him l. - authors.library.caltech.edu · choices on scramjet dynamic performance in the context of...

101
1 A PROCEDURE FOR PREDICTING FUEL SPECIFIC IMPULSE OF SUPERSONIC COMBUSTION RAMJET ENGINES t by S.Serdengecti* California Institute of Technology May 1991 ACKNOWLEDGMENTS The author is indebted to Professor Emeritus Frank E. Marble who generously created the stimulating environment for the existence of this work. Numerous enlightening discussions with him and with Professors Edward E. Zukoski and Jack L. Kerrebrock** are gratefully acknowledged. INTRODUCTION section of this report is written by Professor Jack L. Kerrebrock. ABSTRACT This report presents a procedure in order to portray the effect of design choices on SCRAMJET dynamic performance in the context of real gas effects. Procedure is based on one-dimensional fluid flow analysis. The less quantifiable aspects of boundary layer transition, mixing, and non-uniform nozzle flow are included in approximate parametric fashion by allowing for parallel flow paths through the engine and nozzle, with possibility of thermal energy exchange between various flow streams. The effect of finite recombination rates in the nozzle is included by allowing for freezing of the chemical composition at any specified static pressure in the nozzle. Exploratory results from the digital implementation of this procedure in FORTRAN language are also included. t ** This work, in part, was financially support by Daniel and Florence Guggenheim Jet Propulsion Center, California Institute of Technology, Pasadena, CA. Visiting Professor of Jet Propulsion, June 1987 - August 1988 and July 1990 - August 1990. Presently Professor of Engineering, Harvey Mudd College. Sherman Fairchild Distinguished Scholar, 1990. Presently R. C. Maclaurin Professor of Aeronautics and Astronautics, Massachusetts Institute of Technology

Upload: others

Post on 14-Jun-2020

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: him L. - authors.library.caltech.edu · choices on SCRAMJET dynamic performance in the context of real gas effects. Procedure is based on one-dimensional fluid flow analysis. The

1

A PROCEDURE FOR PREDICTING FUEL SPECIFIC IMPULSE OF SUPERSONIC COMBUSTION RAMJET ENGINES t

by S.Serdengecti* California Institute of Technology

May 1991 ACKNOWLEDGMENTS

The author is indebted to Professor Emeritus Frank E. Marble who generously created the stimulating environment for the existence of this work. Numerous enlightening discussions with him and with Professors Edward E. Zukoski and Jack L. Kerrebrock** are gratefully acknowledged.

INTRODUCTION section of this report is written by Professor Jack L. Kerrebrock.

ABSTRACT

This report presents a procedure in order to portray the effect of design choices on SCRAMJET dynamic performance in the context of real gas effects. Procedure is based on one-dimensional fluid flow analysis. The less quantifiable aspects of boundary layer transition, mixing, and non-uniform nozzle flow are included in approximate parametric fashion by allowing for parallel flow paths through the engine and nozzle, with possibility of thermal energy exchange between various flow streams. The effect of finite recombination rates in the nozzle is included by allowing for freezing of the chemical composition at any specified static pressure in the nozzle.

Exploratory results from the digital implementation of this procedure in FORTRAN language are also included.

t

**

This work, in part, was financially support by Daniel and Florence Guggenheim Jet Propulsion Center, California Institute of Technology, Pasadena, CA.

Visiting Professor of Jet Propulsion, June 1987 - August 1988 and July 1990 - August 1990. Presently Professor of Engineering, Harvey Mudd College.

Sherman Fairchild Distinguished Scholar, 1990. Presently R. C. Maclaurin Professor of Aeronautics and Astronautics, Massachusetts Institute of Technology

Page 2: him L. - authors.library.caltech.edu · choices on SCRAMJET dynamic performance in the context of real gas effects. Procedure is based on one-dimensional fluid flow analysis. The

TABLE OF CONTENTS

ACKNOWLEDGMENTS

ABSTRACT

TABLE OF CONTENTS

LIST OF SYMBOLS

INTRODUCTION

2

AN OVERVIEW OF SCRAMJET PROPULSION SYSTEM

DEFINITIONS AND BASIC RELATIONSHIPS

Various Fuel-Air Ratios

Fuel and Air Mixing Efficiencies

Equivalence Ratio

ThrustofSCRAMJET

Air and Fuel Specific Impulses of SCRAMJET

Complete Enthalpy

Complete Energy

Entropy of Mixture

Ideal Process

Stagnation Temperature and Pressure

Dynamic Pressure

Specific Heat at Constant Pressure

MODELING OF SCRAMJET COMPONENTS

Diffuser

Liquid Fuel Source

Fuel Energy Augmenter

Perfect Mixer

Reactor

Nozzle(s)

£age

1

1

2

5

10

11

13

13

13

14

14

15

15

16

16

17

17

18

18

19

19

20

20

21

21

22

Page 3: him L. - authors.library.caltech.edu · choices on SCRAMJET dynamic performance in the context of real gas effects. Procedure is based on one-dimensional fluid flow analysis. The

3

~

Heat Exchanger at Diffuser Exit 2 4

Heat Exchanger at Reactor Exit 25

AN EXPLORATION OF SCRAM]ET PARAMETER VARIATION EFFECTS 26

Real Gas Effects 2 7

Nozzle Expansion Coefficient, Ce effects 28

Combustor Type Effects 2 8

Heat Exchanger Effects 2 9

Air and Fuel Bypass Effects 2 9

Mixing Inefficiency Effects 2 9

Equivalence Ratio Effects 2 9

Effects of Component Losses 29

PRELIMINARY RESULTS FROM PERFORMANCE PREDICTION MODEL 30

Constant Dynamic Pressure Flight Path Behavior of SCRAMJET 30

A Simulation of Film Cooling Effects 30

Constant Combustor Inlet Mach Number Flight Path Behavior of SCRAMJET 31

Prediction of Dynamic Performance of SCRAM.JET 3 2

CONCLUDING REMARKS 34

REFERENCES 3 S

FIGURES 37

APPENDIX A - ON THE CHEMICAL EQUILIBRIUM MOLE FRACTION DETERMINATION 81

Fuel Dissociation and Recombination 82

Air Dissociation and Recombination 83

Non-Reactive Fuel-Air Mixing 84

Reacting Fuel-Air Mixture Dissociation and Recombination 85

Page 4: him L. - authors.library.caltech.edu · choices on SCRAMJET dynamic performance in the context of real gas effects. Procedure is based on one-dimensional fluid flow analysis. The

4

APPENDIX B - AN IDEAL FUEL-AIR MIXING MODEL AT REACTOR INLET 88

APPENDIX C - ONE DIMENSIONAL FLOW MODEL OF REACTOR 90

APPENDIX D - A GUIDE TO USERS OF SCRAMJET PERFORMANCE ANALYSIS PROGRAM 94

Page 5: him L. - authors.library.caltech.edu · choices on SCRAMJET dynamic performance in the context of real gas effects. Procedure is based on one-dimensional fluid flow analysis. The

s

LIST OF SYMBOL5

Superscripts:

o = quantity at standard pressure of 1 bar

* = free stream quantities

Subscripts for SCRAMIET stations (j):

0 = diffuser inlet

If = fuel source exit

IX = fuel energy augmenter exit ( / x = H in the absence of augmenter)

' = fuel at heat exchanger exit ( I= IX in the absence of heat exchanger)

.tx = diffuser exit

J, = air at heat exchanger exit ( .t=.tX in the absence of heat exchanger)

3 = fuel at mixer inlet or unmixed fuel nozzle inlet or bypass fuel nozzle inlet ( 3 ::r I )

4 = mixer exit or reactor inlet

sx = reactor exit

s = reacting stream nozzle inlet ( s=sx in the absence of heat exchanger)

s 1 = unmixed air stream nozzle inlet ( s' = .t )

s 11 = unmixed fuel stream nozzle inlet ( s 11 = 3 ::: t )

sn' = air bypass stream nozzle inlet ( 5111

= tx ) /'( l'I s = fuel bypass stream nozzle inlet ( s = 3 = t )

6 = reacting stream nozzle exit

,, = unmixed air stream nozzle exit II

6 = unmixed fuel stream nozzle exit IJI

' = air bypass stream nozzle exit

t/"1 = fuel bypass stream nozzle exit

Page 6: him L. - authors.library.caltech.edu · choices on SCRAMJET dynamic performance in the context of real gas effects. Procedure is based on one-dimensional fluid flow analysis. The

6

Symbols:

A 0 = vehicle drag characteristic area

Ai =

Arr 0 =

Qj =

a: =

Co =

Ce =

CF =

CJ =

(e,)i =

rc,Jj =

C1.1 = D<f) =

te =

tm =

/o =

f x =

~ = Ii· = L

[Jcrtl.= J

-

cross-sectional area at station i

vehicle free-stream capture area

speed of sound at station i

speed of sound in free stream

reactor drag coefficient

Pe/ fo,. = nozzle expansion coefficient

thrust coefficient

vehicle skin friction coefficient

constant pressure specific heat at station i

constant pressure molar specific heat of j IA. chemical species

nozzle velocity coefficient (See equation ( 40))

vehicle drag force • I I . I m3 mJ. = effective fuel air mass ratio

mJ ; mJ. = mixer fuel-air mass ratio

m11 1 m, = overall fuel-air mass ratio

heat exchanger fuel-air mass ratio (See equations (47) and (49))

acceleration of gravity

complete enthalpy at station i (See equation (16))

molar enthalpy change of j 1' chemical species from reference temperature, r,, :J91·15 I(, to temperature, T.

[~{T,)]l= molar enthalpy of formation of j. Hz. chemical species at reference a temperature, T,,= J. 91 ·IS/(, and at standard pressure, p0

= 1 bar.

=

=

complete energy per unit mass at station i

air specific impulse

Page 7: him L. - authors.library.caltech.edu · choices on SCRAMJET dynamic performance in the context of real gas effects. Procedure is based on one-dimensional fluid flow analysis. The

( 13Ptuil vlhi =

=

molecular weight at station i

7

fuel specific impulse

..,«,j = molecular weight of j Ii. chemical species

M; = flight Mach number

Mi = Mach number at station i

Jn (i) = mass of vehicle at time, t • m. · = mass flow rate at station i ,, •-tr * * "* m0 = S

0 lfo A, = rate of air mass capture

I I "!t = air mass flow rate entering perfect mixer •I m3 = fuel mass flow rate entering perfect mixer

(nr); = number of moles at station i

Pt = free-stream static pressure

P,· = static pressure at station i

.Pe = nozzle exit static pressure

ft,i = stagnation pressure at station i •

QH = • Q,x =

rate of heat energy input at fuel energy augmenter

rate heat energy input at heat exchanger

~i =

~: = 'It

l?.1, =

z. .!.. s. tJ: J. ' '

= dynamic pressure at station i

free-stream dynamic pressure

free-stream gas constant

= gas constant at station i

~ = universal gas constant

R,e = Reynold's number

s· '

= entropy at station i (See equation (19))

fs(r>l. = molar entropy of j#t chemical species at static temperature, T J and at standard pressure, f'0 = 1 bar.

T = thrust (See equation (13))

* To = free-stream static temperature

Page 8: him L. - authors.library.caltech.edu · choices on SCRAMJET dynamic performance in the context of real gas effects. Procedure is based on one-dimensional fluid flow analysis. The

8

Ti = static temperature at station i

r,. = 291./S K. reference temperature

r;; = stagnation temperature at station i

t = time

* 11, = vehicle flight speed

~· = speed at station i

9j = mole fraction of j ll species

z: = flight altitude

Z(-1) = flight altitude at time, t

0( = o. 2095 = mole fraction of o.t in reference air

~" = yA - I = bypass ratio of unmixed air (an alternative measure for air mixing efficiency, 1A )

~11 = ~" - I = bypass ratio of unmixed fuel (an alternative measure for fuel mixing efficiency, 111 )

~ Q. = air bypass ratio

PR = fuel bypass ratio

1: = free-stream specific heat ratio

'i,: = ( Cp )t' I ( C-1 ),·

t = .Ps IP, =

=

specific heat ratio at station i

nozzle expansion ratio

"It~ = m.1.' I th 1.. = air mixing efficiency

''/, = diffuser kinetic energy efficiency (See equation (27))

rN = ,;,J' I m3 = fuel mixing efficiency

1x =

*"

a measure of effectiveness of heat exchanger (See equations ( 48) and SO))

)'.0 = free-stream absolute viscosity

s: = free-stream density

S. = density at station i "

Page 9: him L. - authors.library.caltech.edu · choices on SCRAMJET dynamic performance in the context of real gas effects. Procedure is based on one-dimensional fluid flow analysis. The

¢ .:. 34 •• t9 J =

9

equivalence ratio (an alternative measure of fuel-air mass ratio, f )

¢e = effective equivalence ratio

¢m = mixer equivalence ratio

¢0 = overall equivalence ratio

Page 10: him L. - authors.library.caltech.edu · choices on SCRAMJET dynamic performance in the context of real gas effects. Procedure is based on one-dimensional fluid flow analysis. The

10

INTRODUCTION

With current interest in the supersonic combustion ramjet engine, stimulated by its central role as the high speed propulsion system in the National Aerospace Plane concept, there is a need for accurate estimation of the performance of such SCRAMJETS. Several factors make such estimates difficult at present. The most fundamental stems from the unique physical characteristics of the supersonic (or hypersonic) flow through the engine. The point of transition of the boundary layer on the inlet ramp is quite uncertain, making the structure of the flow which must be ingested by the engine difficult to predict. Mixing of the hydrogen fuel with the supersonic flow in the combustor section of the engine is a complex process, only partially predictable. The flow of the resultant non-uniform products through the exhaust nozzle is complicated by kinetic effects, as well as by possible thermal or composition stratification. These aspects of the SCRAMJET are all the subject of active research; many of the critical questions will be answered only by flight research. The estimation of SCRAMJET performance is also complicated by the real gas behavior of air and of combustion products at the very high temperatures which arise in the flow. The very concept of the SCRAMJET stems from the need to reduce the temperature in the combustion process so as to reduce the level of dissociation of the combustion products, which has the effect of blocking the conversion of chemical energy to thermal energy, unless there is effective recombination in the nozzle. These effects are quantifiable, but the numerical calculations required are somewhat complex, sufficiently so that there are to the author's knowledge no readily available systematic parametric studies of the SCRAMJEf engine which show the effect of real gas behavior over a wide range of flight Mach number and broad set of design choices.

