structure  behind  this  policy  is  that  relatively  short  

Page 39: Holekamp,Mark final thesis - Princeton Universityenergysystems.princeton.edu/theses/2014/Holekamp... · ! 12! disabled,orsickresidentialcustomers! areanotherexampleofcriticalcustomers!

  37  

tasks  that  affect  a  large  number  of  customers  should  be  addressed  first  in  an  

attempt  to  minimize  the  cumulative  duration  of  customer  outages.  Weighted  

Priority  also  has  a  term  that  includes  a  tunable  parameter  that  can  be  adjusted  to  

influence  how  much  the  waiting  time  of  customers  is  considered.  The  

optimization  involved  with  this  assignment  policy  is:  

ID!"#$ =  max!"{N!50.5−

D!135+ 𝜃 ∗ t− T!"#$%,! }    for  all  i ∈ Υt  

The  θ  in  the  formula  above  is  the  tunable  parameter,  and  adjusting  it  up  or  down  

will  impact  the  magnitude  of  influence  of  the  waiting  time  of  customers.  This  

optimization  essentially  picks  the  task  in  the  list  of  unassigned  tasks  that  has  the  

largest  priority  value  calculated  by  the  expression  within  the  brackets.  The  fact  

that  the  duration  fraction  is  subtracted  from  the  number  of  customers  fraction  

favors  tasks  that  have  a  large  number  of  customers  affected  Ni  and  a  small  

duration  of  repair  Di.  Also,  since  the  expression  involving  the  tunable  parameter  

is  added,  this  policy  favors  tasks  that  have  been  waiting  a  long  time.  The  

denominators  of  the  fractions,  50  and  135  for  number  of  customers  and  duration  

respectively,  were  chosen  because  they  are  the  expected  mean  of  the  two  

randomly  generated  attributes.  The  number  of  customers  affected  by  the  task  is  a  

random  integer  between  1  and  100,  so  the  expected  mean  number  of  customers  is  

50.5.  Likewise,  the  duration  of  a  task  is  a  random  integer  between  30  and  240,  so  

the  expected  mean  duration  is  135.  By  dividing  the  two  attributes  by  their  

Page 40: Holekamp,Mark final thesis - Princeton Universityenergysystems.princeton.edu/theses/2014/Holekamp... · ! 12! disabled,orsickresidentialcustomers! areanotherexampleofcriticalcustomers!

  38  

expected  mean,  this  policy  essentially  normalizes  the  two  attributes  so  that  they  

have  approximately  equal  impact  on  the  priority  value.  Although  the  normalized  

influences  of  the  two  attributes  are  not  exactly  the  same  due  to  differences  in  

their  ranges  of  possible  values,  they  are  very  close  to  being  equal  and  will  be  

used  in  this  way  for  the  sake  of  simplicity.  

  Weighted  Priority  Plus  Distance  (WPPD)  is  very  similar  to  Weighted  

Priority,  but  it  includes  travel  distance  as  an  additional  element  in  its  attempt  to  

minimize  the  cumulative  duration  of  customer  outages.  As  its  name  implies,  this  

policy  is  simply  an  extension  of  the  Weighted  Priority  policy  both  in  structure  

and  optimization  to  include  distance.  The  internal  optimization  run  each  time  

step  by  WPPD  is  very  similar  to  Weighted  Priority  except  for  a  distance  element  

added  as  a  fraction:  

ID!"#$ =  max!"{N!50.5−

D!135−

d!6 + 𝜃 ∗ t− T!"#$%,! }    for  all  i ∈ Υt  

The  θ  element  is  again  a  tunable  parameter  designed  to  adjust  the  influence  of  

the  customer  waiting  time  on  the  decision  making  process.  The  distance  fraction  

is  divided  by  6  because  the  mean  distance  that  trucks  must  travel  in  the  

simulated  grid  is  around  this  value.  By  dividing  by  this  number,  the  influence  of  

the  distance  attribute  is  approximately  normalized  with  the  number  of  customers  

and  duration  elements.  Note  that  the  fact  that  the  distance  fraction  is  subtracted  

favors  tasks  that  have  a  short  travel  distance.  

Page 41: Holekamp,Mark final thesis - Princeton Universityenergysystems.princeton.edu/theses/2014/Holekamp... · ! 12! disabled,orsickresidentialcustomers! areanotherexampleofcriticalcustomers!

  39  

3.2  The  Simulator  

  While  the  mathematical  model  defined  in  Chapter  2  is  the  fundamental  

basis  of  looking  at  PSE&G’s  resource  allocation  problem,  the  actual  simulation  of  

this  scenario  occurs  through  a  programmed  representation  of  the  company’s  

electrical  grid.  Provided  with  a  great  deal  of  data  by  PSE&G,  Belgacem  

Bouzaiene-­‐‑Ayari  of  Princeton’s  CASTLE  Lab  did  a  majority  of  the  work  in  

organizing,  refining,  and  translating  this  information  into  a  digital  model  of  a  

chunk  of  PSE&G’s  electrical  grid.  This  model  is  used  as  a  basis  for  some  

programming  written  in  this  thesis  to  actually  run  a  simulation  of  outages  

following  a  storm  and  the  allocation  of  repair  trucks  to  these  problems.  The  

following  subsections  will  go  into  detail  about  the  programming  done  in  this  

thesis  to  place  trucks,  generate  outage  tasks,  and  set  up  a  post-­‐‑storm  scenario  

that  can  be  used  to  test  resource  assignment  policies.  Figure  3.1  below  is  a  

snapshot  of  the  digital  grid  created  by  Belgacem,  which  includes  most  of  

Newark,  NJ.  For  a  zoomed-­‐‑in  look  at  a  section  of  the  grid  and  its  structure  see  

Figure  1  of  the  Appendix.  

Page 42: Holekamp,Mark final thesis - Princeton Universityenergysystems.princeton.edu/theses/2014/Holekamp... · ! 12! disabled,orsickresidentialcustomers! areanotherexampleofcriticalcustomers!

  40  

 Figure  3.1:  Snapshot  of  Digital  Grid              (Bouzaiene-­‐‑Ayari)  

   

3.21  Initial  Truck  Placement  

  PSE&G’s  work  force  of  repair  trucks  for  its  entire  electrical  grid  is  

primarily  centered  in  nine  locations,  four  headquarters  and  five  sub-­‐‑

headquarters  (Marques  2014).  These  locations  serve  both  as  storage  facilities  

when  trucks  are  idle  and  basing  points  for  when  they  are  sent  out  to  address  

problems  with  the  grid.  As  the  simulated  electrical  grid  in  this  thesis  

encompasses  a  single  area  centered  around  Newark,  it  will  assume  that  the  

Page 43: Holekamp,Mark final thesis - Princeton Universityenergysystems.princeton.edu/theses/2014/Holekamp... · ! 12! disabled,orsickresidentialcustomers! areanotherexampleofcriticalcustomers!

  41  

repair  crews  in  this  area  have  one  headquarter  location  in  the  center  of  the  grid  (a  

single  location  node  was  selected  to  be  the  headquarters).  

  At  the  start  of  a  simulation,  all  truck  resources  are  located  at  this  

headquarters  location  and  are  available.  This  initial  setup  simulates  a  scenario  in  

which  a  storm  has  just  passed  through  the  area  and  trucks  have  not  yet  been  

dispatched  out  into  the  area.  The  total  number  of  repair  trucks  available  in  this  

area  in  a  given  simulation  is  a  parameter  set  before  the  start  depending  on  what  

kind  of  scenario  is  desired.  So,  before  a  simulation  even  starts,  a  list  of  N  trucks  is  

generated  by  a  program  that  was  written  for  this  thesis,  where  N  is  the  desired  

total  number  of  trucks,  and  a  given  truck  in  this  list,  Tri,  has  the  starting  

following  attributes  (see  section  2.31  for  details  on  truck  attributes):  

Tri  =  (t,  Lt,i,  IDi)  

    t  =  the  starting  time  of  the  simulator  

Lt,i  =  the  headquarter  location  

IDi  =  “TR”  +  i  

Essentially,  a  given  truck  in  the  generated  list  is  located  at  the  headquarter  

location  at  the  beginning  of  the  simulation  and  has  an  identification  tag  in  String  

format  that  is  simply  the  String  “TR”  plus  a  number  i  concatenated  to  the  end  of  

the  String.  This  list  of  available  trucks  is  actually  written  into  a  file  outside  of  the  

simulator,  which  then  sends  the  truck  information  into  the  simulator  to  create  the  

Page 44: Holekamp,Mark final thesis - Princeton Universityenergysystems.princeton.edu/theses/2014/Holekamp... · ! 12! disabled,orsickresidentialcustomers! areanotherexampleofcriticalcustomers!

  42  

available  truck  resources  part  of  the  initial  state  variable,  Γ.  All  of  the  truck  data  

is  sent  to  the  start  time  of  the  simulator.  See  Figure  2  of  the  Appendix  for  a  flow  

chart  that  demonstrates  this  interaction.  

