(hlaw) - american welding society · laser + cold wire feed: ... hybrid & tandem laser arc...

52
June 15, 2010 Hybrid Laser Arc Welding (HLAW) Paul A. Blomquist Applied Thermal Sciences, Inc.

Upload: nguyendiep

Post on 30-Apr-2018

216 views

Category:

Documents


1 download

TRANSCRIPT

June 15, 2010

Hybrid Laser Arc Welding (HLAW)

Paul A. Blomquist Applied Thermal Sciences, Inc.

June 15, 2010 www.appliedthermalsciences.com 2

Acknowledgements

Data included in this presentation has been generated as part of several programs performed by Applied Thermal Sciences, Inc., in some cases while serving as a subcontractor to the Navy Metalworking Center, operated by Concurrent Technologies Corporation (CTC), and/or under various contracts via the Office of Naval Research (ONR) as part of the Navy ManTech Program and other programs, including Small Business Innovative Research (SBIR) programs. Opinions expressed are the author’s and not necessarily those of CTC or ONR.

HybridLaserArcWelding

June 15, 2010 www.appliedthermalsciences.com 3

Acknowledgements‐Continued

The list of partners involved with the development and implementation of this technology alongside ATS is too numerous for complete mention. ATS is particularly indebted to Concurrent Technologies, Inc., Atrium EHS, ESAB North America, Naval Surface Warfare Center, Carderock Division, Naval Research Laboratory, Servo-Robot, Inc., and many others.

HybridLaserArcWelding

June 15, 2010 www.appliedthermalsciences.com 4

•   ATSBackground•   LaserConsiderations•   HybridLaserProcesses:Benefits&Issues•   OpportunitiesforImprovedProductivity

•   MetallurgicalandQualityIssues•   ProcessDevelopmentandQualification•   ApplicationCaseHistories•   DiffusibleHydrogenAspectsofHLAW•   WeldFumeProfilesofHLAW

•   Summary

HybridLaserArcWelding(HLAW)

June 15, 2010 www.appliedthermalsciences.com 5

ATS Background

  EngineeringResearchandDevelopment(R&D)•   Focus–InnovativeEngine,Vehicle&PlatformConcepts

UtilizingAdvancedMaterials&Structures   FederalGovernmentContractor

•   DoD(Navy,MissileDefenseAgency(MDA),Army)•   NASA•   NSF,Others

  PathstoSuccess•   UtilizeFederalR&DFundstoDevelopTechnology

AddressingCustomerNeeds•   IdentifyTechnologyUtilizationinCommercial/Government

Sector•   CommercializeTechnology

June 15, 2010 www.appliedthermalsciences.com 6

ATS Background   Foundedin1989inOrono,Maine

  Incorporatedin1998•   Corporateofficere‐locatedtoSanford,

Maine

  EstablishedLaserFacility,2002 •   Sanford,Maine,15Kft2•   Initiallaser–25kWCO2•   Installed10kWfiberlaser2005•   Installed10kWYAG‐disklaser,2007

  ControlSystemPatentAward,2005   NavseaApproval,HSLA‐65,2007   ContractforduplexSSpanels,2008   NavseaApproval,HSLA‐80,2009   Continuingdevelopmentofprocessesand

equipmentforHLAWapplications

June 15, 2010 www.appliedthermalsciences.com 7

LaserConsiderations

Type of Laser: CO2 – 10,600 nm– delivery via mirrors & lenses YAG & Yb fiber – 1,000 nm delivery via fiber optics

Power of laser: CO2 - ~1 mm penetration per kW @ 1 m/min YAG, Yb, ~1 mm penetration per kW @ 2 m/min

Cost of laser: YAG, Yb ~$75-100K per kW Power buys penetration on thick & speed on thin

Eye Safety: YAG, Yb, everyone wears protection Implementation: optimal when highly automated

Not a “hand-held” tool (some experimental work)

June 15, 2010 www.appliedthermalsciences.com 8

LaserConsiderationsMajor Laser-Based Implementations

  Autogenous LBW:   Largest installed base;

  High-volume, close-tolerance manufacturing

  Laser + Cold Wire Feed:   Provide filler for geometry or properties

  Still requires close-tolerance fit up

  Hybrid & Tandem Laser Arc Welding:

  May combine with GMAW, PAW, GTAW, etc.

