hindawi publishing corporation2 abstract and applied analysis thesolutionssetof 1.2 isdenotedbyep f...

28
Hindawi Publishing Corporation Abstract and Applied Analysis Volume 2010, Article ID 428293, 27 pages doi:10.1155/2010/428293 Research Article A New Iterative Method for Finding Common Solutions of a System of Equilibrium Problems, Fixed-Point Problems, and Variational Inequalities Jian-Wen Peng, 1 Soon-Yi Wu, 2 and Jen-Chih Yao 3 1 School of Mathematics, Chongqing Normal University, Chongqing 400047, China 2 Department of Mathematics, National Cheng Kung University, Tainan 701, Taiwan 3 Department of Applied Mathematics, National Sun Yat-sen University, Kaohsiung 804, Taiwan Correspondence should be addressed to Jian-Wen Peng, [email protected] Received 18 February 2010; Revised 22 May 2010; Accepted 22 June 2010 Academic Editor: Simeon Reich Copyright q 2010 Jian-Wen Peng et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. We introduce a new iterative scheme based on extragradient method and viscosity approximation method for finding a common element of the solutions set of a system of equilibrium problems, fixed point sets of an infinite family of nonexpansive mappings, and the solution set of a variational inequality for a relaxed cocoercive mapping in a Hilbert space. We prove strong convergence theorem. The results in this paper unify and generalize some well-known results in the literature. 1. Introduction Let H be a real Hilbert space with inner product ·, · and induced norm ·. Let C be a nonempty, closed, and convex subset of H. Let {F k } kΓ be a countable family of bifunctions from C × C to R, where R is the set of real numbers. Combettes and Hirstoaga 1 considered the following system of equilibrium problems: Find x C such that k Γ, ( y C ) ,F k ( x, y ) 0. 1.1 If Γ is a singleton, problem 1.1 becomes the following equilibrium problem: Finding x C such that F ( x, y ) 0, y C. 1.2

Upload: others

Post on 25-Jan-2021

0 views

Category:

Documents


0 download

TRANSCRIPT

  • Hindawi Publishing CorporationAbstract and Applied AnalysisVolume 2010, Article ID 428293, 27 pagesdoi:10.1155/2010/428293

    Research ArticleA New Iterative Method for Finding CommonSolutions of a System of Equilibrium Problems,Fixed-Point Problems, and Variational Inequalities

    Jian-Wen Peng,1 Soon-Yi Wu,2 and Jen-Chih Yao3

    1 School of Mathematics, Chongqing Normal University, Chongqing 400047, China2 Department of Mathematics, National Cheng Kung University, Tainan 701, Taiwan3 Department of Applied Mathematics, National Sun Yat-sen University, Kaohsiung 804, Taiwan

    Correspondence should be addressed to Jian-Wen Peng, [email protected]

    Received 18 February 2010; Revised 22 May 2010; Accepted 22 June 2010

    Academic Editor: Simeon Reich

    Copyright q 2010 Jian-Wen Peng et al. This is an open access article distributed under the CreativeCommons Attribution License, which permits unrestricted use, distribution, and reproduction inany medium, provided the original work is properly cited.

    We introduce a new iterative scheme based on extragradient method and viscosity approximationmethod for finding a common element of the solutions set of a system of equilibrium problems,fixed point sets of an infinite family of nonexpansivemappings, and the solution set of a variationalinequality for a relaxed cocoercive mapping in a Hilbert space. We prove strong convergencetheorem. The results in this paper unify and generalize some well-known results in the literature.

    1. Introduction

    Let H be a real Hilbert space with inner product 〈·, ·〉 and induced norm ‖ · ‖. Let C be anonempty, closed, and convex subset of H. Let {Fk}k∈Γ be a countable family of bifunctionsfrom C ×C to R, where R is the set of real numbers. Combettes and Hirstoaga �1� consideredthe following system of equilibrium problems:

    Find x ∈ C such that �∀k ∈ Γ�, (∀y ∈ C), Fk(x, y

    ) ≥ 0. �1.1�

    If Γ is a singleton, problem �1.1� becomes the following equilibrium problem:

    Finding x ∈ C such that F(x, y) ≥ 0, ∀y ∈ C. �1.2�

  • 2 Abstract and Applied Analysis

    The solutions set of �1.2� is denoted by EP�F�. And clearly the solutions set of problem�1.1� can be written as

    ⋂k∈Γ EP�Fk�.

    Problem �1.1� is very general in the sense that it includes, as special cases,optimization problems, variational inequalities, minimax problems, Nash equilibriumproblem in noncooperative games, and others; see for instance, �1–4�.

    Recall that a mapping S of a closed and convex subset C into itself is nonexpansive if

    ∥∥Sx − Sy∥∥ ≤ ∥∥x − y∥∥ ∀x, y ∈ C. �1.3�

    We denote fixed-points set of S by Fix�S�. A mapping f : C → C is called contraction if thereexists a constant α ∈ �0, 1� such that

    ∥∥fx − fy∥∥ ≤ α∥∥x − y∥∥, ∀x, y ∈ C. �1.4�

    A bounded linear operator B on H is strongly positive, if there is a constant γ > 0 such that〈Bx, x〉 ≥ γ‖x‖2 for all x ∈ H.

    Combettes and Hirstoaga �1� introduced an iterative scheme for finding a commonelement of the solutions set of problem �1.1� in a Hilbert space and obtained a weakconvergence theorem. Peng and Yao �2� introduced a new viscosity approximation schemebased on the extragradient method for finding a common element in the solutions set ofthe problem �1.1�, fixed-points set of an infinite family of nonexpansive mappings and thesolutions set of the variational inequality for a monotone and Lipschitz continuous mappingin a Hilbert space and obtained a strong convergence theorem. Colao et al. �3� introducedan implicit method for finding common solutions of variational inequalities and systemsof equilibrium problems and fixed-points of infinite family of nonexpansive mappings ina Hilbert space and obtained a strong convergence theorem. Saeidi �4� introduced someiterative algorithms for finding a common element of the solutions set of a system ofequilibrium problems and of fixed-points set of a finite family and a left amenable semigroupof nonexpansive mappings in a Hilbert space and obtained some strong convergencetheorems.

    Several algorithms for problem �1.2� have been proposed �see �5–20��. S. Takahashiand W. Takahashi �5� introduced and studied the following iterative scheme by the viscosityapproximation method for finding a common element of the solutions set of problem �1.2�and fixed-points set of a nonexpansive mapping in a Hilbert space. Let an arbitrary x1 ∈ Hdefine sequences {xn} and {un} by

    F(un, y

    )�

    1βn

    〈y − un, un − xn

    〉 ≥ 0, ∀y ∈ C,

    xn�1 � αnf�xn� � �1 − αn�Sun, ∀n ∈ N.�1.5�

    Shang et al. �6� introduced the following iterative scheme by the viscosity approximationmethod for finding a common element of the solutions set of problem �1.2� and fixed-points

  • Abstract and Applied Analysis 3

    set of a nonexpansive mapping in a Hilbert space. Let an arbitrary x1 ∈ H, define sequences{xn} and {un} by

    F(un, y

    )�

    1βn

    〈y − un, un − xn

    〉 ≥ 0, ∀y ∈ C,

    xn�1 � αnγf�xn� � �I − αnB�Sun, ∀n ∈ N.�1.6�

    They proved that under certain appropriate conditions imposed on {αn} and {βn}, thesequences {xn} and {un} generated by �1.6� converge strongly to the unique solution of thevariational inequality

    〈(B − γf)x∗, x − x∗〉 ≥ 0, ∀x ∈ Fix�S� ∩ EP�F�, �1.7�

    which is the optimality condition for the minimization problem

    minx∈Fix�S�∩EP�F�

    12〈Bx, x〉 − h�x�, �1.8�

    where h is a potential function for γf �i.e., h′�x� � γf�x� for x ∈ H�. If C � H, the algorithm�1.6� was also studied by Plubtieng and Punpaeng �7�.

    Let A : C → H be a monotone mapping. The variational inequality problem is to finda point x ∈ C such that

    〈Ax, y − x〉 ≥ 0 �1.9�

    for all y ∈ C. The solutions set of the variational inequality problem is denoted by VI�C,A�.Qin et al. �8� introduced the following general iterative scheme for finding a common elementof the solutions set of problem �1.2�, the solutions set of a variational inequality and fixed-points set of a nonexpansive mapping in a Hilbert space. Let an arbitrary x1 ∈ H, definesequences {xn} and {un} by

    F(un, y

    )�

    1βn

    〈y − un, un − xn

    〉 ≥ 0, ∀y ∈ C,

    xn�1 � αnγf�xn� � �I − αnB�SPC�I − snA�un, ∀n ∈ N.�1.10�

    They proved that under certain appropriate conditions imposed on {αn}, {sn} and {βn}, thesequences {xn} and {un} generated by �1.10� converge strongly to the unique solution of thevariational inequality

    〈(B − γf)x∗, x − x∗〉 ≥ 0, ∀x ∈ Fix�S� ∩ VI�C,A� ∩ EP�F�. �1.11�

    Qin et al. �9� introduced the following general iterative scheme for finding a commonelement of the solutions set of problem �1.2� and fixed-points set of a finite family of

  • 4 Abstract and Applied Analysis

    nonexpansive mappings in a Hilbert space. Let an arbitrary x1 ∈ H, define sequences {xn}and {un} by

    F(un, y

    )�

    1βn

    〈y − un, un − xn〉 ≥ 0, ∀y ∈ C,

    xn�1 � αnγf�Wnxn� � �1 − αnB�WnPC�I − snA�un, ∀n ∈ N,�1.12�

    where Wn is the W-mapping generated by T1, T2, . . . , TN and λn1, λn2, . . . , λnN . They provedthat under certain appropriate conditions imposed on {αn}, {sn} and {βn}, the sequences{xn} and {un} generated by �1.12� converge strongly to the unique solution of the variationalinequality