 

3.22  Task  Generation  

  The  outage  tasks  to  be  solved  in  this  resource  allocation  problem  are  

generated  in  the  same  program  as  the  truck  resources.  Like  the  trucks  in  the  

previous  section,  generated  tasks  are  written  to  an  outside  file,  which  then  sends  

the  information  to  the  simulator  itself.  Tasks  are  sent  into  the  simulator  at  their  

event  time,  meaning  tasks  are  inserted  into  the  list  of  unassigned  tasks  Υ  at  the  

time  that  they  are  learned  about  by  the  company.  Tasks  with  event  times  before  

the  start  time  of  the  simulator  are  sent  to  the  start  time.  See  Figure  2  of  the  

Appendix  for  a  diagram  of  this  process.  The  total  number  of  tasks  to  be  resolved  

is  a  parameter  set  before  the  simulator  begins,  and  the  attributes  of  each  of  these  

tasks  are  generated  through  a  series  of  random  processes.  As  a  reminder,  an  

outage  task  is  made  up  of  seven  attributes  (see  section  2.31  for  details):  

Ts! = (t, L!, ID!,T!"!#$,!,D!,P!,N!)  

Six  of  these  attributes—t,  Lt,i,  IDi,  Tevent,i,  Di,  and  Ni—are  generated  by  this  

program  ahead  of  time  while  the  priority  Pi  is  calculated  in  each  time  step  by  the  

assignment  policies.  The  current  time  t  is  fairly  simple,  as  it  is  just  set  to  be  the  

Page 45: Holekamp,Mark final thesis - Princeton Universityenergysystems.princeton.edu/theses/2014/Holekamp... · ! 12! disabled,orsickresidentialcustomers! areanotherexampleofcriticalcustomers!

  43  

start  time  of  the  simulation,  and  it  will  change  as  time  progresses.  The  other  five  

attributes  are  static,  meanwhile,  and  the  values  generated  by  the  program  remain  

fixed  throughout  the  simulation.  The  way  in  which  each  of  these  attributes  is  

generated  will  be  discussed  one  by  one  below.  

  The  location  of  the  task,  Lt,  is  generated  by  randomly  generating  an  

integer  between  0  and  Q,  where  Q  is  the  number  of  possible  locations  in  the  

modeled  grid.  Each  of  these  possible  locations  has  an  integer  location  tag  

between  0  and  Q,  so  the  randomly  generated  integer  for  Lt,i  is  in  fact  a  location  

tag  for  a  point  in  the  grid.  Thus,  the  task  is  assigned  to  the  location  whose  

location  tag  matches  the  randomly  generated  number.  The  grid  has  thousands  of  

possible  locations,  so  the  probability  that  two  tasks  in  a  simulation  are  in  the  

same  location  is  very  small  since  the  total  number  of  tasks  is  small  in  

comparison.  

  The  identification  tag  of  each  task  is  generated  in  a  similar  way  to  the  

truck  resources  identification.  The  identification  tag  IDi  assigned  to  a  given  task  

Tsi  is  simply  a  String  comprised  of  “TS”  plus  a  number  i  concatenated  at  the  end.  

So,  if  we  are  generating  J  tasks,  each  of  the  identification  tags  for  tasks  Ts0,  Ts1,  …  

,  TsJ  is  “TS0”,  “TS1”,  …  ,  “TSJ”  respectively.  

  The  time  at  which  we  learned  about  a  task,  Tevent,i  is  another  randomly  

generated  attribute.  If  the  start  time  in  minutes  of  the  simulation  is  Tstart,  then  the  

Page 46: Holekamp,Mark final thesis - Princeton Universityenergysystems.princeton.edu/theses/2014/Holekamp... · ! 12! disabled,orsickresidentialcustomers! areanotherexampleofcriticalcustomers!

  44  

event  time  for  a  task  is  determine  by  generating  a  random  integer  F  between  1  

and  500  and  setting:  

  Tevent,i  =  Tstart  +  200  –  F  

This  process  essentially  assigns  a  task  a  random  event  time  between  300  minutes  

before  the  simulation  start  time  and  200  minutes  after  the  start  time.  Thus,  

approximately  three-­‐‑fifths  of  the  outage  tasks  are  already  recognized  at  the  

beginning  of  the  simulation,  while  the  other  two-­‐‑fifths  will  become  known  in  the  

first  200  minutes  of  the  simulation.  This  means  that  some  tasks  will  be  

dynamically  added  to  the  list  of  unassigned  tasks  Υ  of  the  state  variable  as  the  

simulation  progresses.  This  setup  attempts  to  simulate  a  scenario  in  which  a  

large  number  of  outages  are  known  shortly  following  a  storm,  and  more  are  

learned  about  while  time  progresses  and  the  company  actively  allocates  its  repair  

resources.  

  The  duration  of  a  task  in  minutes,  Di,  is  generated  through  another  

random  process.  A  random  integer  F  is  generated  between  0  and  210  and  the  

duration  is  simply  assigned  as:  

  Di  =  30  +  F  

Thus,  the  duration  of  a  task  can  be  anywhere  between  30  and  240  minutes.  

Although  outage  events  in  reality  can  take  much  longer  than  four  hours  to  repair  

and  the  average  repair  time  is  around  four  hours,  since  the  simulated  model  is  

Page 47: Holekamp,Mark final thesis - Princeton Universityenergysystems.princeton.edu/theses/2014/Holekamp... · ! 12! disabled,orsickresidentialcustomers! areanotherexampleofcriticalcustomers!

  45  

only  a  chunk  of  the  actual  grid  the  possible  range  of  task  durations  is  scaled  

down  to  keep  this  attribute  from  being  the  dominating  factor  in  cumulative  

customer  outage  time.  In  the  real  world,  outages  can  be  far  away  from  repair  

resources,  so  travel  time  can  be  rather  long.  Since  the  scope  of  the  simulated  grid  

is  limited  (the  maximum  distance  to  travel  is  only  around  15  miles),  the  duration  

of  outages  must  be  scaled  down  to  account  for  the  fact  that  truck  travel  distance  

is  limited  to  smaller  values  than  in  reality.  

  Lastly,  the  number  of  customers  affected  by  an  outage  task  Ni  is  generated  

by  this  program.  This  number  of  customers  is  generated  through  the  

straightforward  process  of  randomly  generating  an  integer  between  1  and  100  

and  setting  Ni  equal  to  this  value.  This  attribute  is  generated  in  this  way  in  order  

to  keep  outage  tasks  fairly  simple  and  independent  of  one  another.  In  reality,  the  

number  of  customers  affected  by  an  outage  depends  mainly  on  where  in  a  

branch  of  the  electrical  grid  the  problem  occurs.  Customers  on  a  certain  branch  of  

the  grid  can  actually  be  affected  by  multiple  problems  at  the  same  time  if  they  

occur  close  to  one  another  on  the  same  line.  This  scenario  would  make  modeling  

and  simulating  much  more  difficult  though  more  realistic,  and  it  is  avoided  

through  the  way  that  Ni  is  generated  in  this  thesis.  For  more  discussion  on  this  

issue  see  Chapter  5.  

 

Page 48: Holekamp,Mark final thesis - Princeton Universityenergysystems.princeton.edu/theses/2014/Holekamp... · ! 12! disabled,orsickresidentialcustomers! areanotherexampleofcriticalcustomers!

  46  

3.23  Fixed  Parameters  

  There  are  also  a  number  of  fixed  parameters  in  the  simulator  that  are  

significant.  One  of  these  that  was  briefly  mentioned  in  section  2.32,  truck  travel  

speed,  is  similar  to  task  duration  in  that  it  is  set  to  offset  the  limited  size  of  the  

simulated  grid.  The  speed  at  which  the  trucks  travel  between  locations  is  fixed  at  

25  miles  per  hour.  Although  the  average  speed  of  a  repair  truck  in  reality  would  

likely  be  higher  due  to  faster  speeds  available  on  highways  and  large  roads,  the  

limited  size  of  the  grid  means  that  travel  distances  are  less  than  what  they  could  

be  in  the  real  world.  However,  following  a  storm  there  may  also  be  

transportation  issues  like  downed  trees  on  roads  or  accidents,  so  25  miles  per  

hour  may  not  be  all  that  low  of  an  estimate  for  the  average  speed  over  a  trip.  Like  

shorter  duration  times  for  tasks,  the  fixed  travel  speed  for  trucks  is  designed  to  

make  travel  distance  slightly  more  influential  in  terms  of  time  spent  addressing  

outages.    

Two  other  fixed  parameters  of  note  are  the  simulation  start  and  end  times.  