  “Hybrid” = laser and arc interact in same weld pool

  “Tandem” = laser & arc separated, two solidification events

  “Tandem” weld speed = speed of slowest process

June 15, 2010 www.appliedthermalsciences.com 9

HybridLaserProcesses:General

SchematicofProcess Graphics:GSI‐SLV

Typicalweldinghead

June 15, 2010 www.appliedthermalsciences.com 10

HybridLaserProcesses:General

Graphics:GSI‐SLV

LaserHighweldingspeedDeeppenetrationLowheatinput

Finemicrostructure

GMAWLow‐costenergysourceManagedheatinputFillermetalprovides:WidergaptoleranceControlofchemistryControlofgeometry

HybridLaserArcWelding(HLAW)Higherprocessstability,higherweldingspeedBettercontrolofcontourplusdeeppenetration

Largerseamvolumewithgoodmetallurgicalproperties

June 15, 2010 www.appliedthermalsciences.com 11

HybridLaserProcesses:Benefits&Issues

  Cost Benefits:   High-speed fabrication >> reduce manufacturing costs

  Highly controllable >> improve quality and consistency

  Value Benefits:   Accurate fabrication: reduce assembly cost

  Reduced distortion, improve schedule

  Flexibility to achieve wide range of applications

  High Speed, High Accuracy :   Significant Opportunity for Downstream Cost Savings

June 15, 2010 www.appliedthermalsciences.com 12

Laser Process Control Objective

•   OptimizetheControlvs.ConstraintEquation–   Partpreparationcostsdecreaseastoleranceincreases–   Weldingcostsincreaseastoleranceincreases–   Objective:processoperateswherecombinedcostisminimized

<Part Tolerance

Pro

cess

Cos

t

Part Preparation Costs

Welding Costs

Total Process Costs

June 15, 2010 www.appliedthermalsciences.com 13

HLAWImplementation ATS/ESABWeldingGantry   ProcessDevelopmentandDemonstration   VerificationofQuality,Productivity,andDimensionalAccuracy   ProcedureQualification   ProductManufacturing

June 15, 2010 www.appliedthermalsciences.com 14

HybridLaserProcesses:Benefits&Issues

Conventional Fillet‐Reinforced DoubleFilletWeld TeeWeld

Example:0.5”web,doublefillet=0.375”Converttofullpenetration:fillet=T/4=0.125”

ConventionalWeld HLAWeld 0.578 lb/ft

0.144 lb/ft Weld Speed ~24-40 ipm Weld speed ~ 80-100 ipm

June 15, 2010 www.appliedthermalsciences.com 15

HybridLaserProcesses:Benefits&Issues

•  GMAweldedjointS690QL

•  Numberoflayers:4

•  Materialthickness10mm

•  Weldingspeed0,1..0,3m/min/layer

•  Angulardistortion:high•  DimensionWMandHAZ:wide

•  Laser‐GMA‐hybridweldedjointS690QL

•  Numberoflayers:1

•  Materialthickness10mm

•  Weldingspeed1,5m/min

•  Angulardistortion:low•  DimensionWMandHAZ:narrow

Photos&Data:GSI‐SLV

June 15, 2010 www.appliedthermalsciences.com 16

HybridLaserProcesses:Benefits&Issues

  Equipment Cost :   Laser ~ 10X conventional source cost

  Less of an issue for “green-field” installations

  Fit-up Tolerances:   Prep and tooling methods are drivers for productivity

  Less of an issue with Hybrid processes, still important

  High Cooling Rate:   High CE alloys may show high hardness in WM & HAZ

  Microstructural evolution of other alloys (e.g. duplex SS)

  Procedure development must anticipate and solve

June 15, 2010 www.appliedthermalsciences.com 17

HybridLaserProcesses:Benefits&Issues

•   Highlyautomatedprocesscontrols–   Improvedconsistencyinwelddeposits–   Reduceddependencyonindividualvariations