· The purpose of this work is to provide such a parametric study and capability, showing the effects of real gas behavior. The less quantifiable aspects of boundary layer transition, mixing, and non-uniform nozzle flows will be included in approximate parametric fashion by allowing for parallel flow paths through the engine and nozzle, with the possibility of thermal energy exchange between the various flow streams. The effect of finite recombination rates in the nozzle is included by allowing for freezing of the chemical composition at any specified static pressure in the nozzle.

Since the principal objective is to portray the effect of design choices on SCRAMJET performance in the context of real gas effect, the results will be presented as a set of plots of fuel specific impulse versus flight Mach number, each for a different set of design choices. However, the computer program provides the gas properties throughout the flow path, and these results will be presented when deemed to be especially pertinent.

Page 11: him L. - authors.library.caltech.edu · choices on SCRAMJET dynamic performance in the context of real gas effects. Procedure is based on one-dimensional fluid flow analysis. The

11

Finally, examples of dynamic behavior of a hypothetical vehicle with different design choices will be presented.

AN OVERVIEW OF SCRAMIET PROPUI.SION SYSTEM

A schematic diagram of a SCRAMJET propulsion system is presented in Figure 1. Primarily the propulsion system is visualized as to consist of an air bypass stream, a fuel bypass stream, and a reacting fuel-air stream. In order to model fuel-air mixing imperfections, the reacting fuel-air stream is subdivided into three streams: an unmixed air stream, an unmixed fuel stream, and a perfectly mixed fuel-air stream. In all streams the flow is assumed to be "one dimensional".

In air bypass and unmixed air streams the composition of gas consists of following species: o , ,.., , 110 , /1 Oz , /'lz o , 01. , /l/z. , and Ar • In fuel bypass and unmixed fuel streams the composition of gas consists of following species: Hand Hz. • In reacting fuel-air stream the composition of gas consists of following species: o , /1 , OH , Hz{) , IJ , Nd , llOz. , NOz , NzO , 0.1. , Nz. , Ni, , and Ar • Thus the present propulsion system analysis tries to capture essential characteristics of real gas glow.

Basic components of SCRAMJET propulsion system are a fuel energy augmenter, a diffuser, a combustor, and a set of nozzles. The role of fuel energy augmenter is to control the thermodynamic state of fuel which is introduced into the combustor. For the ease of system modeling the combustor is visualized to consist of a mechanical !nixer followed by a reactor. It is to be noted that not all nozzles depicted in Figure 1 exist physically. At each propulsion system component inlet, the state of gas is considered to be in chemical equilibrium corresponding to its thermodynamic state. The flow through nozzles may correspond to either equilibrium or frozen composition flow. In addition, it is possible to freeze gas composition at a specified location within the nozzle. This location is identified by specifying the static pressure of the gas.

Various propulsion system analysis options are always reduced to equivalently specifying flight altitude, z: and flight Mach number, lt1: which are principal independent variables for a SCRAMJET in steady flight.

* ~ ~ Temperature, To , pressure, /Jo , and density, s0 of the air at specified altitude, Z: are determined via table look up and interpolation procedures from the U.S. Standard Atmosphere Tables, 1976 (Reference [1]). The flight speed, u; of the vehicle then is

( 1)

Page 12: him L. - authors.library.caltech.edu · choices on SCRAMJET dynamic performance in the context of real gas effects. Procedure is based on one-dimensional fluid flow analysis. The

12

* ~ where 0,, is the speed of sound at the altitude, z0 namely

(/: = y 'i,,* < -,;* I (2)

It is anticipated that temperature, To , pressure p0 , and speed, u0 of air entering the diffuser are not the same as the temperature, '10'* , pressure, p0•

of the ambient air at flight altitude, 2t,11 , and the flight speed, u,* • It is

probable that ambient air may interact thermally with hot structure of the SCRAMJIIT and change its thermodynamic state. In this analysis 70 may be specified to be different than r,*' for some flight conditions, on the otherhand it is always assumed that A = Ji" and do = u,* .

The performance of diffuser is characterized by specifying its kinetic energy efficiency, 1D and its exit static pressure, fi indirectly since it is assumed that combustor inlet static pressure and diffuser exit static pressure are always the same. As implied in Figure 1, chemical and thermodynamic states of air in the air bypass stream are identical that of air at diffuser exit.

liquid fuel source is characterized by specifying fuel exit static pressure and speed.

Primary role of fuel energy augmenter is to set fuel thermodynamic state appropriately in order to accomplish efficient mixing with air. Fuel energy augmenter always increases fuel energy and this energy is supplied by the combustor as implied in Figure 1. It is assumed that fuel at augmenter exit is in gaseous phase and its static temperature, static pressul'e and speed are specified.

Hypothetical mixer is lossless and is assumed to mix fuel and air mechanically, that is without chemical reaction. Mixture static temperature and speed are determined with the knowledge of reactor inlet static pressure and by using appropriate momentum and energy equations.

Reactor is characterized by specifying either pressure ratio or cross­sectional area ratio across it and a reactor drag coefficient, G0 to take into account reactor frictional losses. Thermodynamic state of combustion products

· are determined by using appropriate momentum and complete energy equations.

For the sake of simplicity in the performance analysis of SCRAMJIIT, Figure 1 considers a number of nozzles. Clearly, not all of these nozzles exist physically. Each nozzle conserves complete energy of expanding combustion products thus recombination of chemical species are considered whenever flow conditions dictate. Nozzle losses due to viscous effects are accounted by specifying a nozzle velocity coefficient, C11 • Nozzle exhaust pressure, Pe. (where e.

Page 13: him L. - authors.library.caltech.edu · choices on SCRAMJET dynamic performance in the context of real gas effects. Procedure is based on one-dimensional fluid flow analysis. The

13

stands for ' , / , ... , ,'" in Figure 1) is controlled by nozzle expansion coefficient, Ce = Pe./ p,* • For an ideally expanded nozzle, Ce = 1.

It is anticipated that fuel shall be used to cool various SCRAMJET components before it is injected into the combustor. For this reason present analysis introduces a heat exchanger either at diffuser exit (See Figure 2) or at the reactor exit (See Figure 3). It is assumed that there are no pressure or viscous friction losses in heat exchangers and heat exchanging streams are isolated from each other physically.

As mentioned previously, principal independent variables of SCRAM.JET performance analysis are light Mach number, M: and light altitude, z: . Flight• speed, u"• may be used as independent variable instead of flight Mach number, M0 •

Similarly, dynamic pressure, q; =; 1,•M;zf.{' or reactor inlet Mach number, M+ may be used as an independent variable instead of light altitude, Z: .

DEFINITIONS AND BASIC RELATIONSHIPS

Various Fuel-Air ratios: By definition overall fuel-air ratio, fa and mixer fuel-air ratio, !,,, are:

anri. r • • :rm = m.3 / m .t. (3)

Jo and Im are related via bypass ratios, ~~ and ftll. of air and fuel bypass streams; namely,

(4)

Effective fuel-air ratio, ~ of perfectly mixed reacting stream is

,, fe = ~:

01.t (S)

Fuel and Air Mixing Efficiencies: Fuel and air mixing imperfections are characterized by specifying a fuel mixing efficiency, 'H and an air mixing

efficiency, 14 • By definition f JJ mass fraction of fuel mixes perfectly with '.?A mass fraction of air and form perfectly mixed reacting stream. Thus,

Page 14: him L. - authors.library.caltech.edu · choices on SCRAMJET dynamic performance in the context of real gas effects. Procedure is based on one-dimensional fluid flow analysis. The

14

anti. (6)

Alternatively, fuel and air mixing imperfections are characterized by specifying an unmixed fuel bypass ratio, ~" and an unmixed air bypass ratio, 11. . These bypass ratios are related to mixing efficiencies in the following manner:

I /11 = - - I ~N

oni I (3,.=~-1 (7)

It is to be noted that effective fuel-air ratio, fe. is related to mixer fuel-air ratio, f 111

via mixing efficiencies; namely

EQujyalence Ratio:

(8)

An alternative measure for fuel-air ratio, f is equivalence ratio, ¢ which is defined as follows:

f =: ¢ ,;L11,,.

na;,. J.Lair • (9)

where Jh Hz. = 2.015 88 '-! / imDl is the molecular weight of Hz , 1Ab0;r = i g • J6 f.'1-

"-l//Jml, is the molecular weight of air at reference state (at 298.lSK and 1 bar), and fl0;r = f / J.rX.. is the number of k.mbf.& rf. air. Here O< = 0.2095 represents mole fraction of O.e in air at reference state. Needless to say, equation (9) is proper definition of equivalence ratio provided fuel, Hz. , air, and their reaction products are insured to be at reference state. Equivalence ratio, ¢ is simply a measure and actual performance calculations always use fuel-air ratio, J • Thrust of SCRAMIET: By extending conventional ramjet thrust

expression to SCRAMJEf propulsion system depicted in Figure 1, the definition of thrust7' in

this analysis is: JI

• • • ' ' u. '* "" * t. • 'I' ::: m6 ~ + °i-' ~I + ~II ~ u + '1-111 ~ Ill + ~Ii "(,IV - mo ~ +- (fl, -A ) A, + ("' - It ) ~ I +(~n-p,*)A,11 + (~ 111 -h*)A,111 +(~1"-fo,*) At/V (10)

Page 15: him L. - authors.library.caltech.edu · choices on SCRAMJET dynamic performance in the context of real gas effects. Procedure is based on one-dimensional fluid flow analysis. The

15

~y using definitions of mass flow rates, ~ = ~ ~ ~ , ••• and of sound speeds in ideal gases, Di: '{i, ~ / s, ' product terms A,"' , ... are expressed as follows:

(11)

By referring to Figure 1 mass flow rates m, mass flow rate, m: in the following manner:

• , ... , m w are expressed in term of

'

( 12)

' tJnti

When relationships in equations ( 11) and ( 12) are substituted into the equation ( 10), it shall be obtained that ._ t I

.1' =~ 1(1+k)(-~)[1+~-l!. ).-!-iJ-1] +-{!-~) 1(!!L)[t+(1-..!-;)--z. ]- 1] m

0• U: (tft'&) 11

U, \' ~ '6 M, (l+,Si) l II!" fi ~' M6 1

~~ . + ::;:·;·J.·{(-::·) [1 +(1-r,;)f.M:.J} +(I~) {(~")[1+(1- ~.) t ',,,. ]- ']

rfl. o rt ""o ' l" 611

+ foll- t {({),it\ [I+ (1 ti: ) I J 1 ( 1+(3R,) • ". u, .. / -f,, 7;M ~., J ( 13)

~ ' .. Air and Fuel Specific Impulses of SCRAMIET: By definition they are

Air specific impulse (L ." ) - -1: 8r air - m* 0

- T I (-) Fuel specific impulse , ( .L8; )Jut/ ::: --;- = T lsp ''°" m11 J"o

(14)

(15)

As it is seen in equation (15) fuel specific impulse in this study is based on overall fuel consumed by SCRAMJET.

Complete Enthalpy: By definition complete enthalpy of a gas which is a mixture of various chemical species and in chemical equilibrium with static temperature, T and static

pressure, p is

Page 16: him L. - authors.library.caltech.edu · choices on SCRAMJET dynamic performance in the context of real gas effects. Procedure is based on one-dimensional fluid flow analysis. The

16

(16)

where 9j is the mole fraction of j 1'. chemical species in the mixture in che~cal equilibrium at T and f' , (j.;(1;.)lj is the molar enthalpy of formation of Jtlt chemical species at reference teDJperature, r,. =298.15 K.. and at s,tandard pressure, p 0 = 1 bar 7 [Alt (T) 1;. is the molar enthalpy change of / ~ chemical species from reference temperature, r,. to mixture temperature, T and v'k is the molecular weight of the mixture which is

"""=): Z· ~/ . J ' '

( 17)

In equation ( 17) ""'i is the molecular weight of jllc. chemical species. It is to be noted that units of complete enthalpy, IL is energy per unit mass of mixture and equation (16) is structured for utilization of JANAF Thermochemical Tables (reference [2]) directly.

Complete Enen:y: The complete energy per unit mass of a gas mixture in chemical equilibrium at static temperature, T and

static pressure, ~ with speed, IJ is

J2 I Z. H:: H(T,~ 1 tJ) = n(T,p) + T 0 (18)

Entropy of Mixture: Per unit mass basis entropy of a gas mixture in chemical equilibrium at static temperature, T and

static pressure, p is (see for instance reference [3]):

where [s{r)J.i is the molar entropy of jlli. chemical species at static temperature, T and at standard pressure, p0 = 1 bar.

Page 17: him L. - authors.library.caltech.edu · choices on SCRAMJET dynamic performance in the context of real gas effects. Procedure is based on one-dimensional fluid flow analysis. The

17

Ideal Process: In this analysis an ideal process is defined to be one which conserves both entropy and complete energy while system

changes its thermodynamic state from ! to l , that is satisfying the following two equations simultaneously.