Although  the  start  time  is  trivial,  the  end  time  is  important  because  is  dictates  the  

amount  of  time  over  which  the  resource  allocation  problem  takes  place.  In  a  

limited  time  setting,  poorly  performing  assignment  policies  may  not  be  able  to  

complete  all  the  outage  tasks  depending  on  the  number  of  trucks  and  tasks  and  

the  distribution  of  tasks.  However,  in  order  to  provide  a  full  comparison  of  the  

Page 49: Holekamp,Mark final thesis - Princeton Universityenergysystems.princeton.edu/theses/2014/Holekamp... · ! 12! disabled,orsickresidentialcustomers! areanotherexampleofcriticalcustomers!

  47  

policies,  the  start  time  and  end  time  (essentially  the  simulation  run  length)  are  set  

so  that  in  a  given  scenario  all  four  tasks  are  able  to  resolve  all  outages.  This  way,  

the  full  amount  of  time  needed  to  allocate  trucks  to  every  outage  is  provided,  

and  there  is  no  uncertainty  as  to  how  much  longer  a  policy  would  have  needed  

to  finish.  

Lastly,  there  is  another  fixed  parameter  that  plays  an  important  role  on  the  

data  generation  side  of  the  simulator—the  random  generation  seed.  In  Java,  the  

programming  language  in  which  this  simulator  is  written,  the  random  

generation  of  numbers  can  be  given  a  “seed”  which  serves  as  a  basis  for  

generating  random  numbers.  These  generated  numbers  aren’t  in  fact  purely  

random,  but  the  random  generation  function  in  Java  is  pretty  close.  One  

characteristic  of  the  random  generation  seed  that  is  particularly  important  is  that  

if  a  certain  seed  is  used  to  generate  a  set  of  random  numbers,  using  the  same  

seed  again  to  generate  the  same  number  of  random  numbers  will  result  in  the  

same  output.  Thus,  the  random  generation  seed  will  be  kept  the  same  for  a  given  

scenario  so  that  all  four  policies  will  face  the  exact  same  randomly  generated  sets  

of  tasks.  This  will  help  eliminate  noise  in  the  resulting  data  that  may  have  been  

otherwise  caused  by  differences  in  the  generation  of  tasks  for  the  same  scenario.  

However,  a  different  seed  will  be  used  between  scenarios  so  that  there  are  totally  

independent  sets  of  tasks.  In  other  words,  while  the  same  seed  will  be  used  when  

Page 50: Holekamp,Mark final thesis - Princeton Universityenergysystems.princeton.edu/theses/2014/Holekamp... · ! 12! disabled,orsickresidentialcustomers! areanotherexampleofcriticalcustomers!

  48  

running  the  simulation  four  times  for  the  four  different  assignment  policies  in  a  

given  scenario  (say  10  repair  trucks  and  100  tasks),  a  different  seed  will  be  used  

when  comparing  the  four  policies  in  a  different  scenario  like  10  repair  trucks  and  

120  tasks.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Page 51: Holekamp,Mark final thesis - Princeton Universityenergysystems.princeton.edu/theses/2014/Holekamp... · ! 12! disabled,orsickresidentialcustomers! areanotherexampleofcriticalcustomers!

  49  

Chapter  4:  Simulation  Data  and  Analysis  

4.1  Initial  Parameter  Tuning  

  As  described  in  section  3.1,  two  of  the  assignment  problems  tested  in  this  

thesis  included  a  tunable  parameter  θ.  This  parameter  essentially  determines  

how  much  the  amount  of  time  a  task  has  been  waiting  for  service  impacts  the  

calculation  of  the  priority  of  the  task  in  the  Weighted  Priority  and  Weighted  

Priority  Plus  Distance  policies.  θ  is  set  prior  to  the  simulation,  so  the  value  it  is  

given  has  a  significant  impact  on  the  performance  of  the  policy  since  it  changes  

the  relative  influence  of  different  task  attributes  in  its  priority  calculation.  Since  

the  goal  of  this  thesis  is  to  determine  the  best  assignment  policy  for  PSE&G’s  

resource  allocation  problem,  the  tunable  parameter  θ  in  each  of  the  two  policies  

should  first  be  set  in  such  a  way  that  the  policies  perform  most  efficiently  when  

they  are  tested  and  compared  to  the  other  policies.  

  In  order  to  determine  what  values  of  θ  are  best  for  each  of  the  policies,  a  

policy  search  must  be  implemented.  A  policy  search  is  essentially  the  process  of  

simulating  the  performance  of  the  policies  with  different  values  of  θ  to  

determine  which  works  best  (Powell  3  Oct.  2013).  Thus,  the  Weighted  Priority  

and  WPPD  policies  were  simulated  with  various  tunable  parameter  values  over  

three  scenarios  to  determine  which  works  best,  and  the  results  are  in  the  

following  section.  

Page 52: Holekamp,Mark final thesis - Princeton Universityenergysystems.princeton.edu/theses/2014/Holekamp... · ! 12! disabled,orsickresidentialcustomers! areanotherexampleofcriticalcustomers!

  50  

4.12  Tunable  Parameter  Test  Results  

  The  first  scenario  in  which  we  simulated  the  two  policies  with  a  range  of  

tunable  parameter  values  was  where  there  were  10  repair  trucks  and  a  total  of  

100  outage  tasks.  The  performance  of  the  policies  in  this  scenario  in  terms  of  the  

average  value  of  the  reliability  index  SAIDI  was:  

 Figure  4.1:  Average  SAIDI  Performance  Over  θ  in  10  Truck  Scenario    The  performance  of  the  policies  in  this  scenario  of  10  trucks  and  100  total  tasks  

was  also  measured  in  terms  of  the  average  value  of  CAIDI,  and  the  results  are  

displayed  in  Figure  4.2  below:  

127.8  

128  

128.2  

128.4  

128.6  

128.8  

129  

0   0.1   0.2   0.4   0.8  

Average  SAIDI  (minutes)  

Tunable  Parameter  Value  

Average  SAIDI  vs  Tunable  Parameter  Value  (10  trucks,  100  tasks)  

Weighted  Priority  

Weighted  Priority  Plus  Distance  

Page 53: Holekamp,Mark final thesis - Princeton Universityenergysystems.princeton.edu/theses/2014/Holekamp... · ! 12! disabled,orsickresidentialcustomers! areanotherexampleofcriticalcustomers!

  51  

 Figure  4.2:  Average  CAIDI  Performance  Over  θ  in  10  Truck  Scenario    As  demonstrated  in  the  graphs  above,  the  performance  of  both  Weighted  Priority  

and  WPPD  decreased  in  this  scenario  as  the  value  of  θ  increased.  In  other  words,  

making  the  customer  waiting  time  more  influential  in  the  resource  allocation  

decision  part  of  these  two  policies  made  them  less  efficient  at  resolving  the  tasks  

quickly.  

  The  second  scenario  in  which  the  policy  search  was  conducted  involved  

20  trucks  with  100  tasks.  This  setup  sought  to  determine  if  the  impact  of  the  

tunable  parameter  θ  was  different  when  the  beginning  ratio  of  available  truck  

resources  to  unassigned  tasks  was  larger.  The  results  in  terms  of  SAIDI  can  be  

viewed  in  the  following  Figure  4.3:  

632  

633  

634  

635  

636  

637  

638  

0   0.1   0.2   0.4   0.8  

Average  CAIDI  (minutes)    

Tunable  Parameter  Value  

Average  CAIDI  vs  Tunable  Parameter  Value  (10  trucks,  100  tasks)  

Weighted  Priority  

Weighted  Priority  Plus  Distance  

Page 54: Holekamp,Mark final thesis - Princeton Universityenergysystems.princeton.edu/theses/2014/Holekamp... · ! 12! disabled,orsickresidentialcustomers! areanotherexampleofcriticalcustomers!

  52  

 Figure  4.3:  Average  SAIDI  Performance  Over  θ  in  20  Truck  Scenario    And  the  impact  on  CAIDI  was:  

 Figure  4.4:  Average  CAIDI  Performance  Over  θ  in  20  Truck  Scenario    Again,  it  was  apparent  that  increasing  the  tunable  parameter  value  negatively  

affected  both  assignment  policies.  The  total  duration  of  sustained  electrical  

68.2%

68.25%

68.3%

68.35%

68.4%

68.45%

68.5%

68.55%

0% 0.1% 0.2% 0.4% 0.8%

Average'S

AIDI'(m

inutes)'

Tunable'Parameter'Value'

Average'SAIDI'vs'Tunable'Parameter'Value'(20'trucks,'100'tasks)'

Weighted%Priority%

Weighted%Priority%Plus%Distance%

338#338.2#338.4#338.6#338.8#339#

339.2#339.4#339.6#339.8#

0# 0.1# 0.2# 0.4# 0.8#

Average'C

AIDI'(m

inutes)''

Tunable'Parameter'Value'

Average'CAIDI'vs'Tunable'Parameter'Value'(20'trucks,'100'tasks)'

Weighted#Priority#

Weighted#Priority#Plus#Distance#

Page 55: Holekamp,Mark final thesis - Princeton Universityenergysystems.princeton.edu/theses/2014/Holekamp... · ! 12! disabled,orsickresidentialcustomers! areanotherexampleofcriticalcustomers!