•   Notnecessarilythe“silverbullet”–   Canhaveallthetypicalproblems

•   Highenergydensityprocess–   Canhavesomenewproblems

•   “Keyholecollapse”–keyholeinstabilities•   Theseproblemscanbesolved

–   NAVSEA&ABSapprovalsforHLAWinUS

–   Increasingnumberofapplicationsworldwide

June 15, 2010 www.appliedthermalsciences.com 18

HybridLaserProcesses:Benefits&Issues

•   Primaryconcern:highcoolingrate•   C‐Mnsteels~</=50‐70ksiyield

•   A‐36,DH‐36,HSLA‐65allseemtobenefit•   Tensiles,CVN’simprove;hardnessmanageable

•   Q&Tsteels~=/>80ksi•   HY‐80&100reactpredictably•   Tensiles,Hardnessincrease;CVN’sconsistentlylow•   Needpreheatforcontrolofcoolingrate

•   Otheralloys•   Microstructuralevolutionmaybetime‐dependant•   E.G.,DuplexStainlessSteels–fastcoolingfavorsferrite•   Canaccommodatewithcoolingratecontrol•   Canaccommodatewithfillermetalchemistry

June 15, 2010 www.appliedthermalsciences.com 19

HybridLaserProcesses:Benefits&Issues

Weldingof2‐inchthickmaterials

Achievedintwodevelopmentprojects:•   USA1999–PrecisionLaserMachining2”structuralsteel

•   Lowpower(1.8kW),highbrightness“lab”laser,slowtravelspeed

•   AchievedinIPGLab,Germany–   2007–Two20kWfiberlasers,simultaneous2‐sideweld

•   Highpower(40kW),industriallaser,mediumtravelspeed

IPGPhoto

June 15, 2010 www.appliedthermalsciences.com 20

ApplicationCaseHistory#1

HydroTestTankReducingFlange

Problem

NeedforreducingflangeFourasymmetricchannelsEachchannel=11’longTraditionalwelding:quoteexcessiveConcernsofweldingdistortionDesignforconventionalwelding >0.250”machiningallowanceExtrawelding–evenmoredistortionExtensivemachining

Graphic:UniversityofMaine

June 15, 2010 www.appliedthermalsciences.com 21

ApplicationCaseHistory#1

Hydro Test Tank Reducing Flange

Solution

SwitchtoA‐36“U‐M”bars,0.5”&0.75”Machiningallowance–0.062Squarebutt/cornerjointsMinimalprep:as‐received+gritblastMinimalfilletreinforcementLowheatinputLBWMinimalmachiningtoachieveflatness

June 15, 2010 www.appliedthermalsciences.com 22

ApplicationCaseHistory#2

•   T‐beamscanbefabricatedfromplateusinganyapprovedweldingprocess.

•   Widevarietyofflangeandwebthicknesscombinationstosuitdesigngoals

•   Reducedinventory–canusefewercommonplatethicknesses.

•   Fabricatedshapescanresultinasignificantweightreduction(10‐30%atequalstrength).

•   Greateravailablevarietyofsteelgrades=greaterweightsavingspossible.

9.0# AH-36 I/T Replaced by 6.3# DH-36 Fabricated Tee (33% wt. savings)

June 15, 2010 www.appliedthermalsciences.com 23

ApplicationCaseHistory#2WhyHLAW?

•   T‐beamscanbefabricatedfromplateusinganyapprovedweldingprocess.

•   Conventionalprocesses:–   Availabletodayandeasilyqualified

•   Conventionalprocesses:–   TheGood:

•   Lowercostequipment,greaterfamiliarity

–   TheBad:•   Lowerweldingspeeds,higherheatinputs

–   TheUgly: •   Morepronetodistortion,lesspredictable•   Lighterbeams&high‐yieldsteelsdistortevenmore.

June 15, 2010 www.appliedthermalsciences.com 24

ApplicationCaseHistory#2WhyHLAW?