S( 7i) PIL ) = S(7l, P1J

II (T!, ~It.' Ut) = H(7i, 1 /Jt,, 'i) } (20)

Sta~nation Temperature and Pressure: In this analysis the concept of stagnation temperature, ~ and stagnation pressure, f't is this: The

fluid at any point of the flow field is extracted by some means with its temperature, r , pressure, p , and speed, 11 at the local value and then this parcel of fluid is compressed by conserving its entropy and complete energy by decreasing its speed until it vanishes. At this stagnated state its temperature and pressure is defined to be stagnation temperature, 1t and stagnation pressure, Pt • It is implied that the fluid in its original state and at stagnation state is in chemical equilibrium. Thus 1f and ft are determined by solving following two equations simultaneously:

(21)

H ( 7f , fit , ~ = o ) = H { T1 ~ , U ) (22)

Present method of solution uses JANAF Thermochemical Tables (reference [2]) via a table look up procedure. In these tables 6000" is the temperature upper limit while solutions of equations (21) and (22) oft~ shall be larger than 6000 K. • For such instances, stagnation temperature and pressure calculation procedure is this: Iterative calculation procedure is structured such that the equation (21) is satisfied first by using a grid search on Pt, as a consequence of this procedure it is possible to detect last ( 1t- , kt ) pair say ( r,, 1 p,, ) that satisfies equation (21) and uses table look up values. At this point fluid

Page 18: him L. - authors.library.caltech.edu · choices on SCRAMJET dynamic performance in the context of real gas effects. Procedure is based on one-dimensional fluid flow analysis. The

18

composition is frozen with fixed values of specific heat at constant pressure, ( c, ),, and specific heat ratio, 'tn and then ideal gas relations corresponding to equations (21) and (22) are used to detennine stagnation temperature and pressure; namely

H( T,, / p,, > l/0 ::C) +(~)11 {7t- - 7;,) = ll(T, fJ 1 d)

'tn/(tn-1) 1't = fo,, (1f /rn)

Dynamic Pressure: By definition dynamic pressure, i is

or

I Z. ./., q=TYMr

} (23)

(24)

(25)

where definition of speed of sound in an ideal gas, a={ 'if'/ S 1 was introduced

into equation (24).

St>ecific Heat at Constant Pressure: Per unit mass basis mixture specific heat at constant pressure is

(26)

· where [cp lj is the molar specific heat at constant pressure of j ~ chemical species in the mixture.

Page 19: him L. - authors.library.caltech.edu · choices on SCRAMJET dynamic performance in the context of real gas effects. Procedure is based on one-dimensional fluid flow analysis. The

19

MODELING OF SCMMIET COMPONENTS

In this section modeling details of various SCRAMJET components are presented. The order of presentation is. basically computational order one must follow inorder to determine fuel specific impulse of SCRAMJET from equation (15) for the propulsion system depicted in Figure 1. Details of numerical implementation of system model are beyond the scope of this report. It is sufficient to mention that almost all numerical procedures are itel'ative in nature.

Diffuser: Propulsion system station numbers 0 and 2 denote respectively inlet and exit of diffuser. The air at diffuser inlet has known

static temperature, To , static pressure, f'o , and flow speed, Uo • At this implementation Ta is either specified or it may be set equal to the value of To* • Due to lack of knowledge otheIWise, it is assumed that IJo = Uo*" and fc = p,* . Static pressure of air at diffuser exit is assumed to be the same as

that of combustor inlet, thus Pi. is a specified quantity. Diffuser model must yield static temperature, 1i and flow speed, Uz at diffuser exit by considering dissociation of air whenever applicable. Some details in this regard are included in the Appendix A.

Performance of an hypersonic diffuser is essentially characterized in terms of a kinetic energy efficiency, "/, which is defined as (see reference [ 4]):

available kinetic energy after diffusion available kinetic energy before diffusion (27)

"11 is a specified perlormance parameter and according to reference [ 4] it is nearly constant over a wide range of values of Mo • In the definition of "lo it is understood that the flow is ideally expanded to the same static pressure, p0 in both numerator and denominator of equation (27). Before diffusion available kinetic energy per unit mass is t ot . In order to determine available kinetic energy after diffusion a pseudo state .z / is imagined such that p, ' = p

0 and

·ideal process relationships hold; namely, z

l.

Uzi Available kinetic energy after diffusion per unit mass is T and

(28)

(29)

(30)

Page 20: him L. - authors.library.caltech.edu · choices on SCRAMJET dynamic performance in the context of real gas effects. Procedure is based on one-dimensional fluid flow analysis. The

20

Additionally, in the diffusion process complete energy is conserved, thus

(31)

In view of equations (30) and (31), the equation (29) has only one unknown, and it can be evaluated in an iterative framework. Next, Tz is evaluated from equation (28) again iteratively. Finally,~ is evaluated from equation (29) as fallows: y · t dz= J.[Htro,p,,U,)-11.{Tz.,foz)) Ligujd Fuel Source: Liquid hydrogen fuel source is characterized by

specifying its static pressure,," and source exit flow speed, l111 • Static temperature, JN of fuel source is assumed to be saturation temperature corresponding to pressure, /'11 • ~, "' , and 1/11 are invariant with respect to amount of liquid fuel expended from the tank. Thermodynamic properties of liquid hydrogen are determined by using procedures outlined by W. C. Reynolds (reference [S]) with appropriate modifications so that property datum states and their physical units are in agreement with JANAF Thermodynamic Tables (reference [2]).

Fuel energy augmenter and heat exchangers are optional components of a SCRAM.JET, consequently it is possible to inject liquid fuel from the tank directly into the combustor. In such instances, fuel bypass option request shall be ignored and fuel specific impulse contribution of unmixed fuel in the combustor shall be neglected.

Fuel Energy Augmenter: Fuel energy augmenter is an optional element of SCRAM.JET. Its primary function is to

control phase (liquid or gas), static temperature, 7j, static pressure, f, , and speed, U3 of fuel which is to be injected into the combustor. Such a control may be a necessity for some fuel-air mixing enhancement schemes (see Appendix D for various control options).

Fuel energy augmenter exit is identified by station fx in Figures 2 and 3. In the absence of a heat exchanger this station is in fact station 3 in Figure 1.

Per unit fuel mass basis, energy input, ~I into augmenter is

• t = ~11 = II ( T,x, > ft,,,. dl,x ) - # ( ~ 1 PH 1 U11) 'I m11

(32)

where Q11 is also the rate at which energy is to be removed from the reactor during combustion process.

Page 21: him L. - authors.library.caltech.edu · choices on SCRAMJET dynamic performance in the context of real gas effects. Procedure is based on one-dimensional fluid flow analysis. The

21

Possibility of fuel dissociation is taken into account in the treatment of fuel energy augmenter (see Appendix A for details).

Perfect Mixer: Details of the present mixer model are included in the Appendix B. Mixer exit (reactor inlet) static pressure,

f4 = A is a specified performance parameter, consequently mixer exit static temperature, 14 and flow speed, IJ4 are determined via simultaneous solutions of complete energy and momentum equations which respectively are

H ( ~ 1 Pi ' Di ) + le . /.If; I ~ J u ~ ) = ( 1+.k_ ) II (~I A I 0,. ) ( 3 3)

i [_!:__ + J,, 73 J + ( 0. +le t/3) = ~ (t+/e) ''-7;. + (1+/e.) a,. ,).ll IJ2 ,AJ lJ3 ~ '4 ( 34)

Incoming air to mixer is in chemical equilibrium at static temperature, Zi and static pressure, A with known mole fractions of species: o , /I/ , NO , NOz , 11,t o,

bz. , Nz. , and A,. • Similarly, fuel incoming to mixer is in chemical equilibrium at static temperature, 7j and static pressure, P.J with known mole fractions of species: JI. and Jlz • Non-reactive or mechanical mixing process is described by following "pseudo" reaction equation:

I/ 1 f I I I I I I I

~ (~ ll+in/li)+(nr)l (Yo 0 +f>JN+JN/10 +/;;o/'~z +'1.tzoNzO+J1J/z +J"'z Nz +JA,, Al°)___,....

(Hr).,. ~o +"'/(. +fnN+fNo NO+ fNO,, NO,t,: ~zONzO +f4 Oz. -l-f11z Hz+ fN/·4 +fAr Al') ( 35)

It is to be noted that there are no new species on the right hand side of equation (39) which is characteristic of non-reactive mixing. It is implied that species on the right hand side of equation (39) are in chemical equilibrium at static temperature, ~ and static pressure, P+ • This is done by conserving atomic species and by conserving fuel and air masses individually. Details are presented in Appendix A.

Reactor: Details of reactor model are presented in the Appendix C. In the presence of a fuel energy augmenter, the complete energy in

Appendix C is modified as follows: . " . "?, J.I (75, Psi l15) = - tJ..N + m., HC~' P.,.' f.!r_)

In view of equation (32) its alternate form is

H(~, fas,~) -{Ht?;, p_,' £4 )-(I~) (1+~/l,)(l+ftN) [Ji.C'tx 1 Ptx' U1x )-II(~ J P11 ,(J" )j } = 0 ( 36)

Page 22: him L. - authors.library.caltech.edu · choices on SCRAMJET dynamic performance in the context of real gas effects. Procedure is based on one-dimensional fluid flow analysis. The

22

Equation (36) and reactor momentum equation are to be solved simultaneously for ~ and Us when pressure ratio across the reactor ( p

5 / P.t ) is specified. The

momentum equation for this particular case is

When area ratio across the reactor is specified then the solution procedure need be modified as outlined in the Appendix C.

In this analysis the reactor chemical reaction is characterized by the following equation:

I I I I I I I I I I f

( llr )" ( fo O + f11 H + f11 N + io NO + f110 NOJ. + lJ. o ~ O + fdi ~ + f 11z Hz + k, IVz + fA,. Ar) __,.... z :t 'l

( Rr& ( fo () f fp Ht fo 11 OH f f11zo llzO + "'N +fN0NO t-fHdz lllJl +~Oz NtJi.

f f!J.to N.J_O +fol. O.t + '41. Hz. +!All Nz + fA, Ar ) {31)

Combustion products are assumed to be in chemical equilibrium at static temperature, "& and static pressure f s . Details of mole fraction calculation procedures of this case are also available in the Appendix A.

Nozzle( s>: All nozzles depicted in Figure 1 are characterized in the manner as outlined below: Nozzle exit is identified by station 6 and it is *"

assumed that nozzle exhaust pressure, ~ or nozzle expansion coefficient, Ce= ~/p0 is specified (Ce = 1 for an ideally expanded nozzle, Ce < 0 for an over expanded nozzle and Ce > 0 for an under expanded nozzle).

Conservation of complete energy is

(39)

Nozzle flow viscous effects are taken into account by specifying a nozzle velocity coefficient, Cu which is defined as (see reference [4]):

Page 23: him L. - authors.library.caltech.edu · choices on SCRAMJET dynamic performance in the context of real gas effects. Procedure is based on one-dimensional fluid flow analysis. The

23

cl) = actual exhaust yelocity. tJ, ideal exhaust velocity, u:

*

(40)

By definition ideal exhaust velocity, u, is the velocity associated with an ideal process in which nozzle exhaust pressure is~ ; namely~~ is obtained by solving simultaneously following equations:

s(7/,Pt,> :S('151Ps)

ll (~ '*, ~) +; u/ = JI (Ts J fas) ds) } (41)

* Next, by using "'= C11 ~ and equation (39) nozzle exhaust static temperature, 76 is determined. For an ideal nozzle, CtJ = 1.0.

It is implied that all nozzle computation procedures take into account recombination of chemical species as detailed in the Appendix A. That is to say when the nozzle flow is equilibrium composition flow, then mole fractions of species corresponding to chemical equilibrium are determined at appropriate static temperature and pressure. On the other hand when the nozzle flow is frozen composition flow then mole fractions of species at nozzle inlet are used throughout nozzle exit state determination procedures.

When it is desired to determine the state of flow at a particular location within the nozzle identified by flow static pressure, Pi then outlined computation procedure is modified slightly. A convenient approach is to visualize N nozzle stations along·the nozzle axis. Designate station 0 to be the nozzle inlet then station N identifies the nozzle exit. Let 1t to be the ratio of two consecutive station pressures; namely

Pi+t = 'j'{ f i

for i=O,f, ... ,N-1 (42)

For this choice, value of t is

(43)

The nozzle velocity coefficient, Cu is a characteristic value as a unit. It is reasonable to assign nozzle velocity coefficient, ( GIJ ). for the t flt. nozzle station in the following form: '

( Cu)i = ( P,· /'rs/ for i =O, 1,. .. ," ( 44)

Page 24: him L. - authors.library.caltech.edu · choices on SCRAMJET dynamic performance in the context of real gas effects. Procedure is based on one-dimensional fluid flow analysis. The

where

24

/Jn Cu /=-­

tn (~/fls) It is to be noted that ( C0 b = I and ( Cu ~ = CtJ •

(45)

With this computation procedure, nozzle flow composition may be frozen at a desired nozzle station identified by the flow pressure.

When ilk nozzle station state is determined then area ratios, Ai /A$ are

Ai T/ Ps tJ5 J.bs -=....,__.·-·-·-As 75 ~· 11t· ~,·

{or i = 1, • • ·, N (46)

Heat Exchanger at Diffuser Exit: Heat exchanger at diffuser exit is shown in Figure 2 and it is an optional element of

SCRAMJET. Whenever necessary it may be used to control static temperature of air after diffusion process. Stations lx and 2x designate respectively fuel energy augmenter and diffuser exits. As implied in Figure 2, heat exchanging air and fuel streams are not in physical contact.

Complete energy equation for heat exchanger is

where • f = mH = (If (311, ) f ft/. " mi

In this study it is assumed that heat exchanger pressure drops are negligible, thus p, = P,x and fz = Pzx and there are no flow frictional losses, thus o, = Urx and tJz = llzx • With these assumptions equation ( 4 7) still

contains two unknowns; namely, T, and ~ . Consequently, one of these unknowns must be specified and then equation ( 4 7) is to be used to determine the other one. Presently, static temperature of fuel at heat exchanger exit, Ti is considered to be a specified quantity.

Page 25: him L. - authors.library.caltech.edu · choices on SCRAMJET dynamic performance in the context of real gas effects. Procedure is based on one-dimensional fluid flow analysis. The

25

A parameter, flc' is introduced to measure effectiveness of heat exchanger:

(48)

When ~x = 0 then complete energies of fuel and air streams are conserved individually and 7i = 1ix and T.t. = 7jx, On the otherhand, when 'IK = 1 then complete energies of fuel and air streams are exchanged. In situations that one wishes to specify heat exchanger effectiveness parameter,~ then equations ( 4 7) and ( 48) are solved simultaneously for r, and 7j • x

Heat Exchan2er at Reactor Exit: Heat exchanger at reactor exit is shown in Figure 3 and it is an optional element of

SCRAMJET. In contrast with fuel energy augmenter which increases both kinetic energy and sensible heat energy of fuel, heat exchangers are used to increase only sensible heat of fuel.