    〈(B − γf)x∗, x − x∗〉 ≥ 0, ∀x ∈

    N⋂

    i�1

    Fix�Ti� ∩ VI�C,A� ∩ EP�F�. �1.13�

    A typical problem is to minimize a quadratic function over the fixed-points set of anonexpansive mapping S on a real Hilbert space H, that is,

    minx∈Fix�S�

    12〈Bx, x〉 − 〈x, b〉, �1.14�

    where b is a given point in H. In 2003, Xu �21� proved that the sequence {xn} defined by theiterative method below, with the initial point x0 ∈ H, chosen arbitrarily:

    xn�1 � �I − αnB�Sxn � αnu, n ≥ 0, �1.15�

    converges strongly to the unique solution of the minimization problem �1.15� provided thesequence {αn} satisfies certain conditions. Marino and Xu �22� combine the iterative method�1.15� with the viscosity approximation in �23� and consider the following general iterativemethod: with the initial point x0 ∈ H, chosen arbitrarily:

    xn�1 � �1 − αnB�Sxn � αnγf�xn�, n ≥ 0. �1.16�

    They proved that if the sequence {αn} satisfies appropriate conditions, then thesequence {xn} generated by �1.16� converges strongly to the unique solution of the variationalinequality

    〈(B − γf)x∗, x − x∗〉 ≥ 0, x ∈ Fix�S� �1.17�

    which is the optimality condition for the minimization problem

    minx∈Fix�S�

    12〈Bx, x〉 − h�x�, �1.18�

    where h is a potential function for γf .

  • Abstract and Applied Analysis 5

    Recently, Qin et al. �24� introduced the following general iterative process: with theinitial point x1 ∈ C, chosen arbitrarily:

    yn � PC�I − snA�xn,xn�1 � αnγf�Wnxn� � �I − αnB�WnPC�I − rnA�yn, ∀n ∈ N,

    �1.19�

    where Wn is the W-mapping generated by T1, T2, . . . , TN and λn1, λn2, . . . , λnN . They provedthat if the sequences of parameters {αn}, {rn} and {sn} satisfies appropriate conditions, thenthe sequence {xn}, {yn} generated by �1.19� converge strongly to a point x∗ which is theunique solution of the variational inequality

    〈(B − γf)x∗, x − x∗〉 ≥ 0, ∀x ∈

    N⋂

    i�1

    F�Ti� ∩ VI�C,A�. �1.20�

    Inspired and motivated by above works, we introduce a new iterative scheme basedon extragradient method and viscosity approximation method for finding a common elementof the solutions set of a system of equilibrium problems, fixed-points set of a family ofinfinitely nonexpansive mappings and the solutions set of a variational inequality for arelaxed cocoercive mapping in a Hilbert space. We prove strong convergence theorem. Theresults in this paper unify, generalize and extend some well-known results in �6–9, 21, 22, 24�.

    2. Preliminaries

    Let H be a real Hilbert space with inner product 〈·, ·〉 and norm ‖ · ‖. Let C be a nonempty,closed, and convex subset ofH. Let symbols → and⇀ denote strong and weak convergence,respectively. It is well known that

    ∥∥λx � �1 − λ�y∥∥2 � λ‖x‖2 � �1 − λ�∥∥y∥∥2 − λ�1 − λ�∥∥x − y∥∥2 �2.1�

    for all x, y ∈ H and λ ∈ �0, 1�.For any x ∈ H, there exists a unique nearest point in C, denoted by PC�x�, such that

    ‖x − PC�x�‖ ≤ ‖x − y‖ for all y ∈ C. The mapping PC is called the metric projection of H ontoC. We know that PC is a nonexpansive mapping from H onto C, PC�x� ∈ C and

    〈x − PC�x�, PC�x� − y

    〉 ≥ 0 �2.2�for all x, y ∈ H.

    It is easy to see that �2.2� is equivalent to

    ∥∥x − y∥∥2 ≥ ‖x − PC�x�‖2 �∥∥y − PC�x�

    ∥∥2 �2.3�

    for all x, y ∈ H. It is also known that PC has the following firmly nonexpansive property:〈x − y, PCx − PCy

    〉 ≥ ∥∥PCx − PCy∥∥2 �2.4�

    for all x, y ∈ H.

  • 6 Abstract and Applied Analysis

    Recall also that a mapping A of C into H is called monotone if

    〈Ax −Ay, x − y〉 ≥ 0, �2.5�

    for all x, y ∈ C. A is said to be μ-cocoercive, if for each x, y ∈ C, we have

    〈Ax −Ay, x − y〉 ≥ μ∥∥Ax −Ay∥∥2, �2.6�

    for a constant μ > 0. A is said to be relaxed �u, v�-cocoercive, if there exist two constantsu, v > 0 such that

    〈Ax −Ay, x − y〉 ≥ �−u�∥∥Ax −Ay∥∥2 � v∥∥x − y∥∥2, ∀x, y ∈ C. �2.7�

    Let A be a monotone mapping of C into H. In the context of the variational inequalityproblem the characterization of projection �2.2� implies the following:

    u ∈ VI�C,A� �⇒ u � PC�u − λAu�, λ > 0,u � PC�u − λAu� for some λ > 0 �⇒ u ∈ VI�C,A�.

    �2.8�

    It is also known that H satisfies the Opial’s condition �25�, that is, for any sequence{xn} ⊂ H with xn ⇀ x, the inequality

    lim infn→∞

    ‖xn − x‖ < lim infn→∞

    ∥∥xn − y∥∥ �2.9�

    holds for every y ∈ H with x /�y.A set-valued mapping T : H → 2H is called monotone if for all x, y ∈ H, f ∈ Tx and

    g ∈ Ty imply 〈x − y, f − g〉 ≥ 0. A monotone mapping T : H → 2H is maximal if its graphG�T� of T is not properly contained in the graph of any other monotone mapping. It is knownthat a monotone mapping T is maximal if and only if for �x, f� ∈ H × H, 〈x − y, f − g〉 ≥ 0for every �y, g� ∈ G�T� implies f ∈ Tx. Let A be a monotone and k-Lipschitz-continuousmapping of C into H and let NCv be normal cone to C at v ∈ C, that is, NCv � {w ∈ H :〈v − u,w〉 ≥ 0, for all u ∈ C}. Define

    Tv �

    ⎧⎨

    Av �NCv if v ∈ C,∅ if v /∈C.

    �2.10�

    Then T is maximal monotone and 0 ∈ Tv if and only if v ∈ VI�C,A� �see �26��.For solving the problem �1.1�, let us assume that the bifunction F satisfies the following

    condition:

    �A1� F�x, x� � 0 for all x ∈ C;�A2� F is monotone, that is, F�x, y� � F�y, x� ≤ 0 for any x, y ∈ C;

  • Abstract and Applied Analysis 7

    �A3� for each x, y, z ∈ C,

    limt↓0

    F(tz � �1 − t�x, y) ≤ F(x, y); �2.11�

    �A4� for each x ∈ C, y �→ F�x, y� is convex;�A5� for each x ∈ C, y �→ F�x, y� is lower semicontinuous.

    We recall some lemmas needed later.

    Lemma 2.1 �see �1, 10��. Let C be a nonempty, closed, and convex subset of H, and let F be abifunction from C × C to R which satisfies conditions (A1)–(A5). For β > 0 and x ∈ H, define themapping TFβ : H → C as follows:

    TFβ �x� �{z ∈ C : F(z, y) � 1

    β

    〈y − z, z − x〉 ≥ 0, ∀y ∈ C

    }�2.12�

    for all x ∈ H. Then, the following statements hold:�1� TF

    β�x�/� ∅;

    �2� TFβ is single-valued;

    �3� TFβis firmly nonexpansive, that is, for any x, y ∈ H,

    ∥∥∥TFβ �x� − TFβ �y�∥∥∥2 ≤

    〈TFβ �x� − TFβ

    (y), x − y

    〉; �2.13�

    �4� Fix�TFβ� � EP�F�;

    �5� EP�F� is closed and convex.

    Lemma 2.2 �see �27��. Assume that {sn} is a sequence of nonnegative real numbers such that

    sn�1 ≤ �1 − αn�sn � αnβn � δn, n ≥ 1, �2.14�

    where {αn}, {βn} and {δn} are sequences of numbers which satisfy the conditions:�i� {αn} ⊂ �0, 1�,

    ∑∞n�1 αn � ∞, or equivalently,

    ∏∞i�1�1 − αn� � 0;

    �ii� lim supn→∞βn ≤ 0;�iii� δn ≥ 0�n ≥ 1�,

    ∑∞n�1 δn < ∞;

    Then, limn→∞sn � 0.

    Lemma 2.3. In a real Hilbert spaceH, the following inequality holds:

    ∥∥x � y∥∥2 ≤ ‖x‖2 � 2〈y, x � y〉 �2.15�

    for all x, y ∈ H.

  • 8 Abstract and Applied Analysis

    Lemma 2.4 �see �22��. Assume that A is a strongly positive linear bounded operator on a HilbertspaceH with coefficient γ̃ > 0 and 0 < ρ ≤ ‖A‖−1. Then ‖I − ρA‖ ≤ 1 − ργ̃ .

    Let S1, S2, . . . be a family of infinitely nonexpansive mappings of C into itself and letξ1, ξ2, . . . be real numbers such that 0 ≤ ξi ≤ 1 for every i ∈ N. For any n ∈ N, define amappingWn of C into C as follows:

    Un,n�1 � I,

    Un,n � ξnSnUn,n�1 � �1 − ξn�I,Un,n−1 � ξn−1Sn−1Un,n � �1 − ξn−1�I,

    ...

    Un,k � ξkSkUn,k�1 � �1 − ξk�I,Un,k−1 � ξk−1Sk−1Un,k � �1 − ξk−1�I,

    ...