SmallPortionofTestArticlePopulation

VerificationofProcessandProductPerformance

June 15, 2010 www.appliedthermalsciences.com 25

ApplicationCaseHistory#2WhyHLAW?

Attribute Thickness Results

Visual Inspection 0.188, 0.250, 0.313, 0.375 Satisfactory

Magnetic Particle Inspection 0.188, 0.250, 0.313, 0.375 Satisfactory

Radiographic Inspection 0.188, 0.250, 0.313, 0.375 Satisfactory

Transverse Tensile 0.188, 0.250, 0.313, 0.375 Satisfactory

Root Face & Side Bends 0.188, 0.250, 0.313, 0.375 Satisfactory

Nominal Heat Input 0.188, 0.250, 0.313, 0.375. 10-12 kJ/in. (3 Heat inputs represent High, Mid, Low bounds)

Macro-section Evaluation 0.188, 0.250, 0.313, 0.375 Satisfactory

Micro-hardness 0.188, 0.250, 0.313, 0.375 Informational (Avg. < 350 VHN)

Tee-Tension Test 0.188, 0.250, 0.313, 0.375 Informational (Sim. to ASTM A-769) - Sat

Charpy V-Notch Evaluation @ -20F 0.313, 0.375 Sub-size specimens

Informational: Weld (Avg. ~ 145 ft-lb. @ -20F) HAZ (Avg. ~50 ft-lb. @ -40F)

E70S‐6electrodeCVNrequirement=35ft‐lb.@‐20F;Mfr.testsshow~60‐70ft‐lb;HLAWaverages~145ft‐lb.

June 15, 2010 www.appliedthermalsciences.com 26

June 15, 2010 www.appliedthermalsciences.com 27

DiffusibleHydrogenCharacteristicsofHLAW

DiffusibleHydrogenConsiderations

  Diffusiblehydrogenmaycausecrackinginwelds

  HLAWmayproduceweldandHAZareasthataresensitivetohydrogendamage

  HLAWwillbeappliedtohigher‐yieldsteelsthatarehydrogen‐sensitive

  LimitedpublishedworkforLBW

  NopriordataonHLAW

June 15, 2010 www.appliedthermalsciences.com 28

DiffusibleHydrogenCharacteristicsofHLAW

Hydrogen“Potential”

  LBWconsidered“lowhydrogenprocess”

  Grigoryants(1996):   LimitedtimeforHdiffusionintotheweld

  Whitney:ICALEO2000–LBWtesting

  Verylowhydrogenforwelds“inair”

  HLAWnotpreviouslytested

  Additionalheatsourcemakeslargerweld

  HigherspeedsmaylimitHdiffusionintoweld

June 15, 2010 www.appliedthermalsciences.com 29

DiffusibleHydrogenCharacteristicsofHLAW TestPlan

•   TestinginaccordancewithAWSA4.3•   Productionwiretakenfromwarehousestock

–   ESAB“Coreweld110”•   BaselineH2testsperformedatESAB,Hanover,PA

–   WirespoolshippedtoATSfortesting

•   “Gaschromatograph”measurementofevolvedhydrogen•   CouponspreparedatESAB,shippedtoATS•   ShieldinggasdewpointcheckedatATS&ESAB•   ESABtestsduplicatedatATS•   VariousHLAWparametersetsperformedoncoupons

•   VariousautogenousLBWprocedures

•   CouponsshippedtoESABunderliquidnitrogenforHevolution

June 15, 2010 www.appliedthermalsciences.com 30

DiffusibleHydrogenCharacteristicsofHLAW

StandardAWSA4.3DiffusibleHydrogenTestCouponConventionalGMAWeldBead

As‐weldedCouponMacroofWeldBead

June 15, 2010 www.appliedthermalsciences.com 31

DiffusibleHydrogenCharacteristicsofHLAW

TestWeldCouponinCopperVise‐Jaws

June 15, 2010 www.appliedthermalsciences.com 32

DiffusibleHydrogenCharacteristicsofHLAW

ShieldingGasDewPointTesting

ExperimentalSet‐up

June 15, 2010 www.appliedthermalsciences.com 33

DiffusibleHydrogenTestResultsESAB“CoreWeld110”