  53  

service  interruption  for  the  average  customer  in  an  area  (SAIDI)  increased  as  the  

tunable  parameter  values  increased,  and  the  average  time  required  to  restore  

electrical  services  to  the  average  customer  affected  by  a  sustained  interruption  

(CAIDI)  also  increased  as  θ  went  from  0.0  to  0.8.  

  The  last  scenario  in  which  the  impact  of  the  tunable  parameter  in  the  

Weighted  Priority  and  WPPD  policies  was  tested  involved  a  much  larger  number  

of  tasks.  In  this  situation,  there  were  only  25  repair  trucks  and  400  total  tasks  to  

resolve.  This  scenario  not  only  examined  the  impact  of  θ  when  there  was  a  low  

ratio  of  repair  resources  to  tasks  but  also  when  there  was  a  much  larger  number  

of  tasks  and  hence  longer  time  frame  involved.  The  findings  of  this  policy  search  

test  were:  

 Figure  4.5:  Average  SAIDI  Performance  Over  θ  in  25  Truck  Scenario    

193.5&194&

194.5&195&

195.5&196&

196.5&197&

197.5&198&

0& 0.1& 0.2& 0.4& 0.8&

Average'S

AIDI'(m

inutes)'

Tunable'Parameter'Value'

Average'SAIDI'vs'Tunable'Parameter'Value'(25'trucks,'400'tasks)'

Weighted&Priority&

Weighted&Priority&Plus&Distance&

Page 56: Holekamp,Mark final thesis - Princeton Universityenergysystems.princeton.edu/theses/2014/Holekamp... · ! 12! disabled,orsickresidentialcustomers! areanotherexampleofcriticalcustomers!

  54  

And  the  CAIDI  results  can  be  seen  in  Figure  4.6  below:  

 Figure  4.6:  Average  CAIDI  Performance  Over  θ  in  25  Truck  Scenario    Once  again,  as  the  value  of  θ  increased,  the  performance  of  the  policies  in  terms  

of  both  SAIDI  and  CAIDI  decreased.    

  The  aggregation  of  results  from  the  three  scenarios  clearly  indicated  that  

the  tunable  parameter  θ  had  a  negative  affect  on  both  policies.  Giving  more  and  

more  priority  to  customers  who  have  been  waiting  for  a  longer  time  made  the  

reliability  of  electrical  services  decrease  as  the  policies  became  less  efficient.  The  

tunable  parameter  also  appeared  to  have  had  a  greater  negative  impact  on  the  

WPPD  policy  than  on  Weighted  Policy,  as  indicated  by  the  larger  positive  slope  

in  the  graphs  in  each  interval.    

One  aspect  of  the  results  to  note  was  the  scale  of  the  vertical  axes  in  each  

of  the  result  graphs.  Gradually  changing  the  value  of  θ  from  0.0  to  0.8  in  each  of  

960$

965$

970$

975$

980$

985$

0$ 0.1$ 0.2$ 0.4$ 0.8$

Average'C

AIDI'(m

inutes)''

Tunable'Parameter'Value'

Average'CAIDI'vs'Tunable'Parameter'Value'(25'trucks,'400'tasks)'

Weighted$Priority$

Weighted$Priority$Plus$Distance$

Page 57: Holekamp,Mark final thesis - Princeton Universityenergysystems.princeton.edu/theses/2014/Holekamp... · ! 12! disabled,orsickresidentialcustomers! areanotherexampleofcriticalcustomers!

  55  

the  policies  did  not  result  in  an  enormous  change  in  performance,  though  there  

was  a  negative  change.  Though  this  may  appear  to  indicate  that  θ  does  not  affect  

the  performance  of  the  policy  significantly,  the  design  of  the  policy  search  was  

important  to  recognize  in  this  issue.  The  three  scenarios  were  run  1000  

independent  times  for  each  of  the  policies,  and  the  results  were  the  average  

values  of  the  reliability  indices  over  these  1000  trials.  Since  the  values  of  SAIDI  

and  CAIDI  were  averages  over  a  large  number  of  independent  trials,  any  

changes  due  to  policy  shifts  were  relatively  small  in  relation  to  comparing  the  

potential  impact  of  θ  on  the  policies  in  one  or  two  trials.  The  design  of  the  

simulator  and  the  randomness  of  the  task  attributes  may  also  dampen  the  

impacts  of  θ  on  the  policy  performances,  though  this  issue  will  be  primarily  

discussed  later  in  this  chapter.  

Nevertheless,  this  policy  search  has  concluded  that  the  optimal  value  of  θ  

for  Weighted  Priority  and  WPPD  in  terms  of  overall  performance  is  0.0.  In  other  

words,  disregarding  customer  waiting  time  when  calculating  the  task  priorities  

in  each  of  the  policies  results  in  the  most  efficient  resource  allocation.  Since  the  

most  efficient  versions  of  Weighted  Priority  and  WPPD  should  be  used  when  

comparing  them  to  FIFO  and  Distance  Exploitation,  the  tunable  parameter  θ  will  

be  set  to  0.0  in  each  of  the  policies  when  they  are  tested  and  compared.  

 

Page 58: Holekamp,Mark final thesis - Princeton Universityenergysystems.princeton.edu/theses/2014/Holekamp... · ! 12! disabled,orsickresidentialcustomers! areanotherexampleofcriticalcustomers!

  56  

4.2  Policy  Testing  and  Comparison  

  In  the  following  sections,  the  four  allocation  policies  being  considered  by  

this  thesis  will  be  tested  and  compared  in  three  batches  of  simulation  scenarios.  

Like  in  the  policy  search  in  the  previous  section,  the  three  sets  of  scenarios  will  

involve  10  trucks,  20  trucks,  and  25  trucks  respectively.  However,  each  of  the  

scenario  sets  will  test  five  different  total  numbers  of  tasks  in  order  to  provide  

analysis  over  a  wider  range  of  situations.  The  policies  will  be  tested  and  

compared  in  each  of  the  five  situations  through  1000  independent  simulations.  

The  final  section  will  then  sum  the  results  of  the  various  scenarios  and  make  a  

conclusion  as  to  the  best  assignment  policy  for  this  dynamic  resource  allocation  

problem.  For  a  snapshot  of  the  data  generated  by  the  simulations  and  a  brief  

description,  see  Figure  3  in  the  Appendix.  

 

4.21  10  Truck  Scenarios  Results  

   For  the  first  set  of  scenarios,  the  four  policies  were  implemented  in  

multiple  situations  involving  10  trucks  and  a  range  of  total  tasks.  There  were  five  

situations  total,  with  80,  90,  100,  110,  and  120  total  tasks  respectively.  The  

performance  results  of  the  policies  in  these  scenarios  in  terms  of  SAIDI  are  

depicted  in  Figure  4.7  below:  

Page 59: Holekamp,Mark final thesis - Princeton Universityenergysystems.princeton.edu/theses/2014/Holekamp... · ! 12! disabled,orsickresidentialcustomers! areanotherexampleofcriticalcustomers!

  57  

 Figure  4.7:  Average  SAIDI  Performance  in  10  Truck  Scenarios  

The  results  in  terms  of  CAIDI  are  available  in  the  following  Figure  4.8:  

 Figure  4.8:  Average  CAIDI  Performance  in  10  Truck  Scenarios  

  As  demonstrated  in  the  above  graphs,  Weighted  Policy  and  WPPD  were  

both  significantly  better  than  FIFO  and  Distance  Exploitation  in  terms  of  both  

70#

90#

110#

130#

150#

170#

190#

210#

230#

250#

80# 90# 100# 110# 120#

Average'SA

IDI'(minutes)'

Number'of'Tasks'

Average'SAIDI'vs'Number'of'Tasks'(10'trucks)'

FIFO#

Distance#Exploita:on#

Weighted#Priority#

Weighted#Priority#Plus#Distance#

450$

550$

650$

750$

850$

950$

1050$

80$ 90$ 100$ 110$ 120$

Average'CA

IDI'(minutes)'

Number'of'Tasks'

Average'CAIDI'vs'Number'of'Tasks'(10'trucks)'

FIFO$

Distance$Exploita;on$

Weighted$Priority$

Weighted$Priority$Plus$Distance$

Page 60: Holekamp,Mark final thesis - Princeton Universityenergysystems.princeton.edu/theses/2014/Holekamp... · ! 12! disabled,orsickresidentialcustomers! areanotherexampleofcriticalcustomers!