    Un,2 � ξ2S2Un,3 � �1 − ξ2�I,Wn � Un,1 � ξ1S1Un,2 � �1 − ξ1�I.

    �2.16�

    Such a mapping Wn is called the W-mapping generated by Sn, Sn−1, . . . , S1 andξn, ξn−1, . . . , ξ1; see �28, 29�.

    Lemma 2.5 �see �28��. Let C be a nonempty, closed, and convex subset of a Banach space E. LetS1, S2, ... be a family of infinitely nonexpansive mappings of C into itself such that

    ⋂∞i�1 Fix�Si� is

    nonempty, and let ξ1, ξ2, . . . be real numbers such that 0 < ξi ≤ d < 1 for every i ∈ N. For any n ∈ N,let Wn be the W-mapping of C into itself generated by Sn, Sn−1, . . . , S1 and ξn, ξn−1, . . . , ξ1. Then Wnis asymptotically regular and nonexpansive. Further, if E is strict convex, then F�Wn� �

    ⋂ni�1 Fix�Si�.

    Lemma 2.6 �see �29��. Let C be a nonempty, closed, and convex subset of a strictly convex Banachspace E. Let S1, S2, . . . be a family of infinitely nonexpansive mappings of C into itself such that⋂∞

    i�1 Fix�Si� is nonempty, and let ξ1, ξ2, . . . be real numbers such that 0 < ξi ≤ d < 1 for every i ∈ N.Then for every x ∈ C and k ∈ N, the limit limn→∞Un,kx exists.

    Remark 2.7. Using Lemma 2.6, one can define mappings U∞,k and W of C into itself asfollows:

    U∞,kx � limn→∞

    Un,kx, �2.17�

    and Wx � limn→∞Wnx � limn→∞Un,1x for every x ∈ C. Such a mapping W is called theW-mapping generated by S1, S2, . . . and ξ1, ξ2, . . .. Since Wn is nonexpansive, W : C → C isalso nonexpansive. Indeed, observe that for each x, y ∈ C

    ∥∥Wx −Wy∥∥ � limn→∞

    ∥∥Wnx −Wny∥∥ ≤ ∥∥x − y∥∥. �2.18�

  • Abstract and Applied Analysis 9

    If {xn} is a bounded sequence in C, then we have

    limn→∞

    ‖Wx −Wnx‖ � 0. �2.19�

    Lemma 2.8 �see �29��. Let C be a nonempty, closed and convex subset of a strictly convex Banachspace E. Let S1, S2, . . . be an infinite family of nonexpansive mappings of C into itself such that⋂∞

    i�1 Fix�Si� is nonempty, and let ξ1, ξ2, . . . be real numbers such that 0 < ξi ≤ d < 1 for everyi ∈ N. Then Fix�W� � ⋂∞n�1 Fix�Sn�.

    3. Strong Convergence Theorem

    In this section, we prove strong convergence theorem which solve the problem of finding acommon element of the solutions set of a system of equilibrium problems, fixed-points set ofa family of infinitely nonexpansive mappings, and the solutions set of a variational inequalityfor a relaxed cocoercive mapping in Hilbert space.

    Theorem 3.1. Let C be a nonempty, closed, and convex subset ofH. Let F1, F2, . . . , Fm be bifunctionsfrom C × C to R which satisfies conditions (A1)–(A5). Let A : C → H be relaxed �u, v�-cocoerciveand μ-Lipschitz continuous and B a strongly positive linear bounded operator on H with coefficientγ̃ > 0. Assume that 0 < γ < γ̃/α. Let S1, S2, . . . be a family of infinitely nonexpansive mappings of Cinto itself such thatΩ �

    ⋂∞i�1 Fix�Si� ∩VI�C,A� ∩

    ⋂mk�1 EP�Fk�/� ∅ and let ξ1, ξ2, . . . be real numbers

    such that 0 < ξi ≤ δ < 1 for every i ∈ N, and let Wn be the W-mapping of C into itself generated bySn, Sn−1, . . . , S1 and ξn, ξn−1, . . . , ξ1. Let f : C → C be a contraction with coefficient α �0 < α < 1�and {xn}, {un}, and {yn} be sequences generated by

    x1 � x ∈ H,

    un � TFmβn

    TFm−1βn

    · · · TF2βnTF1βnxn,

    yn � PC�I − snA�un,xn�1 � αnγf�Wnxn� � �I − αnB�WnPC�I − rnA�yn

    �3.1�

    for every n � 1, 2, . . ., where {αn}, {βn}, {rn}, and {sn} are sequences of numbers which satisfy theconditions:

    �C1� {αn} ⊂ �0, 1� with limn→∞αn � 0,∑∞

    n�1 αn � ∞, and∑∞

    n�1 |αn�1 − αn| < ∞;�C2� {rn} ⊂ �a, b� and {sn} ⊂ �a, b� for some a, b with 0 ≤ a ≤ b ≤ 2�υ−uμ2�/μ2,

    ∑∞n�1 |rn�1−

    rn| < ∞, and∑∞

    n�1 |sn�1 − sn| < ∞;�C3� lim infn→∞βn > 0 and

    ∑∞n�1 |βn�1 − βn| < ∞.

    Then, {xn}, {yn}, and {un} converge strongly to a point q ∈ Ω which solves the followingvariational inequality:

    〈γfq − Bq, p − q〉 ≤ 0, ∀p ∈ Ω. �3.2�

    Equivalently, one has q � PΩ�γf � �I − B���q�.

  • 10 Abstract and Applied Analysis

    Proof. Since αn → 0 from condition �C1�, we may assume, with no loss of generality, thatαn ≤ ‖B‖−1 for all n. Lemma 2.4 implies ‖I − αnB‖ ≤ 1 − αnγ̃ . Next, we will assume that‖I − B‖ ≤ 1 − γ̃ . Now, we show that the mappings I − snA and I − rnA are nonexpansive.Indeed, from the relaxed �u, v�-cocoercivity and μ-Lipschitz continuity of A and condition�C2�, we have

    ∥∥�I − snA�x − �I − snA�y

    ∥∥2 �

    ∥∥(x − y) − sn

    (Ax −Ay)∥∥2

    �∥∥x − y∥∥2 − 2sn

    〈x − y,Ax −Ay〉 � s2n

    ∥∥Ax −Ay∥∥2

    ≤ ∥∥x − y∥∥2 − 2sn[−u∥∥Ax −Ay∥∥2 � υ∥∥x − y∥∥2

    ]� s2n

    ∥∥Ax −Ay∥∥2

    ≤ ∥∥x − y∥∥2 � 2snμ2u∥∥x − y∥∥2 − 2snυ

    ∥∥x − y∥∥2 � μ2s2n

    ∥∥x − y∥∥2

    �(1 � 2snμ2u − 2snυ � μ2s2n

    )∥∥x − y∥∥2

    ≤ ∥∥x − y∥∥2,�3.3�

    which implies the mapping I − snA is nonexpansive, so is I − rnA.For k ∈ {0, 1, 2, . . . , m}, and for any positive integer number n, we define the operator

    Θkβn

    : H → C as follows:

    Θ0βnx � x,

    Θkβnx � TFkβnTFk−1βn

    · · · TF2βnTF1βnx, k � 1, 2, . . . , m.

    �3.4�

    Next, we show that the sequence {xn} is bounded. Let p ∈ Ω. Then from Lemma 2.1�3�,we know that for k ∈ {1, 2, . . . , m}, TFk

    βnis nonexpansive and p � TFk

    βnp, and

    ∥∥un − p∥∥ �

    ∥∥∥Θmβnxn − p∥∥∥ �

    ∥∥∥Θmβnxn −Θmβnp∥∥∥ ≤

    ∥∥xn − p∥∥ �3.5�

    for all n � 1, 2, . . . . By p � PC�I − snA�p and �3.5�, we have∥∥yn − p

    ∥∥ �∥∥PC�I − snA�un − PC�I − snA�p

    ∥∥

    ≤ ∥∥�I − snA�un − �I − snA�p∥∥ ≤ ∥∥un − p

    ∥∥ ≤ ∥∥xn − p∥∥.

    �3.6�

    Since xn�1 � αnγf�Wnxn� � �I − αnB�WnPC�I − rnA�yn and p � Wnp, we have∥∥xn�1 − p

    ∥∥ �∥∥αn

    (γf�Wnxn� − Bp

    )� �I − αnB�

    (WnPC�I − rnA�yn − p

    )∥∥

    ≤ αn∥∥γf�Wnxn� − Bp

    ∥∥ �(1 − αnγ̃

    )∥∥PC�I − rnA�yn − p∥∥

    ≤ αnγ∥∥f�Wnxn� − f

    (p)∥∥ � αn

    ∥∥γf(p) − Bp∥∥ � (1 − αnγ̃

    )∥∥yn − p∥∥

    ≤ [1 − αn(γ̃ − αγ)]∥∥xn − p

    ∥∥ � αn∥∥γf

    (p) − Bp∥∥.

    �3.7�

  • Abstract and Applied Analysis 11

    By inductions, we have

    ∥∥xn − p

    ∥∥ ≤ max

    {∥∥x0 − p

    ∥∥,

    ∥∥γf

    (p) − Bp∥∥

    γ̃ − αγ

    }

    , �3.8�

    which proves that the sequence {xn} is bounded. It follows from �3.5� and �3.6� that {yn} and{un} are also bounded.