Characterization of this heat exchanger is similar to heat exchanger at diffuser exit. Complete energy equation is

(49)

where Ji = mN = ( tf /3R,) Im X ms '" f 111 f 'A

and heat exchanger effectiveness parameter, fx in this case is H( r, d11 flt) - II (~x 11'1x' Uo< )

?. = -,--------------------~ X :Ix J.I ( 75x 1 Psx 1 IJs1<) - H ( T,x 1 '1x 1 U1x )

Equation ( 49) is used to determine, T5 with specified value of 7i

(50)

and with assumptions p, = Ptx , fs = Psx , ~ = 111x , and U5 = Usx •

By using preceding SCRAMJET component models a FORTRAN program was written in order to predict performance of SCRAMJET propulsion systems depicted in Figures 1, 2, and 3. This program uses a number of somewhat involved numerical iterative procedures. Their descriptions are beyond the scope of this report.

Appendix D includes some clarifications of program message that users of this program may find of interest.

Page 26: him L. - authors.library.caltech.edu · choices on SCRAMJET dynamic performance in the context of real gas effects. Procedure is based on one-dimensional fluid flow analysis. The

26

AN EXPLORAIION OF SCRAMIET PARAMETER VARIATION EFFECTS

SCRAMJET performance analysis model includes a number of parameters and their values need be set by designers. The intent in this section is to highlight effects of some parameter variations on fuel specific impulse developed by propulsion system.

Parameters which are at the disposal of a designer are best described by the characterization of what is referred to as IDEAL SCRAMJET in this report:

..,. * 1. Flight path: .Zo = 5.526 ( M0 + 10.286) , ~/t (See Figure 4 and it

is referred to as orbital flight path) 2. Diffuser: ,.

2.1 Diffuser inlet air static temperature, 7; = T, • 2.2 Diffuser exit static pressure, P.z = P+ = I U'tm. • 2 .3 Diffuser kinetic energy efficiency, ~,, = 1. o •

3. Liquid fuel tank exit: 3 .1 Static pressure, p11 =- I ~ · 3.2 Speed, u11 = o.o .

4. Fuel energy augmenter exit: 4.1 Phase= gas 4.2 Static Temperature, r,x = +Jf.67 °.e ( t78./S K. ). 4.3 Static Pressure, 1',x = I offlr.. 4.4 Speed, ~t ==- Ui. •

5. Heat exchangers: none

6. Mixer: 6.1 Fuel-air mixing is perfect ( 'fA = 1. o and ~.., = /. o ) 6.2 Fuel-air mass ratio, !m=f

0 = o.035 ( ¢41= ¢

0 = 1.2 )

7. Reactor: 7 .1 Constant pressure type, p"" = Ps = I tJ#lt • 7.2 Drag coefficient, C

0 = o.o .

8. Nozzles: * 8.1 Ideally expanded, Ce = ~e.IPo = l·O • 8.2 Nozzle velocity coefficient, c" = /, o · 8.3 Equilibrium composition flow

9. Air and fuel bypasses: none ( fl,. = o a11d /JR.= o ) A number of parameter variations to be considered below are in essence

deviations from IDEAL SCRAMJET propulsion system.

Page 27: him L. - authors.library.caltech.edu · choices on SCRAMJET dynamic performance in the context of real gas effects. Procedure is based on one-dimensional fluid flow analysis. The

27

Some results to be presented shall refer to a REAL SCRAMJET. It is an IDEAL SCRAMJET except:

2.3 Diffuser kinetic energy efficiency, ?o = 0.985 8.2 Nozzle velocity coefficient, Cd = 0.985

Real Gas Effects: Present model captures essential characteristics of real gas effects by allowing chemical species to dissociate in diffusion

and combustion processes and then to recombine in nozzle expansion process optionally. Dissociation and recombination of chemical species always obey chemical equilibrium law of mass action. Equilibrium and frozen composition nozzle flows refer to complete recombination and no recombination of chemical species respectively. In examples below, partial recombination of chemical species are also considered by freezing composition of gas at nozzle pressures, P. ., 1/64 a'lin.. alfli. 1/s1.t aT11i • tr Real gas effects are compared with results of analyses in which no

dissociation of chemical species are allowed in diffusion and combustion processes and nozzle flow is frozen composition type. In particular, analyses consider Hr. is to be the fuel and air chemical species are O.t , Nz. , and Ar with mole fractions 90

1 = {). 20JS, l~z. =~, '11~9, olti §~1.001' respectively. Following reactions are assuthed to describe combustion process:

and when ¢e ~I : , / u /

' i I ( f N ~Ar A ) ¢,, # +!..(a + .f,11

1. Nz. + :,. Ar) ~ H.1.0 f (¢e_-t) hz + T -;'"/Ill + u' " t 'Z. J. ;t fo,,, .ft)z, vOz. Jdz,

For an IDEAL SCRAMJET results are presented in Figure 5. Behaviors associated with particular partial recombination cases and no dissociation case are not distinguishable from equilibrium composition nozzle flow behavior. This is expected because IDEAL SCRAMJET operation temperatures are not high enough to cause significant dissociation.

To accentuate real gas effect a REAL* SCRAMJET is considered which differs from IDEAL SCRAMJET as follows:

2.3 Diffuser kinetic energy efficiency, % = 0.985

5. Heat exchanger at reactor exit and fuel temperature, r, = aooo 0£.

Page 28: him L. - authors.library.caltech.edu · choices on SCRAMJET dynamic performance in the context of real gas effects. Procedure is based on one-dimensional fluid flow analysis. The

28

6.1 Air and fuel mixing efficiencies respectively are 1A:: 0• 75 and ~#:: (), r5 •

7.1 Reactor drag coefficient, C1 .:.: 0.10 •

8.1 Nozzle velocity coefficient, Cd = o. jl5 ~

REAL* SCRAM.JET results are presented in Figures 6 (a) and (b). It is to be noted that predictions of fuel specific impulse (Figure 6 (b)) and temperatures at diffuser exit (Figure 7(a)) and at reactor exit (Figure 7 (b)) by using analyses based on no-dissociation of chemical species may be erroneous.

Nozzle EXtJansion Coefficient, Ce. Effects: By definition nozzle expansion coefficient, Ce :: Pe I p0* ,

* where Pe. is nozzle exhaust static pressure and Po is free-stream static pressure. For an ideally expanded nozzle, Ce= 1, and Ce> 1 and Ce< 1, characte,,i.t.e respectively under and over expanded nozzles. Performance of a SCRAMJET which has either under or over expanded nozzle is inferior to that of IDEAL SCRAMJET as illustrated in Figure 8. For the present flight path nozzle expansion ratio, e = P5 I Pe. = Ps I (It Ce. ) * increases exponentially with flight Mach number, M0 as shown in Figure 9.

~

By increasing nozzle expansion coefficient, Ce as flight Mach number, Mo i11.c;-eases ,it is possible to maintain expansion ratio, a at a constant value. Computation results pertaining this case are presented in Figure 10. It is to be noted that Figure 10 illustrates the fact that IDEAL SCRAMJEf performance is the optimum.

Figure 11 illustrates performance characteristics of SCRAMJET at various constant altitude flight paths. An increase in altitude, z: is in effect an increase in nozzle expansion ratio, 8 • Similarly, for a constant pressure combustor, an increase in combustor pressure is in effect an increase in nozzle expansion ratio as shown in Figure 12.

Combustor Type Effects: Effects of increasing pressure ratio, rs/ p"' or . decreasing area ratio, As/A4 across the combustor are to

increase SCRAMJET fuel specific impulse slightly at low flight Mach numbers. Either situation is analogous to increasing nozzle expansion ratio, e. Results of such calculations are not included in this report.

Page 29: him L. - authors.library.caltech.edu · choices on SCRAMJET dynamic performance in the context of real gas effects. Procedure is based on one-dimensional fluid flow analysis. The

29

As compared to IDEAL SCRAM.JET, a constant cross-sectional area combustor SCRAfvUET performs slightly better at low flight Mach numbers as shown in Figure 13.

Figure 14 presents pressure ratio and cross-sectional area ratio variations on the present flight path respectively for a constant cross-sectional area combustor SCRAfvUET and for IDEAL SCRAfvUET.

Heat Exchanger Effects: IDEAL SCRAM.JET performance is not altered by the presence of a heat exchanger either at

diffuser exit or at reactor exit. Heat exchangers simply redistribute heat energy within the propulsion system.

Air and Fuel Bypass Effects: In view of equation ( 13), any amount of air or fuel bypass introduction into the propulsion system of an otherwise IDEAL SCRAM.JET shall

result in performance degradation as illustrated in Figures 15 and 16. In order to insure that fuel remains in gaseous phase during its expansion through the nozzle, it was necessary to activate heat exchanger at reactor exit with ~, ... ~ = Jooo £.

Mixin2 Inefficiency Effects: Figure 17 illustrates degradation of SCRAfvUET · performance as a result of inefficient air and

fuel mixing. It is to be noted that present model of air and fuel mixing inefficiencies is in effect compulsory air and fuel bypass introduction into the propulsion system.

Eguiyalence Ratio Effects: Figure 18 presents temperature increase (~-74 ) due to combustion as a function of effective

equivalence ratio, ~ for flight Mach numbers, N: = 6, 15, and 25. At high flight Mach numbers, significant dissociation of combustion products results in lower temperature increase. Maximum temperature increase occurs in the neighborhood of 1.1 < ~ < 1.2 and for this reason ~ = 1~2 value wa.s asslg.11ed '/;; IDEAL SCRAfvij'ET. e

Influence of effective equivalence ratio on SCRAfvUET fuel specific impulse is illustrated in Figures 19 (a) and (b). These figures reflect the fact that fuel specific impulse is inversely proportional to effe~tive equivalence ratio.

Effect of Component Losses: Figures 20 (a), (b), and (c) illustrate degradation of fuel specific impulse of a SCRAfvUET due to

respectively losses in diffuser, reactor and nozzle. Needless to say these components must be designed carefully.

Page 30: him L. - authors.library.caltech.edu · choices on SCRAMJET dynamic performance in the context of real gas effects. Procedure is based on one-dimensional fluid flow analysis. The

30

PRELIMINARY RESULTS FROM PERFORMANCE PREPJCTION MODEL

Unless otheIWise stated, all results which are ~o be presented in this section refer to a REAL SCRAM.JET. As it was mentioned in the previous section a REAL SCRAM.JET is an IDEAL SCRAMJET except its diffuser kinetic energy efficiency, 3 = 0.985 and its nozzle velocity coefficient, Cu= 0.985

Constant Dynamic Pressure Flight Path Behavior of SCRAMIET:

In order to maintain in flight structural integrity of a SCRAM.JET, it must not be subjected to dynamic pressures greater than a nominal value (in this report it is speculated to be 0.5 atm). For constant dynamic pressure flight paths depicted in Figure 21, fuel specific impulse of a SCRAMJET does not vary significantly as illustrated in Figure 22. At a specified flight Mach number, lower dynamic pressure implies higher flight altitude or higher nozzle expansion ratio, thus higher fuel specific impulse. Specific impulse variation with dynamic pressure does not appear to be significant for flight Mach numbers above 15.

A Simulation of Film Cooling Effects:

With present SCRAMJET performance prediction model a primitive simulation of effects of film cooling of combustor by using fuel may be brought into the light. It is expected that amount of fuel to be used for film cooling shall increase with flight Mach number. This can be simulated by specifying overall equivalence ratio, ¢0 as an increasing function of 1r1: while keeping effective equivalence ratio at a fixed value,~;: 1·2' • Present treatment uses a linear relationship such as illustrated in Figure 23 (a). Assuming that air mixing efficiency is perfect, this results in variation of fuel mixing efficiency, f6 with flight Mach number, M: as depicted in Figure 23 (b).

Heat transfer process due to film cooling is simulated by activating the heat exchanger at reactor exit (See Figure 3) with fuel exit temperature is set at

. 1i :; 3000 °R,. Comparative variations of fuel specific impulse with flight Mach number

are illustrated in Figure 24 when SCRAM.JET is on proposed orbital flight path, that is ::=s.s2' ( M! + 10.J,I{, ) and Figure 25 presents similar results where SC RAMJET is on f: = o. s ufm, dynamic pressure flight path. In all computations, unmixed fuel nozzle expansion is carried out by obeying equilibrium composition flow rules.

Page 31: him L. - authors.library.caltech.edu · choices on SCRAMJET dynamic performance in the context of real gas effects. Procedure is based on one-dimensional fluid flow analysis. The

31

Film cooling always degrades SCRAM.JET fuel specific impulse when perfectly mixed stream nozzle expansion obeys equilibrium composition flow rules. On the other hand film cooling improves specific impulse at high flight Mach numbers when perfectly mixed stream nozzle expansion obeys frozen composition flow rules.

Effectiveness of heat exchanger, f" as given in equation (50),is degraded as flight Mach number is increased. This is illustrated in Figure 26.

Constant Combustor Inlet Mach Number flight Path Behavior of SCRAMIET

To achieve a good combustion efficiency, it may be necessary to operate SCRAM.JET combustor at constant inlet Mach number at all flight conditions. Flight paths of a SCRAM.JET at various combustor inlet Mach numbers are illustrated in Figure 27 and compared with proposed orbital and constant dynamic pressure flight paths.

Figures 28 (a) through (g) present double parametric study results in order to shed some insight to the particular performance behavior of a SCRAMJET. In each figure reactor inlet Mach number, M4 is a parameter and from one figure to the next composition freezing pressure in the nozzle decreases. Figures 28 (a) and (g) respectively correspond to frozen and equilibrium composition nozzle flows.

When Figure 28 (a) and (g) are superposed then it shall be observed that branches of curves to the left of peaks are almost the same, that is frozen and equilibrium composition nozzle flows yield almost identical performances. This is expected since operation of SCRAM.JET on left branch correspond to very low flight altitudes (see Figure 27) at which composition of combustion products freeze immediately. When nozzle flow composition is frozen either completely or partially such as shown in Figure 28 (a) through (f), then for a specified flight Mach number the maximum value of fuel specific impulse occurs at a definite value of reactor inlet Mach number. As a consequence SCRAM.JET performance can be optimized. for example, dtUAt' performance curve which envelops right branches of performance curves is the optimum performance curve for completely frozen composition nozzle flow. Figure 29 presents accurately determined optimum performance curves of this case as well as for a typical partially frozen composition nozzle flow. The latter case exhibits a slope discontinuity in the vicinity of flight Mach number, M! = 21. s . This particular slope discontinuity is a jump in reactor inlet Mach number value as depicted in Figure 30 which is presentation of optimum performance curve as a function of reactor inlet Mach number. An alternative presentation of this jump phenomenon is found in Figure 31. This report offers no explanation of this phenomenon.