  58  

SAIDI  and  CAIDI  over  the  range  of  task  totals,  with  FIFO  performing  the  most  

poorly.  The  two  weighted  policies  are  virtually  indistinguishable  in  the  graphs,  

however,  and  a  closer  look  was  needed  to  determine  if  one  or  the  other  was  

statistically  better.  To  do  this,  confidence  intervals  were  constructed  for  the  

average  SAIDI  and  CAIDI  values  in  each  scenario.  For  this  analysis,  95%  

confidence  intervals  were  used  of  the  form:  

CI!"% = µμ  ± z ∗𝜎N  

Where  

  µμ  =  the  measured  mean  of  the  values  

  z  =  the  upper  critical  value  for  a  standard  normal  distribution  

  σ  =  the  measured  standard  deviation  of  the  values  

  N  =  the  number  of  trials  conducted  

In  this  case,  µμ  was  simply  the  observed  average  SAIDI  and  CAIDI  values  in  each  

situation,  z  =  1.96  for  95%  confidence  level,  σ  was  the  observed  standard  

deviation  of  the  SAIDI  and  CAIDI  values  in  each  situation,  and  N  =  1000  since  

we  conducted  1000  simulations  for  each  scenario.  See  Table  4.1  below  for  a  table  

summary  of  the  95%  confidence  intervals  of  the  average  SAIDI  and  CAIDI  levels  

in  each  policy:  

 

Page 61: Holekamp,Mark final thesis - Princeton Universityenergysystems.princeton.edu/theses/2014/Holekamp... · ! 12! disabled,orsickresidentialcustomers! areanotherexampleofcriticalcustomers!

  59  

Table  4.1:  Confidence  Intervals  for  10  Truck  Scenarios  

It  was  statistically  conclusive  that  Weighted  Priority  and  WPPD  were  

better  than  Distance  Exploitation  and  FIFO  in  each  situation  because  their  

confidence  intervals  for  both  SAIDI  and  CAIDI  were  lower  than  the  others’  with  

no  overlap.  Also,  Distance  Exploitation  was  distinctly  better  than  FIFO  because  it  

had  lower  confidence  intervals  than  FIFO  in  all  five  instances  with  no  overlap.  

However,  since  the  SAIDI  and  CAIDI  confidence  intervals  for  Weighted  Priority  

and  WPPD  overlapped  in  all  five  cases,  neither  one  was  conclusively  better  than  

the  other  statistically.  Thus,  even  though  the  average  values  of  SAIDI  and  CAIDI  

were  in  fact  slightly  lower  for  WPPD  than  for  Weighted  Priority,  the  simulations  

did  not  provide  definitive  evidence  that  it  was  a  better  assignment  policy.  

 

4.22  20  Truck  Scenarios  Results  

  The  next  scenarios  in  which  the  assignment  policies  were  tested  involved  

20  available  repair  trucks.  The  range  of  total  number  of  tasks  were  the  same  as  

SAIDI CAIDI SAIDI CAIDI SAIDI CAIDI SAIDI CAIDI SAIDI CAIDIFIFO

Lower+Bound 103.44 641.46 129.41 715.66 159.25 791.58 193.05 872.84 230.63 952.91Upper+Bound 104.68 646.93 130.83 721.44 160.95 797.52 194.94 878.89 232.67 959.23

Distance,ExploitationLower+Bound 92.72 574.96 116.28 643.03 142.34 707.53 171.93 777.30 205.09 847.30Upper+Bound 93.84 579.99 117.57 648.39 143.86 713.14 173.72 783.29 207.04 853.46

Weighted,PrioirityLower+Bound 83.05 515.02 103.30 571.19 126.91 630.73 152.96 691.47 182.87 755.41Upper+Bound 84.12 520.19 104.54 576.65 128.36 636.31 154.64 697.36 184.75 761.62

Weighted,Priority,Plus,DistanceLower+Bound 82.82 513.55 102.94 569.20 126.36 628.02 152.29 688.44 181.87 751.29Upper+Bound 83.88 518.70 104.18 574.63 127.80 633.56 153.97 694.33 183.74 757.47

10,trucks,,110,tasks 10,trucks,,120,tasks10,trucks,,80,tasks 10,trucks,,90,tasks 10,trucks,,100,tasks

Page 62: Holekamp,Mark final thesis - Princeton Universityenergysystems.princeton.edu/theses/2014/Holekamp... · ! 12! disabled,orsickresidentialcustomers! areanotherexampleofcriticalcustomers!

  60  

the  previous  test,  with  80,  90,  100,  110,  and  120  total  tasks  in  the  five  simulated  

situations.  The  number  of  trucks  was  doubled  while  keeping  the  total  number  of  

tasks  the  same  in  order  to  compare  the  performance  of  the  policies  in  situations  

that  were  not  quite  as  overwhelming.  In  this  batch  of  simulations,  the  ratio  of  

trucks  to  tasks  ranged  from  1:4  with  80  tasks  to  1:6  with  120  tasks.  In  the  previous  

section,  the  ratio  ranged  from  1:8  to  1:12.  The  performances  of  the  four  policies  in  

terms  of  SAIDI  and  CAIDI  are  displayed  below  in  Figures  4.9  and  4.10:  

 Figure  4.9:  Average  SAIDI  Performance  in  20  Truck  Scenarios  

 

40#

50#

60#

70#

80#

90#

100#

110#

120#

130#

80# 90# 100# 110# 120#

Average'SA

IDI'(minutes)'

Number'of'Tasks'

Average'SAIDI'vs'Number'of'Tasks'(20'trucks)'

FIFO#

Distance#Exploita<on#

Weighted#Priority#

Weighted#Priority#Plus#Distance#

Page 63: Holekamp,Mark final thesis - Princeton Universityenergysystems.princeton.edu/theses/2014/Holekamp... · ! 12! disabled,orsickresidentialcustomers! areanotherexampleofcriticalcustomers!

  61  

 Figure  4.10  Average  CAIDI  Performance  in  20  Truck  Scenarios  

  As  in  the  previous  section,  Weighted  Priority  and  WPPD  are  both  

significantly  more  efficient  than  FIFO  and  Distance  Exploitation  in  terms  of  

SAIDI  and  CAIDI.  Again,  the  two  weighted  policies  have  such  similar  

performance  results  that  they  are  indistinguishable  in  the  graphs.  95%  

confidence  intervals  were  constructed  for  these  scenarios  using  the  same  formula  

as  before  in  order  to  compare  these  two  policies  in  more  detail.  The  results  are  

available  in  Table  4.2  below:  

 

250$

300$

350$

400$

450$

500$

80$ 90$ 100$ 110$ 120$

Average'CA

IDI'(minutes)'

Number'of'Tasks'

Average'CAIDI'vs'Number'of'Tasks'(20'trucks)'

FIFO$

Distance$Exploita:on$

Weighted$Priority$

Weighted$Priority$Plus$Distance$

Page 64: Holekamp,Mark final thesis - Princeton Universityenergysystems.princeton.edu/theses/2014/Holekamp... · ! 12! disabled,orsickresidentialcustomers! areanotherexampleofcriticalcustomers!

  62  

 Table  4.2:  Confidence  Intervals  for  20  Truck  Scenarios  

  As  demonstrated  in  the  table,  it  was  statistically  apparent  that  Weighted  

Priority  and  WPPD  were  superior  to  FIFO  and  Distance  Exploitation,  with  FIFO  

being  the  least  efficient  assignment  policy.  However,  once  again  it  was  not  

conclusive  as  to  whether  or  not  Weighted  Priority  was  better  than  WPPD  

because  their  confidence  intervals  overlapped  for  SAIDI  and  CAIDI  in  all  five  

situations.  Like  the  previous  set  of  tests,  the  Weighted  Priority  policy’s  average  

values  of  SAIDI  and  CAIDI  were  slightly  lower  than  those  of  WPPD,  but  these  

simulations  unfortunately  did  not  provide  conclusive  evidence  that  one  was  

better  than  the  other.  

   

4.23  25  Truck  Scenarios  Results  

  The  last  set  of  scenarios  that  were  used  to  test  the  assignment  policies  in  

this  thesis  involved  25  available  repair  trucks  and  a  much  higher  range  of  total  

numbers  of  tasks.  The  five  sets  of  task  totals  were  360,  380,  400,  420,  and  440.  

SAIDI CAIDI SAIDI CAIDI SAIDI CAIDI SAIDI CAIDI SAIDI CAIDIFIFO

Lower+Bound 53.64 331.98 67.48 371.03 82.15 407.89 98.90 445.58 117.90 485.11Upper+Bound 54.31 335.04 68.24 374.15 83.03 411.13 99.89 448.83 119.07 488.49

Distance,ExploitationLower+Bound 49.42 305.84 61.80 339.78 75.19 373.33 90.03 405.58 106.88 439.74Upper+Bound 50.05 308.71 62.50 342.72 76.01 376.50 90.95 408.72 107.96 442.95

Weighted,PrioirityLower+Bound 45.53 281.73 56.36 309.82 67.97 337.45 80.88 364.35 96.22 395.80Upper+Bound 46.12 284.57 57.05 312.79 68.76 340.55 81.77 367.43 97.26 399.09

Weighted,Priority,Plus,DistanceLower+Bound 45.47 281.37 56.27 309.33 67.83 336.74 80.66 363.35 95.95 394.73Upper+Bound 46.06 284.19 56.95 312.29 68.62 339.84 81.54 366.41 97.00 398.00

20,trucks,,110,tasks 20,trucks,,120,tasks20,trucks,,80,tasks 20,trucks,,90,tasks 20,trucks,,100,tasks

Page 65: Holekamp,Mark final thesis - Princeton Universityenergysystems.princeton.edu/theses/2014/Holekamp... · ! 12! disabled,orsickresidentialcustomers! areanotherexampleofcriticalcustomers!