ProcessFillerMetal

ProgressionLaserPower

WFS Amps VoltsWeldSpeed

AvgH2ml

H2ml/100gm

Comments

n/a n/a n/a n/a n/a n/a n/a n/a 0 n/aUnweldedspecimenstodetermineifHydrogenpickuphasoccurreddueto

exposure

GMAW CW‐110GMAW‐withDragangle

n/a 430 280 30 14 0.493 2.7DuplicateoforiginalESABtestperformedatHanover(2.5)

LBW None Autogenous 7 n/a n/a n/a 14 0.015 n/aAutogenousWeldHydrogenpickupat

travelspeedofESABGMAW

LBW None Autogenous 7 n/a n/a n/a 50 0 n/aAutogenousWeldHydrogenpickupat

mid‐rangetravelspeed

LBW None Autogenous 7 n/a n/a n/a 80 0 n/aAutogenousWeldHydrogenpickupat

typicalHLAWtravelspeed

HLAW CW‐110 Laser‐Leading 7 600 328 30 80 0.038 0.9HLAWHydrogenpickupatrecentPQR

parameters(ATSID#3525)

HLAW CW‐110 Laser‐Leading 3.5 600 314 27.5 75 0.053 1.1HLAWHydrogenpickupatrecent

lightweightTeeweldingparameters(ATSID#3597)

HLAW CW‐110 Laser‐Leading 7 430 270 30 80 0.023 0.8HLAWHydrogenpickupatPQR

parametersbutwithESABGMAWwirefeedspeed

HLAW CW‐110 GMA‐Leading 7 600 310 30 80 0.07 1.8HLAWHydrogenpickupatPQR

parametersbutwithGMAWleading

June 15, 2010 www.appliedthermalsciences.com 34

DiffusibleHydrogenTestResultsMil‐100S‐1(ESAB“Spool‐Arc95”)

test# Process

FillerMetal

Progression

LaserPowerWFS I

Volts(+/‐1)

WeldSpeed

AvgH2ml

Avg.H2ml/

100gmComments

1 GMAW 100S‐1 push n/a 300 26 12 0.191 1.21 Duplicateoforiginal‐push

2 GMAW 100S‐1 drag n/a 300 26 12 0.236 1.52 Duplicateoforiginal‐drag

3 GMAW 100S‐1 drag n/a 300 26 40 0.077 1.59 ESABParametersathighertravelspeed

4 GMAW 100S‐1 drag n/a 300 26 80 0.044 1.89 ESABParametersathighertravelspeed

5 HLAW 100S‐1 Laserlead 7 300 26 80 0.035 2.11 HLAWatESABParametershighertravel

6 HLAW 100S‐1GMAWlead 7 600 28 80 0.086 2.00 HLAW,higherWFS,highertravelspeed

7 HLAW 100S‐1 Laserlead 5 600 28 120 0.048 1.76 HLAW,LowerHeatInput,hightravelspeed

8 HLAW 100S‐1GMAWlead 5 600 28 120 0.059 2.13 HLAW,LowerHeatInput,hightravelspeed

9 HLAW 100S‐1 Laserlead 7 600 28 70 0.050 0.98 HLAW,higherHeatInput,lowertravelspeed

10 HLAW 100S‐1GMAWlead 7 600 28 70 0.071 1.41 HLAW,higherHeatInput,lowertravelspeed

11 LBW n/a n/a 7 n/a n/a 15 0.072 AutogenousattravelspeedofWhitney

12 LBW n/a n/a 7 n/a n/a 80 0.000 Autogenousathigherpowerandhighertravel

13 LBW n/a n/a 3 n/a n/a 40 0.005AutogenousatWhitneyparametersexcept

highertravel

14 LBW n/a n/a 3 n/a n/a 15 0.007 AutogenousatWhitneyparameters

June 15, 2010 www.appliedthermalsciences.com 35

ResidualHydrogenTestResults

Are the low hydrogen results due to trapped hydrogen in pores? Remove excess material RT to determine pore locations Cut segments to capture large, small, & no pores Perform vacuum hot-gas extraction Determine hydrogen concentration