    Since Θkβnxn � TFkβnΘk−1βn xn and Θ

    kβn�1

    xn�1 � TFkβn�1

    Θk−1βn�1xn�1 for each k � 1, 2, . . . , m, byLemma 2.1, we have

    Fk(Θkβnxn, y

    )�

    1βn

    〈y −Θkβnxn,Θ

    kβnxn −Θk−1βn xn

    〉≥ 0 ∀y ∈ C, �3.9�

    Fk(Θkβn�1xn�1, y

    )�

    1βn�1

    〈y −Θkβn�1xn�1,Θ

    kβn�1

    xn�1 −Θk−1βn�1xn�1〉≥ 0 ∀y ∈ C, �3.10�

    Setting y � Θkβn�1

    xn�1 in �3.9� and y � Θkβnxn in �3.10�, we have

    Fk(Θkβnxn,Θ

    kβn�1

    xn�1)�

    1βn

    〈Θkβn�1xn�1 −Θkβnxn,Θkβnxn −Θ

    k−1βn

    xn〉 ≥ 0,

    Fk(Θkβn�1xn�1,Θ

    kβnxn)�

    1βn�1

    〈Θkβnxn −Θ

    kβn�1

    xn�1,Θkβn�1xn�1 −Θk−1βn�1

    xn�1〉≥ 0.

    �3.11�

    Adding the two inequalities and from the monotonicity of F, we get

    Θkβn�1xn�1 −Θkβnxn,

    Θkβnxn −Θk−1βn xn

    βn−Θk

    βn�1xn�1 −Θk−1βn�1xn�1

    βn�1

    ≥ 0 �3.12�

    and hence

    ∥∥∥Θkβn�1xn�1 −Θkβnxn∥∥∥2

    ≤〈Θkβn�1xn�1 −Θ

    kβnxn,(Θk−1βn�1xn�1 −Θ

    k−1βn

    xn)�(1 − βn

    βn�1

    )(Θkβn�1xn�1 −Θ

    k−1βn�1

    xn�1)〉

    .

    �3.13�

    Without loss of generality, let us assume that there exists a real number d such thatβn > d > 0 for all n � 1, 2, . . . . Hence, for each k � 1, 2, . . . , mwe have

    ∥∥∥Θkβn�1xn�1 −Θkβnxn∥∥∥ ≤

    ∥∥∥Θk−1βn�1xn�1 −Θk−1βn

    xn∥∥∥ �

    1βn�1

    ∣∣βn�1 − βn∣∣∥∥∥Θkβn�1xn�1 −Θ

    k−1βn�1

    xn�1∥∥∥

    ≤∥∥∥Θk−1βn�1xn�1 −Θ

    k−1βn

    xn∥∥∥ �

    1d

    ∣∣βn�1 − βn∣∣M0,

    �3.14�

  • 12 Abstract and Applied Analysis

    where M0 is an approximate constant such that

    M0 ≥ max{

    supn≥1

    {∥∥∥Θkβn�1xn�1 −Θ

    k−1βn�1

    xn�1∥∥∥}, k � 1, 2, . . . , m

    }

    . �3.15�

    It follows from �3.14� that

    ‖un�1 − un‖ �∥∥∥Θmβn�1xn�1 −Θ

    mβnxn∥∥∥ ≤ ‖xn�1 − xn‖ � m

    d

    ∣∣βn�1 − βn

    ∣∣M0. �3.16�

    Put ρn � PC�I − rnA�yn. We have∥∥yn − yn�1

    ∥∥ � ‖PC�I − snA�un − PC�I − sn�1A�un�1‖≤ ‖�I − snA�un − �I − sn�1A�un�1‖� ‖�un − snAun� − �un�1 − snAun�1� � �sn�1 − sn�Aun�1‖≤ ‖un − un�1‖ � |sn�1 − sn|M1,

    �3.17�

    where M1 is an approximate constant such that M1 ≥ max{supn≥1{‖Aun‖},M0}.Substituting �3.16� into �3.17�, we have

    ∥∥yn − yn�1∥∥ ≤ ‖xn�1 − xn‖ �

    [md

    ∣∣βn�1 − βn∣∣ � |sn�1 − sn|

    ]M1. �3.18�

    It follows from �3.18� that

    ∥∥ρn − ρn�1∥∥ �

    ∥∥PC�I − rnA�yn − PC�I − rn�1A�yn�1∥∥

    ≤ ∥∥�I − rnA�yn − �I − rn�1A�yn�1∥∥

    �∥∥(yn − rnAyn

    ) − (yn�1 − rnAyn�1)� �rn�1 − rn�Ayn�1

    ∥∥

    ≤ ∥∥yn − yn�1∥∥ � |rn�1 − rn|M2

    ≤ ‖xn − xn�1‖ �[md

    ∣∣βn�1 − βn∣∣ � |sn�1 − sn| � |rn�1 − rn|

    ]M2,

    �3.19�

    where M2 is an approximate constant such that M2 ≥ max{M1, supn≥1{‖Ayn�1‖}}.Observe that

    xn�1 � αnγf�Wnxn� � �I − αnB�Wnρn,xn�2 � αn�1γf�Wn�1xn�1� � �I − αn�1B�Wn�1ρn�1,

    �3.20�

    we have

    xn�2 − xn�1 � αn�1γ[f�Wn�1xn�1� − f�Wnxn�

    ]� �I − αn�1B�

    (Wn�1ρn�1 −Wnρn

    )

    � �αn�1 − αn�[γf�Wnxn� − BWnρn

    ].

    �3.21�

  • Abstract and Applied Analysis 13

    It follows that

    ‖xn�2 − xn�1‖ ≤ αn�1γα‖Wn�1xn�1 −Wnxn‖ �(1 − αn�1γ̃

    )∥∥Wn�1ρn�1 −Wnρn∥∥

    � |αn�1 − αn|∥∥γf�Wnxn� − BWnρn

    ∥∥

    ≤ αn�1γα�‖xn�1 − xn‖ � ‖Wn�1xn −Wnxn‖��(1 − αn�1γ̃

    )(∥∥ρn�1 − ρn∥∥ �

    ∥∥Wn�1ρn −Wnρn

    ∥∥)

    � |αn�1 − αn|∥∥γf�Wnxn� − BWnρn

    ∥∥.

    �3.22�

    Next we estimate ‖Wn�1xn−Wnxn‖ and ‖Wn�1ρn−Wnρn‖. It follows from the definitionofWn and nonexpansiveness of Si that

    ‖Wn�1xn −Wnxn‖ � ‖Un�1,1xn −Un,1xn‖� ‖ξ1S1Un�1,2xn � �1 − ξ1�xn − {ξ1S1Un,2xn � �1 − ξ1�xn}‖� ξ1‖S1Un�1,2xn − S1Un,2xn‖≤ ξ1‖Un�1,2xn −Un,2xn‖� ξ1‖ξ2S2Un�1,3xn � �1 − ξ2�xn − {ξ2S2Un,3xn � �1 − ξ2�xn}‖� ξ1ξ2‖S2Un�1,3xn − S2Un,3xn‖≤ ξ1ξ2‖Un�1,3xn −Un,3xn‖...

    ≤ Πni�1ξi‖Un�1,n�1xn −Un,n�1xn‖� Πni�1ξi‖ξn�1Sn�1xn � �1 − ξn�1�xn − xn‖

    � Πn�1i�1 ξi‖Sn�1xn − xn‖

    ≤ Πn�1i�1 ξiM3,

    �3.23�

    where M3 is an approximate constant such that

    M3 ≥ max{

    M2, supn≥1

    {‖Sn�1xn − xn‖}, supn≥1

    {∥∥Sn�1ρn − ρn∥∥}}

    . �3.24�

    Similarly, we have

    ∥∥Wn�1ρn −Wnρn∥∥ ≤ Πn�1i�1 ξiM3. �3.25�

  • 14 Abstract and Applied Analysis

    Substituting �3.19�, �3.23�, and �3.25� into �3.22� yields that

    ‖xn�2 − xn�1‖

    ≤ αn�1γα(‖xn�1 − xn‖ � Πn�1i�1 ξiM3

    )

    �(1 − αn�1γ̃

    )(‖xn�1 − xn‖ �[md

    ∣∣βn�1 − βn

    ∣∣ � |sn�1 − sn| � |rn�1 − rn|

    ]M2 � Πn�1i�1 ξiM3

    )

    � |αn�1 − αn|∥∥γf�Wnxn� − BWnρn

    ∥∥

    ≤ [1 − αn�1(γ̃ − γα)]‖xn�1 − xn‖ �M4

    (md

    ∣∣βn�1 − βn

    ∣∣ � |sn�1 − sn| � |rn�1 − rn| � |αn�1 − αn|

    ),

    � Πn�1i�1 ξi�3.26�

    where M4 is an approximate constant such that

    M4 ≥ max{

    M3, supn≥1

    {∥∥γf�Wnxn� − BWnρn∥∥}}

    . �3.27�

    It follows from conditions �C1�–�C3� and Πn�1i�1 ξi ≤ δn�1 and Lemma 2.2 that

    ‖xn�1 − xn‖ −→ 0. �3.28�

    Observe that

    xn�1 −Wnρn � αn(γf�Wnxn� − BWnρn

    ), �3.29�

    it follows from �C1� that

    limn→∞

    ∥∥Wnρn − xn�1∥∥ � 0. �3.30�

    For p ∈ Ω,we have

    ∥∥yn − p∥∥2 �

    ∥∥PC�I − snA�un − PC�I − snA�p∥∥2

    ≤ ∥∥�un − p� − sn�Aun −Ap�∥∥2

    �∥∥un − p

    ∥∥2 − 2sn〈un − p,Aun −Ap〉 � s2n∥∥Aun −Ap

    ∥∥2

    ≤ ∥∥xn − p∥∥2 − 2sn

    [−u∥∥Aun −Ap

    ∥∥2 � v∥∥un − p

    ∥∥2]� s2n

    ∥∥Aun −Ap∥∥2

    ≤ ∥∥xn − p∥∥2 �

    (2snu � s2n −

    2snvμ2

    )∥∥Aun −Ap∥∥2.