Page 32: him L. - authors.library.caltech.edu · choices on SCRAMJET dynamic performance in the context of real gas effects. Procedure is based on one-dimensional fluid flow analysis. The

32

Prediction of Dynamic Perfoonance of SCRAMJET (See reference [13] for details)

Assuming that SCRAM.JET is in a planar flight trajectory, the component of its equation of motion tangent to flight path is

¥

mt-i) dU,<-l:J = T<+>-D(f)- mt+>g u~t) · ~l:J (51) di 0

Thrust, T (t) is given by equation (15); namely 'T'(-f)= fo · (s: Ua"' A~)(l'.sp)Jde/ •

In this treatment, conventional vehicle drag law is used, that is I ~ Z.

lJ(t J = F ~ Ao So U.* I I

For turbulent of flow, the expression for skin friction, Cf is given by von Karman [8] is used (See for instance reference (11]):

(), 455 a=-----'/ [!MJ Re J,z.s&

-J,o

and for laminar flow, the expression for skin friction, Cf given by Blasius [9] is used (see for instance reference [12]):

/. 3.zg

fie * Absolute viscosicy of air, )lo which enters into evaluation of Reynold's

number, R.e ==(s;utl)/,( , is determined by using the empirical formula given in reference [1]; namely,

" J1.o::; ---(t;,*+110-+)

~ where )J.0 is in SI units.

Previous fuel specific impulse determination procedures are slightly modified so that primary independent variables are flight speed, Uo* and flight altitude, Z(f) and then equation (51) is solved numerically by using a fourth order predictor-corrector method which starts with the minimum error bound and fourth order Runge-Kutta method.

Exploratory calculations are based on a hypothetical vehicle whose geometry is depicted in Figure 3 2 and whose essential particulars are:

Page 33: him L. - authors.library.caltech.edu · choices on SCRAMJET dynamic performance in the context of real gas effects. Procedure is based on one-dimensional fluid flow analysis. The

33

(i) Total (structural+payload+fuel) initial mass of vehicle,

m(t=o) = 125, 000 l.J ( 27S, ooo l1Ym..) •

(ii) Initial mass of fuel = 45 ,000 l.9 ( 9 9, ooo llmt..)

* z. .2. (iii) Vehicle capture area, A0 = 45 m (527 ft ).

.$.

(iv) Vehicle characteristic drag to capture area ratio, A0/ A0 = 38

(v) Vehicle length, 1=60m. (197 ft).

Figures (33) and (34) present dynamic simulation results where hypothetical vehicle is on 0.5 atm constant dynamic pressure flight trajectory and uses respectively propulsion system which are referred to as REAL and IDEAL SCRAMJETS in this report. For all simulations initial vehicle speed, u."tt=0)::2!33.6 m;~ which correspond to flight Mach number, A-t: 'f.f at altitude o L o z.t1- = 9i* g llft.

0 These figures clearly indicate that present hypothetical vehicle may reach

orbital speed when propulsion system components are nearly perfect and vehicle skin friction corresponds to laminar flow.

Additional calculations also indicate that there exists an optimum flight trajectory such that when amount of fuel to be expended in a given time interval is specified, then the vehicle attains the maximum speed at a definite altitude. However, on this optimum trajectory vehicle is subject to dynamic pressures which are significantly larger than nominal 0.5 atm.

Page 34: him L. - authors.library.caltech.edu · choices on SCRAMJET dynamic performance in the context of real gas effects. Procedure is based on one-dimensional fluid flow analysis. The

34

CONCWDING REMARKS

A FORTRAN program was developed in order to determine the effects of design choices on the SCRAMJET fuel specific impulse in the context of real gas effects. With the aid of this program, a systematic parametric study in the form of as deviations from the IDEAL SCRAMJET performance was carried out. Results indicate that fuel specific impulse of the SCRAMJET is very sensitive to diffuser, combustor, nozzle and air-fuel mixing inefficiencies. When chemical composition of flow through the nozzle is either partially or fully frozen then fuel specific impulse of the SCRAMJET can be optimized with respect to combustor inlet Mach number. A simple minded simulation of combustor film cooling process shows that the SCRAMJET fuel specific impulse will improve when chemical composition of flow through the nozzle has a tendency to freeze.

Another FORTRAN program was developed in order to determine dynamic performance of the variable mass SCRAMJET. This program uses previous program as a subroutine. Results indicate that a hypothetical vehicle may attain orbital speed when components of the SCRAMJET are nearly perfect and vehicle skin friction corresponds to laminar flow.

Page 35: him L. - authors.library.caltech.edu · choices on SCRAMJET dynamic performance in the context of real gas effects. Procedure is based on one-dimensional fluid flow analysis. The

35

REFERENCES

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

U.S. Standard Annosphere, 1976, National Oceanic and Atmospheric Administration, NACA, U.S. Air Force, Washington, D. C., October 1976.

JANAF Thermochemical Tables, Journal of Physical and Chemical Reference Data, Volume 14, 1985, Supplement No. 1, the American Chemical Society and American Institute of Physics for the National Bureau of Standards.

G. J. Van Wjlen and R. E. Sonntag, "Fundamentals of Classical Thermodynamics", John Wiley and Sons, 1978 (2nd edition).

J. L. Kerrebrock, "Aircraft Engines and Gas Turbines", The MIT Press, 1983 (ch 10).

W. C. Reynolds, "Thermodynamic Properties in SI", Stanford University Press, 1979.

A. M. Kuethe and C. Y. Chow, "Foundations of Aerodynamics: Bases of Aerodynamic Design", John Wiley and Sons, 1979 (3rd edition, pp. 213-214).

J. V. Becker and D. D. Baals, "Analysis of Heat and Compressibility Effects in Internal Flow Systems and High Speed Tests of a Ramjet System", NACA Report No. 773, 1943.

I / Theodore von Karman, "Turbulence and Skin Friction", J. Aeronautical Sci., Vol. 1, No. 1, 1934.

H. Blasius, "Grenzschichten in Flussigkeinten mit kleiner Reibung", Z. math. und Physik, Vol. 56, 1908.

Page 36: him L. - authors.library.caltech.edu · choices on SCRAMJET dynamic performance in the context of real gas effects. Procedure is based on one-dimensional fluid flow analysis. The

36

[10] "Hypersonic Technology for Military Application", Committee on Hypersonic Technology for Military application Air Force Studies Board Commission on Engineering and Technical Systems National Research Council, National Academic Press, Washington, D.C., 1989.

[11] R.H. Sabersky and A. J. Acosta, "Fluid Flow A First Course in Fluid Mechanics", The Macmillan Co., New York, 1964 (p. 255).

[12] H. Rouse, "Fluid Mechanics for Hydraulic Engineers", McGraw-Hill Book Co., New York, 1938 (p. 200).

[13] S. Serdengecti, "A Note on the Prediction of Variable Mass Vehicle Dynamics of SCRAMJET", Engineering Department Report, Harvey Mudd College, Claremont, CA 91711, March 28, 1991.

Page 37: him L. - authors.library.caltech.edu · choices on SCRAMJET dynamic performance in the context of real gas effects. Procedure is based on one-dimensional fluid flow analysis. The

37

• -~

I •4!1

! ~ ... I • " ..

.. ·-1 ~

• I • • 0 'U

-....

~ ii

~ I! .. " " ~ .. "' -I I

~ 'II oC ... ~

... ~

. ... I :"I 'f )1 I '!ti fl ii! I 1

~·~ ,.l !.!!

I• '1 I 'ti I I L..j 5 I

IS I I

r----I I .... I

~ I ! I .. I ... I ... :; I I '--

.., ·~

i -~

~ --~

iii ,-.

rt .. ._ ..

~ ~

~ ...

-....

a ~ • ~ 1l & !:! $

l

':ti' ~

~ .: • lit

I ~ ~ l:! • .. i':!

I

• •OI

. .}

I !I II •·

~ I

(i

Page 38: him L. - authors.library.caltech.edu · choices on SCRAMJET dynamic performance in the context of real gas effects. Procedure is based on one-dimensional fluid flow analysis. The

38

• ·sr

~I

.. ... .t

I Iii

i

~ ~

I ~ ::. !' ....

·~

~-...

'"" .. "'"""

"" I ... ... .. ' ...

\V

Page 39: him L. - authors.library.caltech.edu · choices on SCRAMJET dynamic performance in the context of real gas effects. Procedure is based on one-dimensional fluid flow analysis. The

39

~ .. -.. ~ ... .. ... ... .. ~

~ I!!

"' ti ~ .... ~

-~ ~ • IC

-."'

WC .... fl4!

- :i II

~r J• IHI

ri~ : .. '=r i1

~ I ~

•1 I! • !

I! ~·~ .. I .. " ""l ~ s ..

~ • iI I I it I Q • 'ti I~ I ~ ! I ... '-t v I i i: ~ s r I ... ~ "i I l -~ :a ..

~ i -; l Iii • i ~ ..---.. • I

Z! I ... ·l ~ I

I II • I :s I ... ~ ~ I

... "' r ~ ~ ..

' ~ ... _ .. ~ I

i! "-,,.. ... ~ ... !'!

it ~ ,. ... •• ... ,.. . -'!

9 111 ~ ... .,

•ti ~ .. "' ·tir •l!t

·f!l.·

~I

Page 40: him L. - authors.library.caltech.edu · choices on SCRAMJET dynamic performance in the context of real gas effects. Procedure is based on one-dimensional fluid flow analysis. The

rv. "'jtJAL ...!_

200 " • • • • • • •• -~.~;,~ .::IT.kL ~r-- \; H. mu Pi 1 1

. ~k~ . i~:~i \Jh/' --· ··1 · f· •

... d H1. _J I I I I -:. ~ ~ [ -~:(!'.pl · - -. ---1--· 0 r:BYIY 1-- -·· --- I i,. . : ... i "•

150 " , , , , , , , ! ~ ! . 11

~ , ~ = n .:> _ >---- . l J . " ' ' ' ' ' ' , , ' " . . -· .. I

·- ···~- ~·--·•·- ... ·1 ~ i.... - '- -- -- -- -·· -- -- - -.---1---

-· -- ·- -· ·······! ~~~3) ···- ---·.

' W' 11 -··-· ··-- -- f lL-+--+-++-r-1--·· ' ~ . --- -· .. ·-· ,___ - ··--- . ( ~ - - -- - -- . -- -· ~ ;: ~: , I I .:ic ... • • •••

I ::::Lt !..- I I -= 100 .. :

1: :: :· ;: r .a - - ::: : : : ;: :::;

;:: - : .. ·,:Iii:·.·. - :: ~r. :: :=.:1 -< ___ ,_ - ~ rell r·

, · .. ; : :: -:· .__,._, __ ) l11 ll ~ ll:

·:· ~ :• • ·: · ::l I

1

I I I I 1-L 1-lJ;: f :: : :: : :;:

1

I I I I I I I ll:: f. :: : •: : :: I I I I I I I I 1i:· ·: •, . :- . !•:U I I I I 50 l l ' ' ~i ; :: d ,, ~ i I - - -- - - - l L ,.Jhl ' ' . u -lW ,, - -- -- ---- ---- --- - -- J 0 o,,11__, -·--·--

--=== !j ;:_ -·· -·- -- · l allishc __ ,__ -- --:--···•---.--1~ ! . - -- --- · ·-t-- - - -- - . -

1·· 111is!lifes r

1 I l I

--1--1·-I---

-·---· _ _..,. ___ ·- , __ ,_ .. _

- .... · "t'od Hot

--··--···-·---. -

II I I 11\\ f-1- I I I I t I -, I 25 0 II I I ·: 20

0 5 10 15 30

Mach Number or Speed (xlOOO MPH)

FIGURE 1-2

Approximate Corridor of Steady (Cruising) Flight ( /rom /'cfort11a [10]

.....

~ 0

Page 41: him L. - authors.library.caltech.edu · choices on SCRAMJET dynamic performance in the context of real gas effects. Procedure is based on one-dimensional fluid flow analysis. The

~

;<:: ..... ::'!: •• ~i ":: .·: 0

,\..:,.. CD ' Cl)

<

a: w I-

(' w .:.. :I: .... i=

z w (.)

\:!! ;:::: 0 I-

Q

x Q

u.l a: <(

::::> 0 en

z " c

;::: ::; " ~ c:

J § '~

0 ::: ~

z ~ 0 • " i u i'

~ .. " "' :5 "

0 '..JI

1:.1

'~I 1~1 l~I l \ i..J SJ]

........ . __ __. - --=t:::=-- ...,.,. ____ _ ---"t-.-- -

--·- -­. -T---:- --·-

-- -- ---. x·-__ ,__ -- _.,_.__ ----- i.--...

.~-:-3oolr-~ ' - -- - \' --:~~;\,=i=

. ·- .-~\·\ ·- .

=t ---+ -- ---+-- -

:-_.:=.:: i--r=-. ' .._ :: .:::±.::::: ---

---=

~X: ~ -- - ~::x::=-- ·------_=--==:~-4---t-

- - - -t~~ ____.

~ \~ - __ ...=..-~--~ :::\; ~-"J""-

-1-----···- -- -- '----+· ' - __ ........_--+--

--,:f~~--:.:. --+=--+-- ...__....._ __ ....___.._

-~ ---1-±:.:. _:-_;g·:~_:-x---r-=:i=_~ ~---· ."-T..=:l:::::..:_ --..-~---- -+--~--

!--:::!.:- - -

- - -+-----+-- -+- --~~-~.::-=-:=_.::i~---~ -_ -L---·-- ~-=-..___

: --::=-=t=-=::·'§·: .: .~~i= ~-- -1 .. -,=-f----.. ::-,::~___:__.=_~. ~%1J..ilti.":.5"::± .. :~.:~5-d~ -==~~ ~::· ·:i:.=~:=a==-

41

, >!;NIT. ~l.!L~ ~T.