  63  

These  significantly  higher  numbers  were  chosen  in  hopes  that  a  larger  number  of  

assignment  decisions  would  provide  more  opportunity  for  allocation  

improvement.  Having  each  policy  make  more  decisions  in  each  simulation  could  

potentially  highlight  differences  between  policies,  especially  between  Weighted  

Policy  and  WPPD.  Also,  this  range  of  task  totals  was  chosen  to  see  if  the  policies’  

performances  compared  differently  in  much  more  overwhelming  circumstances.  

In  these  tests,  the  ratio  of  trucks  to  tasks  ranged  from  1:14.4  with  360  tasks  to  

1:17.6  with  440  tasks.  This  expanded  the  range  of  examined  ratios  upwards  from  

what  was  previously  tested  in  the  previous  two  batches  of  scenarios.  The  

performance  of  the  four  assignment  policies  in  the  five  different  scenarios  are  

displayed  in  Figures  4.11  and  4.12  below:  

 Figure  4.11  Average  SAIDI  Performance  in  25  Truck  Scenarios  

40#

240#

440#

640#

840#

1040#

1240#

1440#

360# 380# 400# 420# 440#

Average'SA

IDI'(minutes)'

Number'of'Tasks'

Average'SAIDI'vs'Number'of'Tasks'(25'trucks)'

FIFO#

Distance#Exploita9on#

Weighted#Priority#

Weighted#Priority#Plus#Distance#

Page 66: Holekamp,Mark final thesis - Princeton Universityenergysystems.princeton.edu/theses/2014/Holekamp... · ! 12! disabled,orsickresidentialcustomers! areanotherexampleofcriticalcustomers!

  64  

 Figure  4.12  Average  SAIDI  Performance  in  25  Truck  Scenarios  

  The  previously  observed  trends  in  performance  between  policies  were  

continued  in  this  set  of  scenarios.  FIFO  was  clearly  the  worst,  followed  by  

Distance  Exploitation,  while  Weighted  Priority  and  WPPD  were  right  along  side  

each  other.  In  the  above  graphs,  however,  both  the  green  and  purple  lines  

representing  Weighted  Priority  and  WPPD  respectively  can  be  partially  seen,  

indicating  that  there  may  have  been  a  slightly  larger  margin  of  difference  

between  the  two  policies  than  in  the  past  two  sets  of  scenarios.  95%  confidence  

intervals  were  again  constructed  in  order  to  determine  if  there  was  a  statistically  

superior  assignment  policy.  The  results  can  be  seen  in  the  table  below:  

250$

450$

650$

850$

1050$

1250$

1450$

360$ 380$ 400$ 420$ 440$

Average'CA

IDI'(minutes)'

Number'of'Tasks'

Average'CAIDI'vs'Number'of'Tasks'(25'trucks)'

FIFO$

Distance$Exploita:on$

Weighted$Priority$

Weighted$Priority$Plus$Distance$

Page 67: Holekamp,Mark final thesis - Princeton Universityenergysystems.princeton.edu/theses/2014/Holekamp... · ! 12! disabled,orsickresidentialcustomers! areanotherexampleofcriticalcustomers!

  65  

 Table  4.3:  Confidence  Intervals  for  25  Truck  Scenarios  

  As  expected  the  confidence  intervals  confirmed  that  FIFO  was  statistically  

the  least  efficient  assignment  policy,  followed  by  Distance  Exploitation.  

However,  the  above  table  also  concluded  that  WPPD  was  in  fact  superior  to  

Weighted  Priority  as  indicated  by  the  lack  of  any  overlap  in  their  confidence  

intervals  in  all  five  scenarios.  

 

4.24  Policy  Conclusions  

  Based  on  the  results  from  the  previous  sections,  it  is  evident  that  both  

Weighted  Priority  and  WPPD  are  significantly  better  than  FIFO  and  Distance  

Exploitation,  with  WPPD  consistently  having  slightly  lower  average  values  of  

SAIDI  and  CAIDI  than  Weighted  Priority.  In  the  first  set  of  scenarios  involving  

10  repair  trucks,  WPPD  was  on  average  20.62%  better  than  FIFO,  11.19%  better  

than  Distance  Exploitation,  and  0.41%  better  than  Weighted  Priority  over  the  five  

different  situations.  Although  the  confidence  intervals  for  these  scenarios  

SAIDI CAIDI SAIDI CAIDI SAIDI CAIDI SAIDI CAIDI SAIDI CAIDIFIFO

Lower+Bound 821.50 1130.83 911.00 1189.16 1012.26 1253.15 1113.44 1315.77 1220.48 1375.26Upper+Bound 825.93 1135.25 915.76 1193.76 1017.40 1257.82 1119.09 1320.52 1226.42 1380.02

Distance,ExploitationLower+Bound 729.62 1004.33 810.29 1057.66 898.41 1112.17 985.88 1165.01 1081.51 1218.63Upper+Bound 733.74 1008.48 814.57 1061.92 903.05 1116.52 991.02 1169.38 1086.83 1223.04

Weighted,PrioirityLower+Bound 641.74 883.32 712.63 930.16 789.32 977.06 867.15 1024.64 951.38 1071.94Upper+Bound 645.58 887.35 716.70 934.31 793.76 981.45 871.92 1028.96 956.49 1076.41

Weighted,Priority,Plus,DistanceLower+Bound 634.90 873.90 704.65 919.75 780.33 965.93 856.54 1012.10 939.10 1058.09Upper+Bound 638.73 877.92 708.67 923.83 784.70 970.24 861.24 1016.35 944.18 1062.55

25,trucks,,420,tasks 25,trucks,,440,tasks25,trucks,,360,tasks 25,trucks,,380,tasks 25,trucks,,400,tasks

Page 68: Holekamp,Mark final thesis - Princeton Universityenergysystems.princeton.edu/theses/2014/Holekamp... · ! 12! disabled,orsickresidentialcustomers! areanotherexampleofcriticalcustomers!

  66  

conclusively  indicated  that  WPPD  was  superior  to  FIFO  and  Distance  

Exploitation,  it  was  not  conclusive  as  to  whether  or  not  it  was  better  than  

Weighted  Priority  statistically.  In  the  second  set  of  scenarios  involving  20  repair  

trucks,  WPPD  was  on  average  17.23%  better  than  FIFO,  9.44%  better  than  

Distance  Exploitation,  and  0.21%  better  than  Weighted  Priority  over  the  five  

different  task  totals.  Again,  WPPD  was  definitively  more  efficient  than  FIFO  and  

Distance  Exploitation,  but  there  was  not  conclusive  evidence  regarding  Weighted  

Priority.  In  the  third  batch  of  scenarios  involving  25  trucks,  however,  WPPS  was  

statistically  proven  to  be  the  best  assignment  policy.  It  was  better  than  FIFO  by  

22.86%,  Distance  Exploitation  by  13.07%,  and  Weighted  Priority  by  1.17%  on  

average  over  the  five  scenarios.  

  The  fact  that  WPPD  was  decisively  better  than  Weighted  Priority  in  the  

scenarios  involving  a  larger  number  of  tasks  indicates  that  this  assignment  policy  

is  in  fact  superior,  but  many  allocation  decisions  are  needed  to  provide  statistical  

evidence  of  the  difference.  Thus,  this  thesis  has  found  that  of  the  four  policies  

tested,  WPPD  is  the  best  assignment  policy  for  PSE&G’s  dynamic  resource  

allocation  problem.  However,  the  exact  margins  by  which  this  policy  was  more  

efficient  than  the  others  should  not  necessarily  be  extrapolated  to  the  real  world.  

Various  elements  of  the  thesis’  mathematical  model  and  simulator  significantly  

influence  the  magnitude  of  the  policies’  performances.  The  way  in  which  tasks  

Page 69: Holekamp,Mark final thesis - Princeton Universityenergysystems.princeton.edu/theses/2014/Holekamp... · ! 12! disabled,orsickresidentialcustomers! areanotherexampleofcriticalcustomers!

  67  

and  their  attributes  were  generated,  various  fixed  parameters,  and  the  structure  

of  the  simulated  grid  all  influence  the  resulting  values  of  SAIDI  and  CAIDI,  and  

they  should  not  be  considered  expected  results  of  applying  the  assignment  

policies  to  real  world  situations.  