    �3.31�

  • Abstract and Applied Analysis 15

    Similarly, we have

    ∥∥ρn − p∥∥2 ≤ ∥∥xn − p

    ∥∥2 �(2rnu � r2n −

    2rnvμ2

    )∥∥Ayn −Ap∥∥2. �3.32�

    On the other hand, we have

    ∥∥xn�1 − p

    ∥∥2 �

    ∥∥αn�γf�Wnxn� − Bp� � �I − αnB��Wnρn − p�

    ∥∥2

    ≤ (αn∥∥γf�Wnxn� − Bp

    ∥∥ �

    (1 − αnγ̃

    )∥∥ρn − p∥∥)2

    ≤ αn∥∥γf�Wnxn� − Bp

    ∥∥2 �

    ∥∥ρn − p

    ∥∥2 � 2αn

    ∥∥ρn − p

    ∥∥∥∥γf�Wnxn� − Bp

    ∥∥.

    �3.33�

    Substituting �3.32� into �3.33�, we have

    ∥∥xn�1 − p∥∥2 ≤ αn

    ∥∥γf�Wnxn� − Bp∥∥2 �

    ∥∥xn − p∥∥2 �

    (2rnu � r2n −

    2rnvμ2

    )∥∥Ayn −Ap∥∥2

    � 2αn∥∥ρn − p

    ∥∥∥∥γf�Wnxn� − Bp∥∥.

    �3.34�

    It follows from condition �C2� that

    (2avμ2

    − 2bu − b2)∥∥Ayn −Ap

    ∥∥2

    ≤ αn∥∥γf�Wnxn� − Bp

    ∥∥2 �∥∥xn − p

    ∥∥2

    − ∥∥xn�1 − p∥∥2 � 2αn

    ∥∥ρn − p∥∥∥∥γf�Wnxn� − Bp

    ∥∥

    ≤ αn∥∥γf�Wnxn� − Bp

    ∥∥2 �(∥∥xn − p

    ∥∥ �∥∥xn�1 − p

    ∥∥)‖xn�1 − xn‖� 2αn

    ∥∥ρn − p∥∥∥∥γf�Wnxn� − Bp

    ∥∥.

    �3.35�

    As ‖xn�1 − xn‖ → 0 and limn→∞αn � 0, we have

    limn→∞

    ∥∥Ayn −Ap∥∥ � 0 �3.36�

    It is easy to see that ‖ρn − p‖ ≤ ‖yn − p‖. Using �3.33� again, we have∥∥xn�1 − p

    ∥∥2 ≤ αn∥∥γf�Wnxn� − Bp

    ∥∥2 �∥∥yn − p

    ∥∥2 � 2αn∥∥ρn − p

    ∥∥∥∥γf�Wnxn� − Bp∥∥. �3.37�

    Substituting �3.31� into �3.37�, we can obtain

    ∥∥xn�1 − p∥∥2 ≤ αn

    ∥∥γf�Wnxn� − Bp∥∥2 �

    ∥∥xn − p∥∥2 �

    (2snu � s2n −

    2snvμ2

    )∥∥Aun −Ap∥∥2

    � 2αn∥∥ρn − p

    ∥∥∥∥γf�Wnxn� − Bp∥∥.

    �3.38�

  • 16 Abstract and Applied Analysis

    It follows from �C2� that

    (2avμ2

    − 2bv − b2)∥∥Aun −Ap

    ∥∥2

    ≤ αn∥∥γf�Wnxn� − Bp

    ∥∥2 �

    ∥∥xn − p

    ∥∥2 − ∥∥xn�1 − p

    ∥∥2

    � 2αn∥∥ρn − p

    ∥∥∥∥γf�Wnxn� − Bp

    ∥∥

    ≤ αn∥∥γf�Wnxn� − Bp

    ∥∥2 �

    (∥∥xn − p∥∥ − ∥∥xn�1 − p

    ∥∥)‖xn�1 − xn‖

    � 2αn∥∥ρn − p

    ∥∥∥∥γf�Wnxn� − Bp

    ∥∥.

    �3.39�

    As ‖xn�1 − xn‖ → 0 and limn→∞

    αn � 0, we have

    limn→∞

    ∥∥Aun −Ap∥∥ � 0. �3.40�

    Observe that

    ∥∥ρn − p∥∥2 �

    ∥∥PC�I − rnA�yn − PC�I − rnA�p∥∥2

    ≤ 〈�I − rnA�yn − �I − rnA�p, ρn − p〉

    �12

    {∥∥�I − rnA�yn − �I − rnA�p∥∥2 �

    ∥∥ρn − p∥∥2

    −∥∥�I − rnA�yn − �I − rnA�p − �ρn − p�∥∥2}

    ≤ 12

    {∥∥yn − p∥∥2 �

    ∥∥ρn − p∥∥2 − ∥∥(yn − ρn

    ) − rn(Ayn −Ap

    )∥∥2}

    ≤ 12

    {∥∥xn − p∥∥2 �

    ∥∥ρn − p∥∥2 − ∥∥yn − ρn

    ∥∥2 − r2n∥∥Ayn −Ap

    ∥∥2

    �2rn〈yn − ρn,Ayn −Ap

    〉},

    �3.41�

    which yields that

    ∥∥ρn − p∥∥2 ≤ ∥∥xn − p

    ∥∥2 − ∥∥yn − ρn∥∥2 � 2rn

    ∥∥yn − ρn∥∥∥∥Ayn −Ap

    ∥∥. �3.42�

    Substituting �3.42� into �3.33�we have

    ∥∥xn�1 − p∥∥2 ≤ αn

    ∥∥γf�Wnxn� − Bp∥∥2 �

    ∥∥xn − p∥∥2 − ∥∥yn − ρn

    ∥∥2

    � 2rn∥∥yn − ρn

    ∥∥∥∥Ayn −Ap∥∥ � 2αn

    ∥∥ρn − p∥∥∥∥γf�Wnxn� − Bp

    ∥∥,�3.43�

  • Abstract and Applied Analysis 17

    which implies that

    ∥∥yn − ρn

    ∥∥2 ≤ αn

    ∥∥γf�Wnxn� − Bp

    ∥∥2 �

    ∥∥xn − p

    ∥∥2 − ∥∥xn�1 − p

    ∥∥2

    � 2rn∥∥yn − ρn

    ∥∥∥∥Ayn −Ap

    ∥∥ � 2αn

    ∥∥ρn − p

    ∥∥∥∥γf�Wnxn� − Bp

    ∥∥

    ≤ αn∥∥γf�Wnxn� − Bp

    ∥∥2 �

    (∥∥xn − p∥∥ �

    ∥∥xn�1 − p

    ∥∥)‖xn�1 − xn‖

    � 2rn∥∥yn − ρn

    ∥∥∥∥Ayn −Ap

    ∥∥ � 2αn

    ∥∥ρn − p

    ∥∥∥∥γf�Wnxn� − Bp

    ∥∥.

    �3.44�

    It follows from �C1�, ‖xn�1 − xn‖ → 0, and ‖Ayn −Ap‖ → 0 that limn→∞‖yn − ρn‖ � 0.For p ∈ Ω,we have

    ∥∥yn − p∥∥2

    �∥∥PC�I − snA�un − PC�I − snA�p

    ∥∥2

    ≤ 〈PC�I − snA�un − PC�I − snA�p, �I − snA�un − �I − snA�p〉� 〈yn − p, �I − snA�un − �I − snA�p〉

    �12

    (∥∥yn − p∥∥2 �

    ∥∥�I − snA�un − �I − snA�p∥∥2 − ∥∥(yn − p

    ) − [un − p − sn(Aun −Ap

    )]∥∥2)

    ≤ 12

    (∥∥yn − p∥∥2 �

    ∥∥un − p∥∥2 − ∥∥yn − p −

    [un − p − sn

    (Aun −Ap

    )]∥∥2)

    �12

    (∥∥yn − p∥∥2 �

    ∥∥un − p∥∥2 − ∥∥yn − un

    ∥∥2 � 2sn〈yn − un,Aun −Ap

    〉 − s2n∥∥Aun −Ap

    ∥∥2).

    �3.45�

    This implies that

    ∥∥yn − p∥∥2 ≤ ∥∥un − p

    ∥∥2 − ∥∥yn − un∥∥2 � 2sn〈yn − un,Aun −Ap〉 − s2n

    ∥∥Aun −Ap∥∥2

    ≤ ∥∥un − p∥∥2 − ∥∥yn − un

    ∥∥2 � 2sn∥∥yn − un

    ∥∥∥∥Aun −Ap∥∥.

    �3.46�

    By �3.46�, �3.37�, and �3.5�, we obtain

    ∥∥xn�1 − p∥∥2 ≤ αn

    ∥∥γf�Wnxn� − Bp∥∥2 �

    ∥∥un − p∥∥2 − ∥∥yn − un

    ∥∥2 � 2sn∥∥yn − un

    ∥∥∥∥Aun −Ap∥∥

    � 2αn∥∥ρn − p

    ∥∥∥∥γf�Wnxn� − Bp∥∥

    ≤ αn∥∥γf�Wnxn� − Bp

    ∥∥2 �∥∥xn − p

    ∥∥2 − ∥∥yn − un∥∥2

    � 2sn∥∥yn − un

    ∥∥∥∥Aun −Ap∥∥ � 2αn

    ∥∥ρn − p∥∥∥∥γf�Wnxn� − Bp

    ∥∥.�3.47�

  • 18 Abstract and Applied Analysis

    It follows that

    ∥∥yn − un

    ∥∥2 ≤ αn

    ∥∥γf�Wnxn� − Bp

    ∥∥2 �

    ∥∥xn − p

    ∥∥2 − ∥∥xn�1 − p

    ∥∥2 � 2sn

    ∥∥yn − un

    ∥∥∥∥Aun −Ap

    ∥∥

    � 2αn∥∥ρn − p

    ∥∥∥∥γf�Wnxn� − Bp

    ∥∥

    ≤ αn∥∥γf�Wnxn� − Bp

    ∥∥2 �

    (∥∥xn − p∥∥ �

    ∥∥xn�1 − p

    ∥∥)�‖xn − xn�1‖�

    � 2sn∥∥yn − un

    ∥∥∥∥Aun −Ap

    ∥∥ � 2αn

    ∥∥ρn − p

    ∥∥∥∥γf�Wnxn� − Bp

    ∥∥.