-~--·

~--

·-

- ---+-

~-- --

·-

--

--_:::E.~:.-

--

-- -... -+----_

=~~~-:--=+---- -- __._ ·t- - - 'f. ... ·---+----- .. ....l --+-----

-4- ·- ---:-:--.:--i-:: ~

~-~-~~--=~=-----~~~~--L .. :: "'Jlj ~ ,i iJJli

Page 42: him L. - authors.library.caltech.edu · choices on SCRAMJET dynamic performance in the context of real gas effects. Procedure is based on one-dimensional fluid flow analysis. The

42

·\·

--

-~.040 =· - _::____, __ :± .

. t:::=:=

... ....__.f-- ·-~··· ~, __ _

t:==::::;==· . ~ -~x-~-

----------~~· t- -

+----FAIJZSLUJNl!l..1!111.AI~

Nl#LE.' -AB11--+------.i.-

.:::J ..

+--

-=

·-r:==:==t- ::== ~ -----.--

~_/ C7:~:- -=

--___ , -·~· ·= -+-----,.

= --;

-+ =---==:::::;

-· -~~ . ~- : _t:;;:;;j

_____.___

"81J/1.l1J_IU_fl~, Cl1MP~6171~~ _tzuc· ruw ... - - =

- -r-·_ -~-:-__._______._\

··-+-

Page 43: him L. - authors.library.caltech.edu · choices on SCRAMJET dynamic performance in the context of real gas effects. Procedure is based on one-dimensional fluid flow analysis. The

c;

( .. "<:

~·.~\. Ci CJ

t.- ' rn <

a:: w I-c·· w '. ~ , ... ,

-~:,,· I-z w CJ

w I I-

0 I-

Q

x Q

w a:: < :::;; 0 rn

z ... 0 "' ;:

" ::>

5

J = 0 u

43 lt::,Oil

·:-:....:.......:....: -- -

;·;;_~-'"7:1:­

~:~~ _;::j;-:.

~~~~ ::~~·~

--~ --" --- --+--~- -

: ...•... :r ... -;,_;_J. (J_~(J :--~

:-~~4~:_~~-~~.: ....:._;:.: ___ -__ _ .. ··--t-.::::: :::t . --+---- ·+-

=-==t--=~ -:·:~:-.:r

-: _:J....:_ ,.::._._. . -- ------+--

: ~·-~ =~ §~·~-- L---­

.:~·~r~:::: ::.._±:_. ·-- --

.. \:---t=-F-~~ ' :·....,-

.ii\_ ~ .,.· ., ·-:\,~ ·.\,\::.

- ·\· -·- y

.,·~\;_

"'"" -~ .

. _;_: -=~~-_:.::_: r::=:n~~~r· . :.::;::.~·-+· ... ·= .=::t:::::= \·. :· -=- ---- ::::.: =-~ - .~\ . ~i~-=:t~~.k:i .. ~2-· ~\::-- -+-::\:.~\::

· c:L:F;{-~::~ . ~~ ~- ::%§ ~: =r·· ::.$- t~~: -:-::::t::..-= =: ~. :t'.'::3.t: -

·:--~ :..\:~:. ___.____ ~- ---i- .... --

. :~-- t:t:::-=::\: ..

-~"=-=:=!: =-~:.:\:-. :::t...-:::t:

__ :__._

--'-

.:--- ·.:!...:. ... :.:.:-T - ..__ ··.:; -·-:::·.:s---~~~-·

·~ :=t=::t: =::. ~: -·--+ .. _ _..!==;"\... -

·:.::;~·r::.:~:---~:---~.==:.i:=:::- _ _.. : ... -=-:::~~=+ -~r :~ ~

•• J "-

. -.

..... . . .... -. -· .501J -:.:·:::T -- -=+ =-:1'=~ -:.:::::t::.___.._ ---.~:.

:: =~f·: ::~_:;:-:-.. :~~..:~-·-;. -E_;~~--.,----~--~~.='~"' _

-~:~=:~1~~·: -i ~~ -_~X~ -~ ~!§ ·-4:.-::::::=--i---- =+ ~~~ -· :~.- -~=-=~~~~~---1--j_-:3--=c-~-~3::-_:~=-- --~.\:;--.__ -~:~~-.. J;~:~:~-~b·; __ .:~- ~~--~~=:==r·- J~_ ~ -~1-

-~t-~ -= --~..:: ~-~ --=.: -.,.--

·+

-·-

''""' .:'r' 1:~ ·- - - -t·----· -· ,:._:~ :":-'. I~~ __._-=~.:_:.;:...:-•:

.=::::£:

·-=·· -:::

r-::E:-::. .... -··':t:=:"

........ -·t· ---- r- . ...__....::.-:= __ -::+-__ _ ----~-=~-:::

~-:=~.:=[~-

......... : t-l 'iit/JS.ltll~OULE-8.ow .±=Fl

~ ..

--t---· ·-----!----.;.__.._ --~--- .......

·-+

.. -~- ..............

--............

-~ =~i·

__;1--;:~--=l =::=J

::.\

Page 44: him L. - authors.library.caltech.edu · choices on SCRAMJET dynamic performance in the context of real gas effects. Procedure is based on one-dimensional fluid flow analysis. The

"'1

Ci co ' Cf)

<

a:: w 1-w ~ 1-z w 0

w ::;: I-

0 l-

o x Q

w a:: < :::l 0 Cf)

§ :; c "-

3 "

" co ,, -

--

-"--

~?-~c~=~= ~ -:--f.:..:..::1:::__._!,.:. ;:.::.::i -·-'---

::::.5.::::::±::.::: t--1-. .:-.:::r:

:i:;:_-::: t=::: --·- _::, - --

·-.: :....:..... :-:=::::;.: - -......... ~-._ --=

-+----t

~-~=~-:; ~·:: ~-+----~~--.::.~~ =-=

-+--.

;-~~ .:::::+--~

. - -t-- t~_-··.,.

. ~ -~10110 ----·_ .:.~...: ~·~}:: .. :::: -~

.

:;-_E~~--t: __ ~ =-: -·:.:. ~::-:;~ .. :t::~= ~: +--

..,_~.;__ i----

JiiO. :t==~=~ r=: -; __ .::±- --+ __

:~~ -~~~~-~~-::_::;... ___ -= --~. -.~:. =-~-

-· . - +---~ --

44

---

....

-- ..... _ -- ~= ----

..:..1..

-..-'-· -

-~--

rJJ _

....

·-

-~--

·- ' --·-

--

:-· --

-+ --·-

-

_.._-=r-­__ ,__ ...... .:.=-

·-

.. ---==

~-l

--+-::

___ ==t=:_

·-+-- .-- ·-1~ __ --~;;~-=

-1-

---

- - +:-....~ .­~----r--:-+:--- ...

+- ~-=t;;;=:t-·--+-

Page 45: him L. - authors.library.caltech.edu · choices on SCRAMJET dynamic performance in the context of real gas effects. Procedure is based on one-dimensional fluid flow analysis. The

r;: .. '·\;:·; '~;

c·;~.

:;; "1

0 a:l

cli <C

a:: w ~ w r ;::: z w 0

w I ~

c ~

Q x Q

w a: < :;) 0 en

-~

-~ . - . ---- -... -- __ ......_ - -------J.--•. --~t: -1100.····. :: _ _:.I - ..::. :=___ ..- --

le :-:-.t.=.­r.:..::t-..= . - ' .

£Ei~~~

:..

_ _.... ___ __._

·-

-~~~~~~: -·l;~ J=~--~-:- ~= -+

r==;:·

. ·3;~Dfo.-~~:j: ~+~~j_ ·.

- - -T_ -~: f::: ___ _

~:g:--E-t:~- -~

--· ·-----< .... .. _. __ _ ·::.::r····

45

..... -.... --

_....,..

flitdTllJA

. .: ___ ;-.

__,_....... ---

__.__~--~~~

----~-

--+=.--+--:: ==:::::==-__:._ -- -- _.....____

---+--

___ : =-= ·--·---"~

__ . ..:..:......~

t==*== -i.--~ ---- -=

----t----· ------±:=:::t: __:- -.:-.::

_=::- -i::.=t==-~:-~~--~~ --· r·-:-"'------+---· ___..__._ ---··;.:___:_

:~--=--- --+---

-.:~...:..:+:---·= :--4----.--- : __ -;_---+----~

-- ::!=--~- -----_:'" i·-

.__....,__ - '-"T--_.____ --f~-r---•

t·-

.:.-.+=----:r :=:..t:.--=.=;:-·:~.

·-·---- . ·· --=l-=±··---1-=t===r=± - - ----1-· _ _.._ - --- r-+-==--+-: -i----

-_.,_,_ -. ~- --- -.• - -~~-·-· --+·- --· 1- - - -- - --t- -· __ _._ __

-~-~===t=- . . =±= ,_ -- -- ---~-__ _......._ __ _

Page 46: him L. - authors.library.caltech.edu · choices on SCRAMJET dynamic performance in the context of real gas effects. Procedure is based on one-dimensional fluid flow analysis. The

.

"'·-·

=

=

~DO~--

.. --- ~-

~-1-·

--r--

=

r::·

'11119• "'L

·~-

--, -~

-+

r.:... Lm

·-

:-:...,.

.... ---.,.

....

.,. --

=

46

T ~1 _:Pl-

-------:::;

..:

- ·~

--.:==

= ' :=J

·=i===; -+-

' :__.· .., ... ~

--

---··=:i

--;

·--

:~ --': - ===----::-=j __ .

':au.~~- =r=_:__. _,

-= _,_.

--~===i

~ -~--=i

-L~ ·- ===i

= 1 ==1 ---<

:....-·-.-.-----~

··--. - +--- --~

--~~:--Jo:----_-... -= .. _=-~1

Page 47: him L. - authors.library.caltech.edu · choices on SCRAMJET dynamic performance in the context of real gas effects. Procedure is based on one-dimensional fluid flow analysis. The

i

~--·

1· = =-

-·-~--

=-

_,,__

--- -7,±= 4 --

~- ---·=--=

--+

g_

47

~·~:~111111111 --

- --

• ---

~---- -

--=---==~

= -..:i--:~

-~ ---

-:_-

·- : -_·.;_-- .....

--- =-··-

. '-------- ' 4 -~L _____ __, ___ _j

.-~----=~---~==::j-··-------1 _ .. ,.., lt;JIT_JMCH NJJMIJlill.~ - :

10===--~-~--==---~------.~o --~---1~5-:_·--r-i ---+-1==· --;1,---1-l---:1,s ~~--- --1--31 ---'----~'------ I

Page 48: him L. - authors.library.caltech.edu · choices on SCRAMJET dynamic performance in the context of real gas effects. Procedure is based on one-dimensional fluid flow analysis. The

:;;

(·~ .... 0 ,: .. \:.:· co

•.;. .. ch <

i:r w

(" w ~ .. ~ . \. -... ·· .....

z w 0

w I

0 .... Q x

Q

u. a: <(

::i c tll

~ " "' ~ :::

.:;

'-'

~

~ ~-

ri ),,; ,.;..\

;:t (;~ I"': .. , ::1 ,-'I

'-' :-;;

~;r--~~~34-~-·:·.

-::~~=-:-::::?.::--: :<t/:. ~~~- -• 111: iia-----·: .. ....._ - ::;: ::~.:d: -· -- -- __ ::-"' ____ - - ,_:£:1,_

....... 7iJif-sP~tlFlr. .­~:::LM;dL~DNos)..

·Jl , . .:. ., _,._ .____ ....

----:~-=~~+ ,.::- - -· - ....... ~~·· ' _ __.__h-'- .l ~ :1. .. ---+---t::--- . ,___ ...-1-

~ _::~fff_ ~~-=-~ ::-i: ·r-·

···-··. ::.::::::::i::-:::i. - -~-- -· .: _,.:::~:i:::-....;:::::::t:~;::::r:· -­·: --+--··· =:~:/-::- ..

---,--::::C~:_·~~f_-. -- ---- --+---,. _,,,_,, ~ :=::.::-. :t: --+-·

+--·

_,. I·

.\~ t\.\.

1:, .:.::.:.-~

--~

---

-r --:.i=:::+=- ~= -=-­.:.:i::c:.. l :--- -

~~ :~=t~ --~:±:: -=~:-_:r·::::: ---_:

::·· ...: ... ::: ... i=~- -·· .l: ..

:.=:..... .::::;::=:.-

':=C-.:if.-

--·

.. -!:·_·::··--::-t:-::--· f--- -:·-=:t:..:.-~--t

.... -~:~;;_i;~~-:~-~?=~t: .::§···= ·.·:~:~:.~·];

~~~!:::-~=.,._.::: -T _-:;_==t- -·- .- --~­t-:::_:~=f_ -~::.~J -=~:.==i==-

48

l."

...

'."'Si- -

----~--:

.. --r-:-.-4.. - ~:.:3=~ :::::i= ·-·~ ·- -- ---·-

~ ·-==~=~~~-::~--~- --- __ ,_.....___

-:::::::::--= ·~· ·- - ~-.. - .-..,... --;-<-1-- .• ::

____.._..-.,........ ---··-.-:::-~ .. -::.:+:-

~--

.._......:::.. ---== ~:::::t=--..:.....::::t .. __ ----=--- .... 'f·:_ ~·- -- ~..:--:. ___ ..:.:-

-- ~ ±~- ~=~=~:=-----~

--~~~ ~-=r = ~~~:i~_-_::;

--·- -~:::.:: ~____;- ~-~~

f.-• --r- ···-

:=::r::= ~-:=r:-~

-.::.::a= J.::d ~. : -r--- -

......,.____ -- ---~---·

~-:--r:.:.:...-::r_ -·t-- -~- ~:.+:~ _ _:-~--~-:

::: _ _::=: ·- :t.:..:. ____,__:.t::~..::-:

::::::t:- .:+: ..... ~= .. ;~:---:i~:=J=. ~~~==1

- .-x:J ~ -: .. -~r~~;,~1 ---~i~::~:::: ··. =:.±::::

-....--- -t-~--

Page 49: him L. - authors.library.caltech.edu · choices on SCRAMJET dynamic performance in the context of real gas effects. Procedure is based on one-dimensional fluid flow analysis. The

c; .., . -, ;": Ci

CXl

Ji <

er w .....