  Another  element  that  might  be  relevant  to  consider  regarding  the  best  

policy  for  PSE&G  is  the  impact  on  certain  customers.  FIFO  was  demonstrated  to  

be  the  least  efficient  of  the  policies  for  PSE&G’s  allocation  problem,  but  it  is  

commonly  used  in  retail  because  customers  see  it  as  fair.  If  PSE&G  implemented  

the  WPPD  policy  with  θ  =  0.0  (no  influence  by  wait  time  on  decision  process),  the  

company  risks  a  negative  response  from  certain  customers.  Under  this  policy,  

customers  who  live  in  sparsely  populated  rural  areas,  though  among  the  first  to  

experience  a  power  outage  in  some  cases,  may  be  among  the  last  to  receive  repair  

services  due  to  the  priority  system.  Although  the  system  reduces  the  total  

number  of  outage  hours  experienced  by  customers  and  thus  the  overall  

reliability  of  PSE&G’s  electrical  services,  it  may  alienate  these  select  customers,  

potentially  angering  them  enough  to  seek  the  services  of  another  electrical  

provider  if  possible.  Thus,  PSE&G  may  want  to  consider  balancing  policy  

performance  with  customer  backlash  if  they  do  not  want  to  risk  losing  a  small  

number  of  customers.  If  so,  the  company  may  want  to  consider  implementing  

Page 70: Holekamp,Mark final thesis - Princeton Universityenergysystems.princeton.edu/theses/2014/Holekamp... · ! 12! disabled,orsickresidentialcustomers! areanotherexampleofcriticalcustomers!

  68  

WPPD  with  a  higher  value  of  θ  to  sacrifice  performance  for  customer  

satisfaction.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Page 71: Holekamp,Mark final thesis - Princeton Universityenergysystems.princeton.edu/theses/2014/Holekamp... · ! 12! disabled,orsickresidentialcustomers! areanotherexampleofcriticalcustomers!

  69  

Chapter  5:  Conclusion  

  This  thesis  has  succeeded  in  providing  a  baseline  comparison  of  four  

potential  assignment  policies  for  PSE&G’s  dynamic  resource  allocation  problem  

involving  assigning  utility  repair  trucks  to  power  outages.  Through  the  

construction  of  a  mathematical  model  and  simulator,  it  has  tested  the  policies  

over  a  range  of  scenarios  and  found  that  the  Weighted  Priority  Plus  Distance  

policy  is  the  superior  assignment  policy.  However,  the  margin  by  which  the  

policy  was  more  efficient  should  not  be  extended  into  the  real  world  due  to  some  

limitations  of  this  thesis.  The  model  and  simulator  greatly  simplify  PSE&G’s  

dynamic  allocation  problem,  providing  a  good  environment  for  testing  and  

comparison  but  making  the  margin  of  results  not  necessarily  realistic.  Thus,  there  

are  several  areas  of  improvement  and  future  research  for  this  problem.  

  One  significant  way  in  which  this  thesis’  work  could  be  extended  and  

improved  would  be  to  build  out  the  digital  grid  to  encompass  PSE&G’s  entire  

grid.  Although  this  would  require  an  enormous  amount  of  work  considering  the  

great  deal  of  time  Belgacem  Bouzaiene-­‐‑Ayari  had  to  commit  to  modeling  just  a  

chunk  of  the  grid,  doing  so  would  enable  certain  aspects  of  the  simulator  to  

become  more  realistic.  Since  truck  travel  distance  would  be  more  accurate,  travel  

speed  and  task  duration  could  be  set  to  more  closely  mirror  the  real  world.  Task  

duration  especially  could  be  more  realistic  by  generating  the  duration  based  on  a  

Page 72: Holekamp,Mark final thesis - Princeton Universityenergysystems.princeton.edu/theses/2014/Holekamp... · ! 12! disabled,orsickresidentialcustomers! areanotherexampleofcriticalcustomers!

  70  

distribution  made  from  historical  data  on  outages  PSE&G  has  resolved  in  the  

past,  if  such  data  is  available.  Additionally,  the  actual  locations  of  PSE&G’s  

regional  headquarters  and  sub-­‐‑headquarters  for  their  repair  resources  could  be  

built  into  the  simulator,  and  initial  placement  of  trucks  would  be  at  these  places.    

  Critical  customers  are  also  an  area  in  which  the  assignment  policy  

comparison  could  be  improved.  Restoring  power  quickly  to  customers  like  

hospitals  and  police  stations  are  of  utmost  importance  to  PSE&G  following  a  

storm,  and  this  thesis  does  not  currently  consider  their  influence.  If  the  simulated  

grid  was  built  out,  locations  of  critical  customers  could  be  compiled  through  

extensive  research  and  included  in  the  grid.  Changing  the  policies  to  consider  

these  customers  during  the  initial  stages  of  a  simulation  could  impact  their  

performance  relative  to  one  another.  

  One  other  way  in  which  the  simulator  could  be  expanded  would  be  to  

consider  the  actual  structure  of  the  grid  itself.  Specifically,  making  the  simulator  

recognize  that  there  can  be  multiples  problems  on  the  same  stretch  of  grid  

affecting  the  same  customers  would  make  this  problem  much  more  realistic  and  

complex.  In  such  as  situation,  multiple  problems  would  have  to  all  be  resolved  in  

order  to  restore  power  to  the  affected  customers,  complicating  the  process  of  

calculating  how  long  restoring  power  would  take  and  how  to  assign  trucks  to  the  

tasks.  Such  a  change  would  make  this  resource  allocation  problem  similar  in  

Page 73: Holekamp,Mark final thesis - Princeton Universityenergysystems.princeton.edu/theses/2014/Holekamp... · ! 12! disabled,orsickresidentialcustomers! areanotherexampleofcriticalcustomers!

  71  

some  ways  to  the  machine-­‐‑scheduling  problem  discussed  by  Simon  French  in  his  

book  Sequencing  and  Scheduling:  An  Introduction  to  the  Mathematics  of  the  Job-­‐‑Shop.  

In  the  scheduling  problem,  a  limited  number  of  machines  are  available  to  do  

work  on  various  stages  of  a  list  of  jobs.  Each  job  has  a  varying  number  of  stages  

left  before  it  is  totally  completed,  and  the  assignment  policies  considered  by  

French  take  into  account  this  attribute.  The  assignment  policies  considered  in  

PSE&G’s  utility  repair  truck  problem  could  be  extended  to  consider  the  number  

of  tasks  requiring  completion  before  a  group  of  customers  regain  power  if  the  

grid  structure  is  considered.  

  An  area  of  future  research  for  this  problem  would  be  on  the  location  and  

type  of  outages  following  a  storm.  This  thesis  simplifies  the  generation  of  tasks  

through  random  generation  of  attributes  and  by  considering  outages  as  a  single  

type  of  task.  In  reality,  outages  can  be  caused  by  an  array  of  issues  ranging  from  

broken  support  poles  or  fallen  trees  on  the  lines  to  blown  transformers,  and  these  

various  issues  require  different  equipment  and  services  in  order  to  be  resolved.  

The  work  being  done  by  Kevin  Cen  for  his  thesis  on  damage  assessment  could  be  

applied  to  this  area.  He  is  working  on  generating  probability  distributions  for  the  

location  and  type  of  outages  following  a  storm  based  on  historical  data.  His  

findings  could  potentially  be  applied  to  this  resource  allocation  problem  to  make  

the  generation  of  tasks  more  realistic.  Additionally,  the  location  of  outages  

Page 74: Holekamp,Mark final thesis - Princeton Universityenergysystems.princeton.edu/theses/2014/Holekamp... · ! 12! disabled,orsickresidentialcustomers! areanotherexampleofcriticalcustomers!

  72  

following  a  storm  is  not  truly  random,  as  elements  like  the  path  of  the  storm,  its  

strength,  local  topography,  and  density  of  trees  in  a  certain  area  all  likely  affect  

where  outages  occur.  Research  being  done  by  Belgacem  Bouzaiene-­‐‑Ayari  on  

storm  damage  generation  could  certainly  be  applied  to  make  task  generation  

better.  Belgacem  is  working  on  simulating  storms  of  various  strengths  and  their  

potential  damage  to  an  electrical  grid  based  on  its  path.  Applying  this  research  to  

PSE&G’s  dynamic  resource  allocation  could  make  the  current  random  generation  

of  task  locations  much  more  realistic.  

  Lastly,  the  work  done  in  this  thesis  could  be  extended  to  include  another  

set  of  assignment  policies—look  ahead  policies.  This  thesis  intentionally  chose  to  

compare  four  simple  cost  function  and  policy  function  approximation  policies  

because  they  are  computationally  quick  and  could  be  relatively  easily  

implemented  by  an  electrical  provider  like  PSE&G.  However,  look  ahead  

policies,  policies  that  consider  the  future  when  making  decisions,  could  

potentially  be  much  better  than  the  four  policies  that  were  tested  in  this  thesis.  