    �3.48�

    It follows from �C1�, ‖Aun − Ap‖ → 0, and ‖xn�1 − xn‖ → 0 that ‖yn − un‖ → 0. Itfollows from ‖ρn − un‖ ≤ ‖ρn − yn‖ � ‖yn − un‖ that limn→∞‖un − ρn‖ � 0.

    We now show that

    limn→∞

    ∥∥∥Θkβnxn −Θk−1βn

    xn∥∥∥ � 0, k � 1, 2, . . . , m. �3.49�

    Indeed, let p ∈ Ω, it follows from the firmly nonexpansiveness of TFkβn , we have for eachk ∈ {1, 2, . . . , m},

    ∥∥∥Θkβnxn − p∥∥∥2�∥∥∥TFkβn Θ

    k−1βn

    xn − TFkβn p∥∥∥2 ≤ 〈Θkβnxn − p,Θ

    k−1βn

    xn − p〉

    �12

    (∥∥∥Θkβnxn − p∥∥∥2�∥∥∥Θk−1βn xn − p

    ∥∥∥2 −∥∥∥Θkβnxn −Θ

    k−1βn

    xn∥∥∥2).

    �3.50�

    Thus, we get

    ∥∥∥Θkβnxn − p∥∥∥2 ≤

    ∥∥∥Θk−1βn xn − p∥∥∥2 −∥∥∥Θkβnxn −Θ

    k−1βn

    xn∥∥∥2, k � 1, 2, . . . , m. �3.51�

    This implies that for each k ∈ {1, 2, . . . , m},

    ∥∥∥Θkβnxn − p∥∥∥2 ≤

    ∥∥∥Θ0βnxn − p∥∥∥2 −∥∥∥Θkβnxn −Θ

    k−1βn

    xn∥∥∥2

    −∥∥∥Θk−1βn xn −Θ

    k−2βn

    xn∥∥∥2 − · · · −

    ∥∥∥Θ2βnxn −Θ1βnxn∥∥∥2 −∥∥∥Θ1βnxn −Θ

    0βnxn∥∥∥2.

    �3.52�

    It follows from un � Θmβnxn that for each k � 1, 2, . . . , m

    ∥∥un − p∥∥2 ≤ ∥∥xn − p

    ∥∥2 −∥∥∥Θkβnxn −Θ

    k−1βn

    xn∥∥∥2. �3.53�

  • Abstract and Applied Analysis 19

    By �3.37�, �3.6�, and �3.53�, we have that for each k � 1, 2, . . . , m

    ∥∥xn�1 − p

    ∥∥2 ≤ αn

    ∥∥γf�Wnxn� − Bp

    ∥∥2 �

    ∥∥un − p

    ∥∥2 � 2αn

    ∥∥ρn − p

    ∥∥∥∥γf�Wnxn� − Bp

    ∥∥

    ≤ αn∥∥γf�Wnxn� − Bp

    ∥∥2 �

    ∥∥xn − p

    ∥∥2 −

    ∥∥∥Θkβnxn −Θ

    k−1βn

    xn∥∥∥2

    � 2αn∥∥ρn − p

    ∥∥∥∥γf�Wnxn� − Bp

    ∥∥.

    �3.54�

    Thus, we have that for each k � 1, 2, . . . , m

    ∥∥∥Θkβnxn −Θ

    k−1βn

    xn∥∥∥2 ≤ αn

    ∥∥γf�Wnxn� − Bp

    ∥∥2 �

    ∥∥xn − p

    ∥∥2 − ∥∥xn�1 − p

    ∥∥2

    � 2αn∥∥ρn − p

    ∥∥∥∥γf�Wnxn� − Bp

    ∥∥

    ≤ αn∥∥γf�Wnxn� − Bp

    ∥∥2 �(∥∥xn − p

    ∥∥ �∥∥xn�1 − p

    ∥∥)‖xn − xn�1‖� 2αn

    ∥∥ρn − p∥∥∥∥γf�Wnxn� − Bp

    ∥∥.

    �3.55�

    It follows from �C1� and ‖xn�1 − xn‖ → 0 that for each k � 1, 2, . . . , m

    ∥∥∥Θkβnxn −Θk−1βn

    xn∥∥∥ −→ 0. �3.56�

    Since

    ∥∥Wnρn − ρn∥∥ ≤ ∥∥Wnρn − xn�1

    ∥∥ � ‖xn�1 − xn‖ �∥∥∥xn −Θ1βnxn

    ∥∥∥ �∥∥∥Θ1βnxn −Θ

    2βnxn∥∥∥

    � · · · �∥∥∥Θm−1βn xn −Θ

    mβnxn∥∥∥ �

    ∥∥un − yn∥∥ �

    ∥∥yn − ρn∥∥.

    �3.57�

    It follows from �3.56� that

    limn→∞

    ∥∥Wnρn − ρn∥∥ � 0. �3.58�

    Observe that

    ∥∥Wρn − ρn∥∥ ≤ ∥∥Wρn −Wnρn

    ∥∥ �∥∥Wnρn − ρn

    ∥∥. �3.59�

    It follows from Remark 2.7 that

    limn→∞

    ∥∥Wρn − ρn∥∥ � 0. �3.60�

  • 20 Abstract and Applied Analysis

    We show that PΩ�γf � �I − B�� is a contraction. Indeed, for all x, y ∈ H, we have∥∥PΩ

    (γf � �I − B�)�x� − PΩ

    (γf � �I − B�)(y)∥∥

    ≤ ∥∥(γf � �I − B�)�x� − (γf � �I − B�)(y)∥∥

    ≤ γ∥∥f�x� − f(y)∥∥ � ‖I − B‖∥∥x − y∥∥

    ≤ γα∥∥x − y∥∥ � (1 − γ̃)∥∥x − y∥∥

    �(γα � 1 − γ̃)∥∥x − y∥∥.

    �3.61�

    The Banach’s Contraction Mapping Principle guarantees that PΩ�γf � �I − B�� has aunique fixed point, say q ∈ H. That is, q � PΩ�γf � �I − B���q�.

    Next, we show that

    lim supn→∞

    〈γf(q) − Bq, xn − q〉 ≤ 0. �3.62�

    To show that, we choose a subsequence {xni} of xn such that

    lim supn→∞

    〈γf(q) − Bq, xn − q

    〉� lim

    i→∞〈γf(q) − Bq, xni − q

    〉. �3.63�

    As {xni} is bounded, we know that there is a subsequence {xnij } of {xni} whichconverges weakly to p. We may assume, without loss of generality, that xni ⇀ p. From‖Θkβnxn −Θ

    k−1βn

    xn‖ → 0 for each k � 1, 2, . . . , m, we obtain that Θkβni xni ⇀ p for k � 1, 2, . . . , m.From ‖un −ρn‖ → 0, we also obtain that ρni ⇀ p. Since {uni} ⊂ C and C is closed and convex,we obtain p ∈ C.

    Now we show that p ∈ Ω. Indeed, let us first show that p ∈ VI�C,A�. Put

    Tw1 �

    ⎧⎨

    Aw1 �NCw1 if w1 ∈ C,∅ if w1 /∈C.

    �3.64�

    Since A is relaxed �u, v�-cocoercive, we have

    〈Ax −Ay, x − y〉 ≥ �−u�∥∥Ax −Ay∥∥2 � v∥∥x − y∥∥2 ≥

    (v − uμ2

    )∥∥x − y∥∥2 ≥ 0, �3.65�

    which yields that A is monotone. Thus T is maximal monotone. Let �w1, w2� ∈ G�T�. Sincew2 −Aw1 ∈ NCw1 and ρn ∈ C, we have

    〈w1 − ρn,w2 −Aw1

    〉 ≥ 0. �3.66�

    On the other hand, from ρn � PC�I − rnA�yn, we have〈w1 − ρn, ρn − �I − rnA�yn

    〉 ≥ 0 �3.67�

  • Abstract and Applied Analysis 21

    and hence

    〈w1 − ρn,

    ρn − ynrn

    �Ayn〉

    ≥ 0. �3.68�

    It follows that

    〈w1 − ρni ,w2〉 ≥ 〈w1 − ρni , Aw1〉

    ≥ 〈w1 − ρni , Aw1〉 −〈w1 − ρni ,

    ρni − ynirni

    �Ayni

    ≥〈w1 − ρni , Aw1 −

    ρni − ynirni

    −Ayni〉

    �〈w1 − ρni , Aw1 −Aρni

    〉�〈w1 − ρni , Aρni −Ayni

    −〈w1 − ρni ,

    ρni − ynirni

    ≥ 〈w1 − ρni , Aρni −Ayni〉 −

    〈w1 − ρni ,

    ρni − ynirni

    〉,

    �3.69�

    which implies that 〈w1 − p,w2〉 ≥ 0. We have p ∈ T−10 and hence p ∈ VI�C,A�.We next show that p ∈ ⋂mk�1 EP�Fk�. Indeed, by Lemma 2.1, we have that for each

    k � 1, 2, . . . , m,

    Fk(Θkβnxn, y

    )�

    1βn

    〈y −Θkβnxn,Θ

    kβnxn −Θk−1βn xn

    〉≥ 0, ∀y ∈ C �3.70�

    .It follows from �A2� that

    1βn

    〈y −Θkβnxn,Θ

    kβnxn −Θk−1βn xn

    〉≥ Fk

    (y,Θkβnxn

    ), ∀y ∈ C. �3.71�

    Hence,

    y −Θkβni xni ,Θk

    βnixni −Θk−1βni xni

    βni

    ≥ Fk(y,Θkβni xni

    ), ∀y ∈ C. �3.72�

    It follows from �A4�, �A5�, �Θkβnixni −Θk−1βni xni�/βni → 0, and Θ

    kβnixni ⇀ p that for each

    k � 1, 2, . . . , m,

    Fk(y, p

    ) ≤ 0, ∀y ∈ C. �3.73�

  • 22 Abstract and Applied Analysis

    For t with 0 < t ≤ 1 and y ∈ C, let yt � ty � �1 − t�p. Since y ∈ C and p ∈ C, we obtainyt ∈ C and hence Fk�yt, p� ≤ 0. So by �A4�, we have