;;-·:,~ w •:,;• ~

\, ..... :z w (.l

w :i:: ..... 0 I-

g x Q

w c:: < ::i 0 Cll

~

"'

'" "' ~ ~

~

c z ~ ;;

"' ;:

n le:! .... 1;1 !::.I

1~1 :;1 '·1 ! ' ~

~: - -· ~___:__: -::~=E::.: --~ - .

- -· ----- ---- ---- -+ :·:_

. ':::t== 7"itJEf ..:.SPEciE&JMPIJJ.SE ... ( s'Et:iJNl:S •: -~-= ..... +: -=t - -

.... --·==t=-:±c:-=_,-=·-·~ -·-·--~. ~-. - - --- ----+. . -- -=---4- ~---"f'"""'

.:..::..::.+-- =-..:+=- - ... -:--'"°--~- _,,_

: : ~=-.~·- r:--· _;.:- ·:=:+ ...:,.- --::t=-- ----- --o.----t--- --

---,~=~~=r ·--~ ~-~=· .:::11=to··a· ·a··>.::~· _ _., ···-t:::.::~4

:_:~g :.F~ :.:·-:~:~\! -~ . -. ·:.:_i:~::~~:~~~~: ~\\.·~:.;:

-- "::::',;_:-°\\ :1 ~\ 1:

. _+-~1:·:.:::]~:.~>-d'\:~:§_~r.­

··----, _::1:~-=:+:-:-.:~ :·: .+·-:::::= :-

·: :~#=:S-:.'l~ ·= ·- ~· -:~~:=-:;71'

::::L

-EE~T~=E: =: l.:\~ .. ~~F)C. -~-

49

~~=·

........... _ -~ ..... c::r::-...::...cs. -

·-. ·+ -- -··::=

-~-

-- -- -::::c.:::: - ~- .----=.:i..:-. ~ .. ...::.

-;_:~c:=+::~_:~-~_:_ ~· =~

---

- -+-­.__ -4-·:="7:.::t--=

r--~-­.=-:-r==

~--!----

-~-=::i_

-~~:J:-= --+---:~r:,::=~~ ::

. ...,__:c_} ±· _,-·-= --~-- ·-~1~~~~

. - ·-r---- - - __._._ .. ~~--- ~- ·r- ... -:::::::+== --- - . . ..•.. -· . - _,J......-_ - -- - . -- ·-

~..::::1:---=--:;::::::+:=.: .:_-:--: ·_ --:+:~· -:-.. -:~-~ -~ =· .::- -.-; ...... ;.:: =r·:~_:-,;~::-:~;: •==

_ _:::t:=bJ==t -~~J=:.~·=--~~

-...-----=-~~ :-·d ·: --~=¥--t ===t ·- -- ...... ·- ':::": . . :: .. --~

·- -=t..:=- --=----r:.::.:.I

__ ,_

·--+---4- ·:-= ~-=

-:--4=~-.--~- _ t=~~E~-=f ~-=

Page 50: him L. - authors.library.caltech.edu · choices on SCRAMJET dynamic performance in the context of real gas effects. Procedure is based on one-dimensional fluid flow analysis. The

:::::+ i-=..-=-;..: ·-+·- --..--

_,

,__ -~--'iJEf.·c-sf1£~ .4

---;.. •"-• . . --r::::::: ....... -

;._'3000-·- ._ --- -· +-~ - -:~. ··--T"---:·-·

·_:_::§t_ .. t::.::r. ·_: -::-=;;··. ~~7:.:.:f·=~:~:.

j =----~~=i~. - E--:-­

•:·-~;l

----.+----+--

·-- -- . :-:.;-:-:-:. __ : t'-

_ _,.,_

--..,.::::.:1 ·-y~

=-:1= ::·

::::::+=:: ~ ---+

. ~= _.__ ______ ..

:=t=

- .. ___, = +-

---~- ~:_:_:!-::~--- :t:=-

.-.+

:~

so

~ -~-- _...... ..... ~ .. - ·-,_

·.s...._ ... ~-

-~ --· ......

--+-

---

1------­--r- - -

--

"Ml/~ :pt/#)_-_-=-::.t=..:-.t=---=---i _ _..... ____. __ --- -+ .:-

_ ___,_ -+-- ·----~- --

---t---___:_:_ t· --

-----==

=::t:· --

~~·-_......._ - ---- . . - ·-::::::

- ·---·-- -----

+------ .:t:: .. T:"- :. ... :::·.:..:-·- --+-·· -

- :.+=:~- -:..'=F :;::::::: ·+--::---t-~

. ,____ ____ ==-·:i..·--===:i _·1 :::._ .. --= .-t···-

=:-- +-- --~--. :::::::::

1-- . __ ,___ --

--~- ~:: .--.::-:· ___ ---- -~==

Page 51: him L. - authors.library.caltech.edu · choices on SCRAMJET dynamic performance in the context of real gas effects. Procedure is based on one-dimensional fluid flow analysis. The

·~611, ~----=-,.

'-..:.>

....... _:,."

---

-• --+-

±=: 1

+:- _--+-_,_

_t: --+----·

=

·~-

·Pliifo

--=-

51

~----- .. ~

-->.-

-.:.,.... ......

, ... "- --,_ ,\,;::­

~:'\: .. ,.: _ , ....

r:

"'----

. --~

---·--

-----r-- - +---·

··-

--+--

-4

;-

-- _:: f.-· _--- ·-- -~

-- i.....--. -----== ___.. _

=

----·~- = ==r=·c: '

-= -----

--

:::' --= --=

--··t·

:t

~=-=.r=: - -L_;:·:---r-- -

-i- :· _j_ _:· - ·---

--= ....___.___ . __._____ --;.:_p~

-'~-:_:-~ =t:·- I - .. -T-·--r---

.......--+ --··- • - ·•·· ... ·- ---·-

=r= a

··- -­·-·­·- --. --~ --

------.±- =~ -=

Page 52: him L. - authors.library.caltech.edu · choices on SCRAMJET dynamic performance in the context of real gas effects. Procedure is based on one-dimensional fluid flow analysis. The

.,.., ... n ...

,_ =.;..__t_ - l I::. ::::=t::= __ _

~

··~-

I ----r - -~-

-- l-- =-

t

= --.:..~

: 1---~=-=

=

52

. --

-~~-- :.;=t==:.-r---- ., .. --~=r-. -: ... :

.. ____ r-·-··. ·---+ ---:-:= ~--:!

. ...,.

-.__ __ ;___ ------.

--r;-

-~__:c::::; ,_

·­- ·-

-· ----: ~-=-·-= --===r=·-·-

·- ~~: •if .. 11--

--=7---:--:::L:::·

::::i=:=.

,.:__ ... MS11J'-3UA:~~il1Z{!!~l~~~ll~,:..~ JfV4Ji ·Sl'H .. ,m<= 3 "-=<=.3

_,.._ .. ,,.

-~----- --L .i ~-~ :· =:.=:J

t::: ::. - -· - J. =·- . =-=+= - ·+- ~ -~-~--- -

---·------

---= ·~- =--~- ---=l -=i

·t

~: . ·-~-------··· --

_, __

--~

=-~= ~ ------·· . -·-:-=~~- -~ ·::::::-E- . .:.: ~-::.~ -~-·~-

~ ,---,.-- j:::::: =+=~---· 1- -----'

~ ~s;Lilil/TJIAOI NlllSE!l, Jtto : __ :f:::==i

- __ J -----··- .. ·-- ·---·-···-· ----- --=i

______ ::::-:i ...... !---=--~~-:.:' _____ .. -~ ~ -==.-=:=~-c:.:,~o--

Page 53: him L. - authors.library.caltech.edu · choices on SCRAMJET dynamic performance in the context of real gas effects. Procedure is based on one-dimensional fluid flow analysis. The

.•I,

.....;,.;.·

;'Y) ...... I> ...... .0 q-

) _, ::; ·' ·' _J

.. +:.

·-

-'

t-·

=· ~f)_p~·-

··--·~--.. ==x:

·t ----'·

-~-::­

~EL--=J-j,c(t. .,,. I +-- -

-:i --

~A.f P._¢/;Sff~~N~

---~

:=7~'1/J'.'.--

=----=-+-- ·-

--

.~/)~· ---·-"· - --~

.::. --= ...... --

53 -··

··-

.....

-

-· -·

--

-· :;::::::::::!=-::;:= -·· -+- ·:::::::::=

--;----·-

. ..:

. ....:::::: --c=

-==:j::: --· -=i.: ~ - .:=

~1·

:-< .. -----

- f=-- --

··­--..:.--:=:::.

-------- -­+--- ·--

·-----==f =-·-·-:::: -=

-+ :J __ 1

._·

-+-~- --t----

~=--+--+ ·- ::=:::

.. -I ----l-.

··==­-=

Page 54: him L. - authors.library.caltech.edu · choices on SCRAMJET dynamic performance in the context of real gas effects. Procedure is based on one-dimensional fluid flow analysis. The

~--­.. ~-·.:·

•.... :;: ....

Y) .... .0 ....

'.) ..)

_J

~ .J

..) .J

54

--

....

__ .___ __ . ·--=r:-:. 1 ._ -

~--_-_ .. -,.'EL ----S--P~C/Pll --·--

,___

t=Jsdii .-

. P41J!! :~:--___ -

.:.. :c:

=

-l- -= --1

--- = -::::+-:=±.::=;__.

= -+-... _,.

--_ _.

-.L. l---l;--

___ == ==i-=--== -- .1-- -~c:- __ ·:_:_:::

.. ~ -- . - .:.:t:::=::...= -- --

_;-'£ -=----f:--== -~ =:±:::::: ~=-- :;_:::

;--=t. ::r _:=-- ·;=

. -t

-t --+---

---- -~-----

-~-- -i------, . -------~ ,.,,,,--..... --;--_==i._-

1. __ --

, __ '---==

- ·- . __ J-:: --~ +--····:.:-··r:-: ·::::::::t .... --·- --- - ... -- --::::: -t=:····-:t==l

--~~ ,___.;-..:=j

_...,::.....::: -· =1 _-_ --~

~ t=.--~~ g .:.~·-: ----==--~

~~- ~ - .-z====i

___ :

:+.. ... -----=-=

_.;. __ =i=-···:-..::~::.::;~-- ·t .___...... ... --··---.. ..... -··-­·-·-- ··--- ····---+ ... -

·::t· --

Page 55: him L. - authors.library.caltech.edu · choices on SCRAMJET dynamic performance in the context of real gas effects. Procedure is based on one-dimensional fluid flow analysis. The

(1") -ll") -

0 v

--

----i-"""---

:-.:~:·

. : =.i==:: :~ --

~~ --·---~-- _::. -: ~: E???r :"\--

2\\-~

~\\L. --·=---·=-=. _:===~-"-+-" -~-

-+--·· ·-'-·

.. .:·Cl/'_-

._.. .. ··-·

55

_____ ,. --:1.£.-v._

- - ·-.;····

~::==r~t:~

-t ·- - - :r-. ---~~ ;:~

·~·~--___.____ __

--+--·

.... -- I ·-+

... · - 11r··: - ~-'fe:. . . ·--+--'-· . - ·-

·- ~-- =:=p···-- ·- .... ------; ~---

·-

--

--+---

--~- ""§ -·--::r:= • -·--­. ·-·-+-- ··:==i-

;·~- ==j..:::::..:== -- ::==::::::::+=:--.. -

--- ~.:.: §=g_~.:== ~--- -

-~·-

-·----== ·-----t ~-.,... ___ .. ___... ··-

1 -~--::-:--

-· . ==l -----~~ =-~== .,; _ __,___

--·===t=---'--..--'---l

.. :..:: .. ~ -----·------+-

Page 56: him L. - authors.library.caltech.edu · choices on SCRAMJET dynamic performance in the context of real gas effects. Procedure is based on one-dimensional fluid flow analysis. The

:;;

1.;-: .. '<'t

a \..~- co

I <I)

<

c:: w I-

c·~· w ::!: . ;:: z w (.)

w :r: I-

0 I-

Q

x Q

~ < ::> 0 C)

g c

" ---..

-:;

;

n ·:! : ... 1

:0.1 'Cl

jil '" 1:: ·-·

... "' ;:;

--

.:..--:_ ___ ·:.t-·-::: -~ -+-- --+ ·-t

: :::~- :-c.: ~-=.~ ~.:..:·.:. ---1---- • - -+-- -

----- -... ·--·-··· ~ t

: --·:::=F.::-:!:..._.:.f---+.

:c:c:::: £~=~ -=i==::-_ _::__

: ~-E=E#~~ --- -

:~ :_-_ _:-_:~----- , r:-- --+­· _:~:- ·- ·t--·

~~: ~T~ .. : ;.~J . .f:--t--

. : ----:=i:. :c... . - __;_::;:......_ . --------- .... -- - . ::-:: .• _...i_ :=:=..-:::t.;.-. -·-· ·- - --

·-+ '.._-~:~ ~.. _.....::... --

··- ---

... -=- -=· --~.::.r -·: - -1. -.::+.

.. ·-t:~:. ~~::.~--.::: T .. '.:F

+:~-

56

-··

---------- -- t"--

',....::.._ -.::::r::::: ·- --.::::t::

-.---~_

__ :.~:.­·::::i--::

.. --_,..-- . __ _:___:..:

= .... ::::T~ =2

·- .......,. -=-· - . -- -------+----1::::--t---_-:

-=t-..