Specimen shown, Autogenous LBW @ 7 kW, 15 ipm Diffusible hydrogen value = 0.07 ml/100 gram of total melt Residual hydrogen values shown per location below

2.7 ppm

1.5 ppm

0.2 ppm

June 15, 2010 www.appliedthermalsciences.com 36

DiffusibleHydrogenTestingConclusions

•   ATSprocessverifiedtomatchESAB&AWSA4.3

•   AutogenousLBWexhibited“lowtono”pickup–  Lowerspeed(14ipm)showedlowpickup–  Higherspeeds(50&80ipm)showednopickup

•   HLAWproceduresshowlowHpickup–  LessProportionaltowirefeedspeed–  Laser‐leadH2lower(0.9‐1.1)thanGMAW(2.5)

–  GMAW‐leadH2closer(1.8)toGMAW(2.5)

•   TotalQuantityofH2lowerforHLAW

June 15, 2010 www.appliedthermalsciences.com 37

WeldFumeEvolutionCharacteristicsofHLAW

AirborneFumeEmissionProfilesofHybridLaserArcWelding(HLAW)

DanielO.Chute,CIH,CSP,AtriumEnvironmentalHealthandSafetyServices,LLC,

andPaulBlomquist,

AppliedThermalSciences,Inc.

June 15, 2010 www.appliedthermalsciences.com 38

WeldFumeEvolutionCharacteristicsofHLAW

•   Establishedexposurelimitsprescribedformanymetalswhichmaybefoundinsteelweldingoperations,includingOSHAcomprehensivehealthstandardsfor–   Pb,–   HexCr,–   Cd–   andMn.

•   Somerecentliteraturehaswarnedofpotentialforexposureinexcessoflimitsduringroutineweldingoperations

•   NIOSHhasbeenengagedsince2002inongoingstudiesontheHealthEffectsofWelding.

June 15, 2010 www.appliedthermalsciences.com 39

WeldFumeEvolutionCharacteristicsofHLAW

Whydothis?•   Verifythatemployeesarenotatrisk

•   Complywithhealth&safetyregulationsBut:•   Thereisfumedataforconventionalweldingprocessesavailableinthetechnicalliterature,

•   Nodefinitivepreviouslypublisheddataonfumelevelsgeneratedinthewelder’sbreathingzoneduringHybridLaserArcWelding(HLAW).

June 15, 2010 www.appliedthermalsciences.com 40

HybridLaserProcesses:Benefits&Issues

•  GMAweldedjointS690QL

•  Numberoflayers:4

•  Materialthickness10mm

•  Weldingspeed0,1..0,3m/min/layer

•  Angulardistortion:high•  DimensionWMandHAZ:wide

•  Laser‐GMA‐hybridweldedjointS690QL

•  Numberoflayers:1

•  Materialthickness10mm

•  Weldingspeed1,5m/min

•  Angulardistortion:low•  DimensionWMandHAZ:narrow

Photos&Data:GSI‐SLV

June 15, 2010 www.appliedthermalsciences.com 41

WeldFumeEvolutionCharacteristicsofHLAW

OtherHLAWAdvantagesGMAW:

•  Weldspeed:12‐18ipm

•  Longertimeperpass

•  WelderPBZnearthearc

•  Fumepath:

•  Random,oftentowardwelder

•  Auxiliaryfumeextraction:

•  Mustbeconstantlymovedbywelder

HLAW

•  WeldingSpeed50‐150ipm

•  Lesstimeperpass

•  OperatorPBZremotefromarc

•  Fumepath:

•  AirKnifeBlowsfumeaway

•  Auxiliaryfumeextraction:

•  Constantrelationshiptoweldpool

June 15, 2010 www.appliedthermalsciences.com 42

WeldFumeEvolutionCharacteristicsofHLAW

•   Workwasconductedinaweldingproductionshopwhichincludedothermetalworkingandfinishingoperationssuchas:–   grinding;–   enclosedabrasiveblasting;and,–   TIGweldingandmachining.