Look  ahead  policies  are  much  more  mathematically  complicated  and  

computationally  difficult  because  they  often  involve  solving  a  linear  program  

over  multiple  periods  (Powell  3  Oct.  2013).  Although  simulating  and  comparing  

look-­‐‑ahead  policies  would  be  much  more  difficult  than  cost  and  policy  

Page 75: Holekamp,Mark final thesis - Princeton Universityenergysystems.princeton.edu/theses/2014/Holekamp... · ! 12! disabled,orsickresidentialcustomers! areanotherexampleofcriticalcustomers!

  73  

approximations,  future  research  in  this  area  would  be  worth  pursuing  based  on  

the  potential  for  higher  allocation  performance.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Page 76: Holekamp,Mark final thesis - Princeton Universityenergysystems.princeton.edu/theses/2014/Holekamp... · ! 12! disabled,orsickresidentialcustomers! areanotherexampleofcriticalcustomers!

  74  

Appendix  

Figure  1:  Snapshot  of  PSE&G’s  Modeled  Grid  

 (Bouzaiene-­‐‑Ayari)  

   

 

 

 

 

 

 

Page 77: Holekamp,Mark final thesis - Princeton Universityenergysystems.princeton.edu/theses/2014/Holekamp... · ! 12! disabled,orsickresidentialcustomers! areanotherexampleofcriticalcustomers!

  75  

Figure  2:  Truck  and  Task  Generation  Process  

     

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Trucks  and  Tasks  Generated  By  Program  

Data  Sent  to  

Outside  File  Data                  

Stored  in      File  

Simulation  Start  Time  

All  Truck  Data  and  Tasks  Occurring  Before  Start  Time  Sent  to  Simulator  at  Start  

Time  

Tasks  Occurring  After  Start  Time  Sent  to  Simulator  at  Their  Designated  Time  

Page 78: Holekamp,Mark final thesis - Princeton Universityenergysystems.princeton.edu/theses/2014/Holekamp... · ! 12! disabled,orsickresidentialcustomers! areanotherexampleofcriticalcustomers!

  76  

 

Figure  3:  Snapshot  of  Simulation  Data  

 

Note:   #  of  Tasks  Assigned,  Total  Resolve  Time,  Total  #  of  Customers,  and  Total  

Duration  of  Tasks  are  results  of  the  simulations,  while  SAIDI  and  CAIDI  are  

calculated  afterwards.  Tasks  Assigned,  and  Duration  of  Tasks  primarily  serve  to  

check  that  all  tasks  are  resolved  and  that  the  same  tasks  are  addressed  in  each  

iteration  between  scenarios.  1000  total  iterations  are  run  for  each  scenario.  

 

 

 

Iteration #*of*Tasks*Assigned Total*Resolve*Time Total*#*of*Customers Total*Duration*of*Tasks*ServedSAIDI CAIDI1 80 2828776 3961 11276 113.15 714.162 80 2175780 3674 10136 87.031 592.213 80 2859552 4235 10595 114.38 675.224 80 2720391 4443 9965 108.82 612.295 80 3048192 4357 11362 121.93 699.616 80 2668416 3958 10994 106.74 674.187 80 2726547 4218 11158 109.06 646.418 80 2650536 4162 10358 106.02 636.849 80 2370940 3817 10062 94.838 621.1510 80 2643058 4240 10828 105.72 623.3611 80 2796201 4030 11305 111.85 693.8512 80 2380117 3964 10357 95.205 600.4313 80 2518563 4113 11154 100.74 612.3414 80 3014063 4471 11625 120.56 674.1415 80 2602575 3942 10894 104.1 660.2216 80 2478313 3854 10020 99.133 643.0517 80 2438539 3751 10772 97.542 650.118 80 2697612 4424 10877 107.9 609.7719 80 2722168 3927 10782 108.89 693.1920 80 2406925 4497 9573 96.277 535.2321 80 2929085 4385 10645 117.16 667.9822 80 3015398 4278 10904 120.62 704.8623 80 2261044 3900 10235 90.442 579.7524 80 2948159 4280 11427 117.93 688.8225 80 2129672 3839 10908 85.187 554.75

Page 79: Holekamp,Mark final thesis - Princeton Universityenergysystems.princeton.edu/theses/2014/Holekamp... · ! 12! disabled,orsickresidentialcustomers! areanotherexampleofcriticalcustomers!

  77  

 

References  

Bouzaiene-­‐‑Ayari,  Belgacem.  “Grid  pics.”  3  April  2014.  E-­‐‑mail.  

Caroom,  Eliot.  “PSE&G  Restores  Power  to  Newark  Less  Than  24  Hours  After  

  Blackout.”  The  Star-­‐‑Ledger.  1  Nov.  2012.  Web.  8  Nov.  2013.  

French,  Simon.  Sequencing  and  Scheduling:  An  Introduction  to  the  Mathematics  of  the  

  Job-­‐‑Shop.  New  York:  University  of  Manchester,  1982.  Print.  Ellis  Horwood  

  Series  in  Mathematics  and  its  Applications.    

Gopinath,  Swetha.  “NJ  Power  Firm  PSEG  Says  Sandy  Severely  Damaged  

  Infrastructure.”  Reuters.  1  Nov.  2012.  Web.  9  Nov.  2013.  

“Hurricane  Sandy’s  Impact,  By  the  Numbers.”  Huffington  Post.  29  Oct.  2013.  Web.  

  15  Jan.  2014.  

“IEEE  Guide  for  Electric  Power  Distribution  Reliability  Indices.”  IEEE  Std  1366-­‐‑

  2012  (2012)  IEEE  Xplore.  Web.  8  Feb.  2014.  

Lavelle,  Marianne.  “Can  Hurricane  Sandy  Shed  Light  on  Curbing  Power  

  Outages?”  National  Geographic.  2  Nov.  2012.  Web.  15  Jan.  2014.  

Marques,  Jacinto.  “PSEG  Questions.”  27  Jan.  2014.  E-­‐‑mail.  

Powell,  Warren.  Approximate  Dynamic  Programming.  New  York:  John  Wiley  and  

  Sons,  2010.  197-­‐‑198,  200.  Web.  

Page 80: Holekamp,Mark final thesis - Princeton Universityenergysystems.princeton.edu/theses/2014/Holekamp... · ! 12! disabled,orsickresidentialcustomers! areanotherexampleofcriticalcustomers!

  78  

Powell,  Warren,  and  Benjamin  Van  Roy.  “Approximate  Dynamic  Programing  for  

  High-­‐‑Dimensional  Resource  Allocation  Problems.”  (in  Learning  and  

  Approximate  Dynamic  Programming:  Scaling  up  to  the  Real  World,  J.  Si,  A.  

  Barto,  W.B.  Powell  and  D.  Wunsch,  eds.),  John-­‐‑Wiley  and  Sons,  New  

  York,  pp.  258-­‐‑280,  2004.  Web.  

Powell,  Warren,  Hugo  Simao,  and  Belgacem  Bouzaiene-­‐‑Ayari.  “Approximate  

  Dynamic  Programming  in  Transportation  and  Logistics:  A  Unified  

  Framework.”  European  Journal  of  Transportation  and  Logistics  2  Sept.  2012.  

  Web.  

Powell,  Warren.  “How  Do  We  Make  Decision?  Designing  Policies.”  Princeton  

  University.  Robertson  Hall,  Princeton.  3  Oct.  2013.  Lecture.  

Powell,  Warren.  “Modeling  Uncertainty  and  Dynamic  Information.”  Princeton  

  University.  Robertson  Hall,  Princeton.  1  Oct.  2013.  Lecture.  

Powell,  Warren,  and  Belgacem  Bouzaiene-­‐‑Ayari.  “The  Robust  Grid  Project.”  

  PowerPoint  Presentation,  2014.  Image.  

PSE&G  Outage  Map.  Map.  PSE&G  Outage  Center.  Web.  29  Jan.  2014.  

  <http://www.pseg.com/home/customer_service/outage_info/outagemap.js

  p>.  

“Public  Service  Electric  and  Gas  Company.”  PSE&G.  Web.  28  Jan.  2014.  

  <http://www.pseg.com/family/pseandg/index.jsp>.  

Page 81: Holekamp,Mark final thesis - Princeton Universityenergysystems.princeton.edu/theses/2014/Holekamp... · ! 12! disabled,orsickresidentialcustomers! areanotherexampleofcriticalcustomers!

  79  

Rosenberg,  Matt.  Basic  Earth  Facts.  About.com  Geography,  2012.  Web.  5  March  

  2014.  <http://geography.about.com/od/learnabouttheearth/a/earthfacts.ht

  m>.  

Veness,  Chris.  Calculate  Distance,  Bearing,  and  More  Between  Latitude/Longitude  

  Points.  Movable  Type  Scripts,  2014.  Web.  5  March  2014.  

  <http://www.movable-­‐‑type.co.uk/scripts/latlong.html>.