    0 � Fk(yt, yt

    ) ≤ tFk(yt, y

    )� �1 − t�Fk

    (yt, p

    ) ≤ tFk(yt, y

    ). �3.74�

    Dividing by t, we get that for each k � 1, 2, . . . , m,

    Fk(yt, y

    ) ≥ 0. �3.75�

    Letting t → 0, it follows from �A3� that for each k � 1, 2, . . . , m,

    Fk(p, y

    ) ≥ 0 �3.76�

    for all y ∈ C and hence p ∈ EP�Fk� for k � 1, 2, . . . , m. That is, p ∈⋂m

    k�1 EP�Fk�.We now show that p ∈ Fix�W�. Assume that p /∈ Fix�W�. Since ρni ⇀ p and p /�Wp,

    from �3.60� and the Opial condition we have

    lim infi→∞

    ∥∥ρni − p∥∥ < lim inf

    i→∞

    ∥∥ρni −Wp∥∥

    ≤ lim infi→∞

    {∥∥ρni −Wρni∥∥ �

    ∥∥Wρni −Wp∥∥}

    ≤ lim infi→∞

    ∥∥ρni − p∥∥,

    �3.77�

    which is a contradiction. So, we get p ∈ Fix�W� � ⋂∞i�1 Fix�Si�. This implies that p ∈ Ω.Since q � PΩ�γf � �I − B���q�,we have

    lim supn→∞

    〈γf(q) − Bq, xn − q〉 � limi→∞

    〈γf(q) − Bq, xni − q〉

    � 〈γf(q) − Bq, p − q〉 ≤ 0.�3.78�

    That is, �3.62� holds. Next, we consider

    ∥∥xn�1 − q∥∥2 �

    ∥∥αn�γf�Wnxn� − Bq� � �I − αnB�(Wnρn − q

    )∥∥2

    ≤ (1 − αnγ̃)2∥∥Wnρn − q

    ∥∥2 � 2αn〈γf�Wnxn� − Bq, xn�1 − q

    ≤ (1 − αnγ̃)2∥∥xn − q

    ∥∥2 � 2αnγ〈f�Wnxn� − f

    (q), xn�1 − q

    � 2αn〈γf(q) − Bq, xn�1 − q

    ≤ (1 − αnγ̃)2∥∥xn − q

    ∥∥2 � αnγα(∥∥xn − q

    ∥∥2 �∥∥xn�1 − q

    ∥∥2)

    � 2αn〈γf(q) − Bq, xn�1 − q

    �3.79�

  • Abstract and Applied Analysis 23

    So, we can obtain

    ∥∥xn�1 − q

    ∥∥2 ≤

    (1 − αnγ̃

    )2 � αnγα1 − αnγα

    ∥∥xn − q

    ∥∥2 �

    2αn1 − αnγα

    〈γf(q) − Bq, xn�1 − q

    �1 − 2αnγ̃ � αnγα

    1 − αnγα∥∥xn − q

    ∥∥2 �

    α2nγ̃2

    1 − αnγα∥∥xn − q

    ∥∥2

    �2αn

    1 − αnγα〈γf(q) − Bq, xn�1 − q

    ≤[

    1 − 2αn(γ̃ − αγ)

    1 − αnγα

    ]∥∥xn − q

    ∥∥2

    �2αn

    (γ̃ − αγ)

    1 − αnγα

    [1

    γ̃ − αγ〈γf(q) − Bq, xn�1 − q

    〉�

    αnγ̃2

    2(γ̃ − αγ)M

    ]

    ,

    �3.80�

    where M is an approximate constant such that M ≥ supn≥1{‖xn − q‖2}}.Put ln � 2αn�γ̃ −αγ�/�1−αnγα� and tn � �1/�γ̃ −αγ��〈γf�q�−Bq, xn�1−q〉��αnγ̃2/2�γ̃ −

    αγ��M. That is,

    ∥∥xn�1 − q∥∥2 ≤ �1 − ln�

    ∥∥xn − q∥∥ � lntn. �3.81�

    From condition �C1� and Lemma 2.2, we concluded that xn → q ∈ Ω. It is easy to see thatun → q and yn → q. This completes the proof.

    Corollary 3.2. Let C be a nonempty, closed and convex subset of H. Let F be a bifunction fromC × C to R satisfies conditions (A1)–(A5). Let A : C → H be relaxed �u, v�-cocoercive and μ-Lipschitz continuous and B a strongly positive linear bounded operator on H with coefficient γ̃ > 0.Assume that 0 < γ < γ̃/α. Let S1, S2, . . . be a family of infinitely nonexpansive mappings of Cinto itself such that Γ �

    ⋂∞i�1 Fix�Si� ∩ VI�C,A� ∩ EP�F�/� ∅, let ξ1, ξ2, . . . be real numbers such that

    0 < ξi ≤ δ < 1 for every i ∈ N andWn be theW-mapping ofC into itself generated by Sn, Sn−1, . . . , S1and ξn, ξn−1, . . . , ξ1. Let f : C → C be a contraction with coefficient α �0 < α < 1� and {xn}, {un}and {yn} be sequences generated by

    x1 � x ∈ H,

    F(un, y

    )�

    1βn

    〈y − un, un − xn〉 ≥ 0, ∀y ∈ C,

    yn � PC�I − snA�un,

    xn�1 � αnγf�Wnxn� � �I − αnB�WnPC�I − rnA�yn

    �3.82�

  • 24 Abstract and Applied Analysis

    for every n � 1, 2, . . ., where {αn}, {βn}, {rn} and {sn} are sequences of numbers satisfying theconditions:

    �C1� {αn} ⊂ �0, 1� with limn→∞αn � 0,∑∞

    n�1 αn � ∞, and∑∞

    n�1 |αn�1 − αn| < ∞;�C2� {rn} ⊂ �a, b� and {sn} ⊂ �a, b� for some a, bwith 0 ≤ a ≤ b ≤ 2�υ−uμ2�/μ2,

    ∑∞n�1 |rn�1−

    rn| < ∞, and∑∞

    n�1 |sn�1 − sn| < ∞;�C3� lim infn→∞βn > 0 and

    ∑∞n�1 |βn�1 − βn| < ∞.

    Then, {xn} and {yn} converge strongly to q ∈ Γ, which solves the following variationalinequality:

    〈γfq − Bq, p − q〉 ≤ 0, ∀p ∈ Γ. �3.83�

    Proof. Let m � 1, by Theorem 3.1, we obtain the desired result.

    Corollary 3.3. Let C be a nonempty, closed, and convex subset of H. Let A : C → H be relaxed�u, v�-cocoercive and μ-Lipschitz continuous and let B be a strongly positive linear bounded operatoron H with coefficient γ̃ > 0. Assume that 0 < γ < γ̃/α. Let S1, S2, . . . be a family of infinitelynonexpansive mappings of C into itself such that Δ �

    ⋂∞i�1 Fix�Si� ∩ VI�C,A�/� ∅, let ξ1, ξ2, . . . be

    real numbers such that 0 < ξi ≤ δ < 1 for every i ∈ N, and let Wn be the W-mapping of C into itselfgenerated by Sn, Sn−1, . . . , S1 and ξn, ξn−1, . . . , ξ1. Let f : C → C be a contraction with coefficientα �0 < α < 1� and {xn}, {un}, and {yn} be sequences generated by

    x1 � x ∈ C,yn � PC�I − snA�xn,

    xn�1 � αnγf�Wnxn� � �I − αnB�WnPC�I − rnA�yn

    �3.84�

    for every n � 1, 2, . . ., where {αn}, {βn}, {rn}, and {sn} are sequences of numbers satisfying theconditions:

    �C1� {αn} ⊂ �0, 1� with limn→∞αn � 0,∑∞

    n�1 αn � ∞, and∑∞

    n�1 |αn�1 − αn| < ∞;�C2� {rn} ⊂ �a, b� and {sn} ⊂ �a, b� for some a, b with 0 ≤ a ≤ b ≤ 2�υ−uμ2�/μ2,

    ∑∞n�1 |rn�1−

    rn| < ∞ and∑∞

    n�1 |sn�1 − sn| < ∞.

    Then, {xn} and {yn} converge strongly to q ∈ Δ, which solves the following variationalinequality:

    〈γfq − Bq, p − q〉 ≤ 0, ∀p ∈ Δ. �3.85�

    Proof. Let F�x, y� � 0 for x, y ∈ C, by Corollary 3.2 we obtain the desired result.

    Corollary 3.4. Let C be a nonempty, closed and convex subset ofH. Let F1, F2, . . . , Fm be bifunctionsfrom C × C to R satisfies conditions (A1)–(A5). Let A : C → H be relaxed �u, v�-cocoercive andμ-Lipschitz continuous and B a strongly positive linear bounded operator onH with coefficient γ̃ > 0

  • Abstract and Applied Analysis 25

    such that Ξ �⋂m

    k�1 EP�Fk� ∩ VI�C,A�/� ∅. Let f : C → C be a contraction with coefficient α �0 <α < 1� and {xn}, {un} and {yn} be sequences generated by

    x1 � x ∈ H,

    un � TFmβn

    TFm−1βn

    · · · TF2βnTF1βnxn,

    yn � PC�I − snA�un,xn�1 � αnγf�xn� � �I − αnB�PC�I − rnA�yn

    �3.86�

    for every n � 1, 2, . . . , where {αn}, {βn}, {rn} and {sn} are sequences of numbers satisfying theconditions:

    �C1� {αn} ⊂ �0, 1� with limn→∞αn � 0,∑∞

    n�1 αn � ∞, and∑∞

    n�1 |αn�1 − αn| < ∞;�C2� {rn} ⊂ �a, b� and {sn} ⊂ �a, b� for some a, b with 0 ≤ a ≤ b ≤ 2�υ−uμ2�/μ2,

    ∑∞n�1 |rn�1−

    rn| < ∞, and∑∞

    n�1 |sn�1 − sn| < ∞;�C3� lim infn→∞βn > 0 and

    ∑∞n�1 |βn�1 − βn| < ∞.