•   TheHLAWworkwasdoneinagantryroom.

June 15, 2010 www.appliedthermalsciences.com 43

WeldFumeEvolutionCharacteristicsofHLAW

•   AllairsampleswerecollectedbyaCIH–   inaccordancewithOSHAMethod

125G/NIOSH7300–   using35mmMCEfilter,0.8micron

poresize.•   AnalysiscompletedbylabAIHA

Accreditedformetals.

•   TestingincludedbothPBZandAreaairsamplescollectedunderthefollowingoperatingconditions:–   Metaltype/thickness;–   Fillermetal/wire;–   Arccurrent&timeperweldcycle;–   LaserStrength/wavelength;and,–   Gasflow.

June 15, 2010 www.appliedthermalsciences.com 44

WeldFumeEvolutionCharacteristicsofHLAW

MetalsMeasured

•   Cadmium(fume) •   Cobalt •   Chromium •   Copper(fume) •   Lead •   Manganese •   Nickel •   IronOxidefume •   ZincOxidefume

June 15, 2010 www.appliedthermalsciences.com 45

WeldFumeEvolutionCharacteristicsofHLAW

ProcessesObserved •   Plasmacuttingofcarbonsteel •   Abrasiveblastingoncarbonsteel•   Anglegrindingoncarbonsteel •   Tungsteninertgas(TIG)welding •   HybridLaserArcWeldingoncarbonsteel •   HybridLaserArcWeldingonstainlesssteel •   Areasforobserversandbystanders

June 15, 2010 www.appliedthermalsciences.com 46

WeldFumeEvolutionTestResults

•   Over59hoursofsamplingforCadmium(fume);Cobalt;Chromium;Copper(fume);Lead;Manganese;Nickel;IronOxide(fume);ZincOxidefume

•   AllairsampleresultswerebelowOELfortheninemetalstestedineachairsample.

•   AllresultsbelowPELBrokendownbyanalyteMaximumFractionofPEL

June 15, 2010 www.appliedthermalsciences.com 47

HLAWFumeCharacteristics 2008HLAWStudy

June 15, 2010 www.appliedthermalsciences.com 48

HLAWFumeCharacteristics MnConcentration‐NSRP1999vs.HLAW08‐09

892.6

114.7 152.5

24.6 14.75 28.5 9.83 31 15.7

0

100

200

300

400

500

600

700

800

900

1000 FC

AW (1

)

GM

AW (1

)

SM

AW (1

)

HLA

W o

n C

arbo

n S

teel

(2

)

HLA

W o

n H

SLA

65

Ste

el

with

70S

Wire

(2

)

HLA

W o

n H

SLA

80

Ste

el

with

Cor

ewel

d W

ire (2

)

HLA

W o

n S

tain

less

Ste

el

Fum

e E

xtra

ctor

O

ff (2

)

HLA

W o

n S

tain

less

Ste

el

Fum

e E

xtra

ctor

O

n (2

)

HLA

W o

n H

SLA

80

No

Lev

(3)

Mn

Con

cent

ratio

n, µ

g/m

3

June 15, 2010 www.appliedthermalsciences.com 49

HLAWFumeCharacteristics MnConcentration–ByParticleSize

June 15, 2010 www.appliedthermalsciences.com 50

HLAWFumeCharacteristicsConclusions

BaselineairmonitoringdataduringHLAWEvaluatedexposuretoninemetalsVarietyofoperatingconditions.HLAWproducedverylowoperatorexposureExposuresmayvaryaccordingtouseof

localexhaustventilation,arctime,metalthicknessandfillermetal

June 15, 2010 www.appliedthermalsciences.com 51

•   Recommendedadditionalwork–  Performfumeparticlesizeanalysis

–  Extendtestingtocoveradditionalalloys

HLAWFumeCharacteristicsConclusions

June 15, 2010 www.appliedthermalsciences.com 52

Questions?