    Then, {xn}, {yn} and {un} converge strongly to q ∈ Ω, which solves the following variationalinequality:

    〈γfq − Bq, p − q〉 ≤ 0, ∀p ∈ Ξ. �3.87�

    Remark 3.5. �i� If sn � 0 for all n ≥ 0, by Corollary 3.2, we get Theorem 2.1 in �9�. If sn � 0 andSi � I for all n ≥ 0, by Corollary 3.2, we get Theorem 2.1 in �8�with S � I. If sn � 0, rn � 0 andSi � I for all n ≥ 0, by Corollary 3.2, we get Theorem 3.1 in �6�with S � I and Theorem 3.3 in�7� with S � I and C � H.

    �ii� Corollary 3.3 extends, generalizes and improves the main results in �21, 22, 24�.�iii� It is easy to see that Theorem 3.1 is different from the main results in �1–4�.

    Acknowledgments

    The authors are grateful to the referee and Proffessor S. Reich for the detailed commentsand helpful suggestions which improved the original manuscript greatly. This research wassupported by the National Center of Theoretical Sciences �South� of Taiwan, the NationalNatural Science Foundation of China �Grants 10771228 and 10831009�, the Natural ScienceFoundation of Chongqing �Grant no. CSTC, 2009BB8240�, the Research Project of ChongqingNormal University �Grant 08XLZ05�, and the project of the Grant NSC 98-2115-M-110-001.

    References

    �1� P. L. Combettes and S. A. Hirstoaga, “Equilibrium programming in Hilbert spaces,” Journal ofNonlinear and Convex Analysis, vol. 6, pp. 117–136, 2005.

    �2� J.-W. Peng and J.-C. Yao, “A viscosity approximation scheme for system of equilibrium problems,nonexpansive mappings and monotone mappings,” Nonlinear Analysis: Theory, Methods & Applica-tions, vol. 71, no. 12, pp. 6001–6010, 2009.

  • 26 Abstract and Applied Analysis

    �3� V. Colao, G. L. Acedo, and G. Marino, “An implicit method for finding common solutions ofvariational inequalities and systems of equilibrium problems and fixed points of infinite family ofnonexpansivemappings,”Nonlinear Analysis: Theory, Methods & Applications, vol. 71, no. 7-8, pp. 2708–2715, 2009.

    �4� S. Saeidi, “Iterative algorithms for finding common solutions of variational inequalities and systemsof equilibrium problems and fixed points of families and semigroups of nonexpansive mappings,”Nonlinear Analysis: Theory, Methods & Applications, vol. 70, no. 12, pp. 4195–4208, 2009.

    �5� S. Takahashi and W. Takahashi, “Viscosity approximation methods for equilibrium problems andfixed point problems in Hilbert spaces,” Journal of Mathematical Analysis and Applications, vol. 331, no.1, pp. 506–515, 2007.

    �6� M. Shang, Y. Su, and X. Qin, “A general iterative method for equilibrium problems and fixed pointproblems in Hilbert spaces,” Fixed Point Theory and Applications, vol. 2007, Article ID 95412, 9 pages,2007.

    �7� S. Plubtieng and R. Punpaeng, “A general iterative method for equilibrium problems and fixed pointproblems in Hilbert spaces,” Journal of Mathematical Analysis and Applications, vol. 336, no. 1, pp. 455–469, 2007.

    �8� X. Qin, M. Shang, and Y. Su, “A general iterative method for equilibrium problems and fixed pointproblems in Hilbert spaces,” Nonlinear Analysis: Theory, Methods & Applications, vol. 69, no. 11, pp.3897–3909, 2008.

    �9� X. Qin, M. Shang, and Y. Su, “Strong convergence of a general iterative algorithm for equilibriumproblems and variational inequality problems,”Mathematical and Computer Modelling, vol. 48, no. 7-8,pp. 1033–1046, 2008.

    �10� E. Blum and W. Oettli, “From optimization and variational inequalities to equilibrium problems,”Mathematics Students, vol. 63, pp. 123–145, 1994.

    �11� A. Tada andW. Takahashi, “Weak and strong convergence theorems for a nonexpansive mapping andan equilibrium problem,” Journal of Optimization Theory and Applications, vol. 133, no. 3, pp. 359–370,2007.

    �12� S. Plubtieng and R. Punpaeng, “A new iterative method for equilibrium problems and fixedpoint problems of nonexpansive mappings and monotone mappings,” Applied Mathematics andComputation, vol. 197, no. 2, pp. 548–558, 2008.

    �13� V. Colao, G. Marino, andH.-K. Xu, “An iterative method for finding common solutions of equilibriumand fixed point problems,” Journal of Mathematical Analysis and Applications, vol. 344, no. 1, pp. 340–352, 2008.

    �14� J.-W. Peng and J.-C. Yao, “A new hybrid-extragradient method for generalized mixed equilibriumproblems, fixed point problems and variational inequality problems,” Taiwanese Journal of Mathemat-ics, vol. 12, no. 6, pp. 1401–1432, 2008.

    �15� J.-W. Peng and J.-C. Yao, “Ishikawa iterative algorithms for a generalized equilibrium problem andfixed point problems of a pseudo-contraction mapping,” Journal of Global Optimization, vol. 46, no. 3,pp. 331–345, 2010.

    �16� J.-W. Peng and J.-C. Yao, “A modified CQ method for equilibrium problems, fixed points andvariational inequality,” Fixed Point Theory, vol. 9, no. 2, pp. 515–531, 2008.

    �17� S.-S. Chang, H. W. Joseph Lee, and C. K. Chan, “A new method for solving equilibrium problemfixed point problem and variational inequality problem with application to optimization,” NonlinearAnalysis: Theory, Methods & Applications, vol. 70, no. 9, pp. 3307–3319, 2009.

    �18� L.-C. Ceng, S. Al-Homidan, Q. H. Ansari, and J.-C. Yao, “An iterative scheme for equilibriumproblems and fixed point problems of strict pseudo-contraction mappings,” Journal of Computationaland Applied Mathematics, vol. 223, no. 2, pp. 967–974, 2009.

    �19� A. N. Iusem and W. Sosa, “Iterative algorithms for equilibrium problems,” Optimization, vol. 52, no.3, pp. 301–316, 2003.

    �20� T. T. V. Nguyen, J. J. Strodiot, and V. H. Nguyen, “A bundle method for solving equilibriumproblems,”Mathematical Programming, vol. 116, no. 1-2, pp. 529–552, 2009.

    �21� H. K. Xu, “An iterative approach to quadratic optimization,” Journal of Optimization Theory andApplications, vol. 116, no. 3, pp. 659–678, 2003.

    �22� G. Marino and H.-K. Xu, “A general iterative method for nonexpansive mappings in Hilbert spaces,”Journal of Mathematical Analysis and Applications, vol. 318, no. 1, pp. 43–52, 2006.

    �23� A. Moudafi, “Viscosity approximation methods for fixed-points problems,” Journal of MathematicalAnalysis and Applications, vol. 241, no. 1, pp. 46–55, 2000.

  • Abstract and Applied Analysis 27

    �24� X. Qin, M. Shang, and H. Zhou, “Strong convergence of a general iterative method for variationalinequality problems and fixed point problems in Hilbert spaces,” Applied Mathematics andComputation, vol. 200, no. 1, pp. 242–253, 2008.

    �25� Z. Opial, “Weak convergence of the sequence of successive approximation for nonexpansivemappings,” Bulletin of the American Mathematical Society, vol. 73, pp. 561–597, 1967.

    �26� R. T. Rockafellar, “On the maximality of sums of nonlinear monotone operators,” Transactions of theAmerican Mathematical Society, vol. 149, pp. 75–88, 1970.

    �27� H.-K. Xu, “Iterative algorithms for nonlinear operators,” Journal of the London Mathematical Society,vol. 66, no. 1, pp. 240–256, 2002.

    �28� W. Takahashi and K. Shimoji, “Convergence theorems for nonexpansive mappings and feasibilityproblems,”Mathematical and Computer Modelling, vol. 32, no. 11-13, pp. 1463–1471, 2000.

    �29� K. Shimoji and W. Takahashi, “Strong convergence to common fixed points of infinite nonexpansivemappings and applications,” Taiwanese Journal of Mathematics, vol. 5, no. 2, pp. 387–404, 2001.

  • Submit your manuscripts athttp://www.hindawi.com

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    MathematicsJournal of

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    Mathematical Problems in Engineering

    Hindawi Publishing Corporationhttp://www.hindawi.com

    Differential EquationsInternational Journal of

    Volume 2014

    Applied MathematicsJournal of

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    Probability and StatisticsHindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    Journal of

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    Mathematical PhysicsAdvances in

    Complex AnalysisJournal of

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    OptimizationJournal of

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    CombinatoricsHindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    International Journal of

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    Operations ResearchAdvances in

    Journal of

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    Function Spaces

    Abstract and Applied AnalysisHindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    International Journal of Mathematics and Mathematical Sciences

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    The Scientific World JournalHindawi Publishing Corporation http://www.hindawi.com Volume 2014

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    Algebra

    Discrete Dynamics in Nature and Society

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    Decision SciencesAdvances in

    Discrete MathematicsJournal of

    Hindawi Publishing Corporationhttp://www.hindawi.com

    Volume 2014 Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    Stochastic AnalysisInternational Journal of