=t:c-·-· :o a:tii · ----r--1

- . -r-- .:! - -.:t::.::l

_,_......:= t=:..:.:.t: : :-: ~

~:.:..::!?::: ~

-·· ---· i _,_- -~-·~· .=-.:t=-:~::: l

_-i::: +- ·-_,. ____ .. :-:: ---~~"=

--'- ic·:--r-c . ---- ~1§¥' - ·-c==i:::. -- ----- ::·

-....:.-s-~ · _ -~ ~= :r:-· -a'-~,: ~1 -- -.:·.:-.:~.:-=t=~:- _f:. --~ :-:~r.:.:---_·:-:-:

..• - - -·--·· . .,.. ---- ·•---.+ . --- __ .:_ - t··· .;-·- ....... 1

··- -----t- ·--:.:·· :..::.; :::·1

~i ·-t- I - • 1: -1=} -~:_:) h~=t~-~~+ =t.:~-=~-~==t-=?=::~i= 7 =·~~~~i -;:--.:;=c-~~~~: .. :·J- ~;~~-:!::~:~-::_~;

Page 57: him L. - authors.library.caltech.edu · choices on SCRAMJET dynamic performance in the context of real gas effects. Procedure is based on one-dimensional fluid flow analysis. The

c;

c· ::=! 0

~- ~ Cf)

<

a: w I-

( .. · w ~

-~ I-z w (.)

w ::r: .... 0 I-

Q

x Q

w a: < ::J Cl (f)

;:; ~

~ =

- :..

-~ --~

,....,

!=: _,..;I

·-· ;~\

j:::1 ,~i .~I ;J

57

--- ___ ... _ . _ _::-. :.:: :::::-:r.: ~-&----+

- - ·- ____,_ ....... _ .,.._..... :_. -+--- ---- •

·---+· -

c 1 ·:: :/:U.EL..SPE.CIF-tl · 7liAP1iiSE_f~iJiilsi -==t- ., ..

·'-·

... --·::::::i- .......

~-·-·

~--t··-

-· ··--·\: ..

~. ~~; -~= -~--: t·~ = --~~:~= ~:-;; ;~~=

·-·:::_:i

---·1· .. -·---···---~~ -- :--+==:r:. -- ..:"!.:.-~ ::..::±.:·_ "7--. .

- -------'--·- .. I . - --

··~

.......

-:I;-= :---+--~~ "Jt..,- ~---1-

,,.,... ·-

~·....:. ..

- .......

·-

._. __ _ 1-­·- --t

. --------- -:-:-+. --

:-~::. __ - ·~ =::!--_,.. __:..r::- --~- - -i-

·-.,...- -· ---------

-----~----

-- ::::.--+--- - ---::.r==-.-:= ·-

±:::::-~:

-- ==i-,-:::::::i::- ··:~.:-- . .......:: --- =--=tt::.._f:---==±:..:= --

-+- ----'-·· 1-- ·-

__ ,_.

--~_E;...:;=:-:::

.::::r~---1'- --+- - ·--- ..

=.::.·-·::...... ---· -.... -----

--1-- ==:.....;. .. -::::=+==:"-- ----

·- =::l:= ~ =::1 ==:;c. ·-:=:t- - ·--::::..:::

-=~- _±:=

--+---

- -·:-+:_-_ =~ ~~--:-.21=:=~~ --=-+-- :::+· -t-- - t- • .r::.-= _c- 0=3 ~~>:-· ·-:-~ -:·=r-= =:r:::=: :::-.:::·7 _ __.._ ___ ..,.

·-···-

.... _ - .• :J··· • ··-

-:t:. :1= ,:~=[-::::: ·E:~~~-::l::: : ___ -, ±=::;: fT- 3: ~:... := ~ :~ :=:::F'-c:~~:.:;:::::;·=-·i=:::i::·::~ ... --

...... ---- --- •t ··-~ ·-t·-- ~- - .. .

-·-i--= =:..____::.!-:: : · · . c :-ic· •. : :.::. f • -·r::: ··::- --t- --r-.:-=t_ -~:-:--:._1:- ---:.:::::

·-- f--_..;..- -

----~ :::~-~- ~;~~=~-: __ :.::t~---7;:::~E~ ~~r-~.~:E:-:::i:=

Page 58: him L. - authors.library.caltech.edu · choices on SCRAMJET dynamic performance in the context of real gas effects. Procedure is based on one-dimensional fluid flow analysis. The

:;;;

.... :! (" 0

co '·."· .. :.. I

Cll <

a: w ...

(\. w ~ ;:::: --· z i..U 0

\::! f= 0 ... Q

x Q

w c::. ~-:::> ::::i Cl')

;:

~ :..

--::;

= ~

11 i 1 .::.

I" :>.;

:rl "'' .. , ,::1 :.;.!

I i

~ ~

58

~~+~::t-:::~-r-¥... --~ ::::-····'j~. :··-::i---.- -+ :.t:=~~-: ··:~=-'SPE(IFJ.t.'JMPti~EllJJJD5 - ___ __.__ _ _... -- --. .,_ ...... ---...... - --L.----+

~~ -=.::=L..::::.:.~·-~----- .,..._ ·:.::~=iZ-_::r:_::_f~

.. :-:-t"_::~:-­

::::+ ~ :=-::::;: : --: -~ ~1 .. ---+- -=:r::::: ._ - ~- --~===£~-

~ :::f:~*=-=f ::.I·--~

.. :_~ ::=JL=:· ~--~~:_~~~~~::.:::J;.. ~--

-=-- -

__ _:

...., - ·-· . . . -· . ----·+-. : ·~-:-=::.:r: -=:- :::::i: •· .. ;_ ::_-±.:::;==:i=·· ---·

:_ ~~- :f~ ... :~-::~~-=E-· -- ---+- - .. --- - - -.:. :r.· ~ :c:: : :.;.: =t-..:::+-

.;_;.: ,_

__._:__::If .. ~,;. ;J::J ...;:__ ~=~/ .....

···'.I ,. ....

"":'t! .:·

.... .....-.--- -··""'-

... .. • ·• ~..:_ t.........-:ti7/.J i 1 ' --

1-·•' ;:.:~L.

-L..:~: ---': :-::-+

: :: ··-, ....... -

. :i.,.._ . --:;-...::::i= ::: :_; . . ...... :~ ::::1::

~~t~~:i> ..

,,,, ..... ~' I I I I

...:.."71 I ! ~ ~1

·::;1 ... , ::I:

··--~- -- ·-.. -~

: . :----f.-==t:::::. _______: ---

Page 59: him L. - authors.library.caltech.edu · choices on SCRAMJET dynamic performance in the context of real gas effects. Procedure is based on one-dimensional fluid flow analysis. The

r.,· ... \:_:::

(\") -in -

.•

. .-..,.--·-·==t= . -.- .

r .... ·:, __

r- --

~~;,{J: ·:;

=:1 ' __ j _ ,___ f.\- :,

~· -=FOEL _:"$/!wg_ :--- -.

,._~·,,.~_'• Pifi.Si=~:S~ ·: ·- ·t---

---~ ::

~&a:-~-~.···--···· -~ -·-- :1- .,.::_

--::=::-r=-

= -·=

·---+-

- T -r:- --:---_

' ~-

-T

' ~

·---..

=+==- +

:::.

. -­_..,__

59

,.,.

= ·=7'.-==~,

-::\--t::.:.=;\. .. .. --.. -:

-----i -- - ·-

- ~-

...

- =

·--

L :::r

I ••===-OJ-· ----. ----::~~ --·-· . . - - _;

., ..

, •.

··--~--

~::l-

~3 ~:r:- p-==:==i ~

:r--

., ·t- ~~

-T------- ··---:::::L~: ~

-+---· -- -- ---+ --

. ....... ·+-·- ·--+-- --- ---

·-, -- ==r=~ ·--:t.:··· :§

·t-

·~-

• ::.:l ==l

--~-

·- -·--­----·-:;:--

--~-~- ... --

..... ·-=·--· -@

- :__;, .. _ - - -- ·-:.:::::._, = -..! - ~::::::i

,-·~====! --:::-.: .. ,. .:~

l=

_____ ,,.. ··-------t---- ~"'.i --J: ··:-:. :=.:-

.1.

Page 60: him L. - authors.library.caltech.edu · choices on SCRAMJET dynamic performance in the context of real gas effects. Procedure is based on one-dimensional fluid flow analysis. The

C; .. ~.·

M ...... \!') -

•-3ol!'-¥. _____,__...., ... \ ~· -~~,.:

--

--

:I . . 1.

it· \ ..

-~-_;_;_ .. . -:'"•--

:\.:1

~ ::t:: .... ·-·- -~Sl!E.'18.G ·=

I---'-"'""~,.·,.,:. 1.10t-sGh&eti.:-!-:-·

::::r:::: -·---·--d

- - - .==::+=.: ;:JS/iii.:: - -

-

,_ 1

~- .. -+-·

--_::i:: =-

:"·-

.\' .. .. \-~

--".=-·

-~----

60

··•

•·

+ .:~~--

--

··-+~

-~ . -- .. ::::c==. ·­t- ~-- -------._--i

= "----

·---··

+----- ---

·-+-· ·­--==----

.:~:_::::=-- --·- --

---· -.E=~----~-4--== •-.- ·----.:- - t:-:~.~:~.~- t~:- -~

~~~= . - --- - -··:.+: ·-:;~ --~- ·-:.:..-= .... . ····---· ---~r:..=...:i

=---·~r-·-

-- + ~= ---==- -~-t-·

·-~:_:-~ - -~- -

::. --­:-:__:_-

---- z.-=u.J:----r- --__ j: .. .:~- ~---=

. --

~+

. --­- -·.:-.:-____ :==

= -:;--r- ·-===i ---§

...:::..__r.

~:-_ --------·-· -

:~-- -:~ : :~~;-: .. ::::-' - --~

,.____ ___ __,_ ~ .J .•.• _:.--·

Page 61: him L. - authors.library.caltech.edu · choices on SCRAMJET dynamic performance in the context of real gas effects. Procedure is based on one-dimensional fluid flow analysis. The

!"7~.· -..:..: .. ·

('I) ...... LO ......

·o '!.)

~ .... IJ)

. IJ)

"' ·oi .J w ~

.... _..,

----

·+-

. ., ... ,,,,:. __

. --

·-

·\­

:-.-:_"' ·--\.

-\-:.....,._

JL

~.El.:=:.S.P.ECJG~·:.

-=:=-'L ... PdliSE J~ECDIJI~-

··-

~"~:- . ::3- -. _...:::r-=::=±-­: : __ . . :.r~-_J:-

~l--

-- .....

·-

--+

i---::-:. -- -- . 11 ....

-::r= - --

-.. ·= -----

61

_,_

=~=

E I

·-

.. -----

-~ .

..•

.v ·~·­.,. ..

·- -:~ -· =:==::-- ~~·:-__

·--

====f~~ -=== -t- ~

·= ~

:=i==. -· ---'- -~

-= ==±=.- :;::_ -+

-==:== -==E== ~ -i .,

':.=3~-===r~ .____.....---r--·~· ::=-4

~= ·-= ! ~ -== - --

_;_·-~

- --

+-- - • ·--- --... ______ _;-~

_-_r ~ ..,... •::::::J ~=·====1

-1.:____i---· =--==-l .. __,

·==+=~ ~ --'~ --=i= - .....

~~ - r---=J

--·­---_··:·:~-..:::....=

-"··· . =t= --i----i-:. ---~.: ___ ·1 :· -===

.;. :.::::=l

Page 62: him L. - authors.library.caltech.edu · choices on SCRAMJET dynamic performance in the context of real gas effects. Procedure is based on one-dimensional fluid flow analysis. The

:;;

tf"".•"'·· "<l"

0 \\'__., .. · co

i:n <

a: w ...

e·~, w ;;;

:~ :; .:.- ... z w 0

!:!::! ;::. c ... g x Q

1..1.J .:r < ::i c <Jl

§ "" " ::>

~ :;..

~ -- -,:

-~

;.

'-' z ~

~ ;

n d :o.I :-::1 ;D,.J

):i:I ,~,

j::t 1:1 I i ~

I-- ·-..---

.. -4 ::±::...-:t=:

.. :...:..-..:=. -··---- __ L__····· ':": --:r-:= ·4'· :: .J- . 1;,.-[.·· · - -- T"1i.nr·T• f.t· :. :·· · --:i~0 ·i:'F'J,,.,/I ... :"ALTlnv~.;ll" .... =-_,-:r-~~:r-

- :::::::: ~-~·=t.-____ .._ ·- -

' -__.__ ...... ~: - - ..:.~_ --~'::-::: -

···:=r;::::::~:-

___ ··- -·-+---- -:--:r::::::::'=i=-- ·.:.-.:::-::----,- -- - ---·------ ' . -- -- ...... ----

-~-

.-.

-· :/~.e .• f#-

-~;.·~·

·--:~-:::V~·

. _:..;_ =·· .. ::./:.· .... , ·-==-..ir·. --· :.1~: --· . -----~- ,,._ --- .. ,.. .

·· :~· ·::~:~=:~·;:L::::-.§~.~ .... 1 --. '= ~}:'.;:::::~;;.:: ·f=~~ -~ =~;::;;g----;;;=:=·-.=---

62

--

-.;..:7--

·I'. ---..:i,.-i:::

:;;,;; ---~-. -

~.;rMt:. I.ff·----'- .,_:_ :.:+ ......

.... . .., .

--

-

·-, _ __:::

-- ....-- ,____ -____ .,___ ---

~

.. -- .__,__ 1-:=· -:-:=.......~:=

_....__, .___ .....,.___~-___

:::.:t=.~ . ·0-·- -

-··:-+ --:r.. __ :..~~-:.t::::::

- ..

,.... ·--.. r-----·. ..

.. :.--:-t::==t==- ~-- -

--

--

-+-----

·--

Page 63: him L. - authors.library.caltech.edu · choices on SCRAMJET dynamic performance in the context of real gas effects. Procedure is based on one-dimensional fluid flow analysis. The

C·· .::.

f'·. ., .... '. ... ;•.

;;; '"1

Ci co Ji <

0::: L.LI ... L.LI :I: ;::: z lJ.J 0

w J: ... 0 ... g x g

UJ a: < ::::> 0 Cl)

~ Jo.I 1 .. , 'a.I

'1=i a.1 "\

d :;;:)

. :;· ~-- :_ .:.t::-::. - - --. . . . - ----+------ ·- -----. - .. -- -- ' ... ·-·+---

~:::i ':l ..

---~ \\:·. --.:~N~

~~~

63

IJt.· ... --+-- r--:"\.'

:~·

... ~~~~~--~: ::~~~-~~~=;~---~=~==t-: 'id:.::· ::0 ::-_- __ ·:~:-~~ ~T __

:--~~~~~ .. --=--.--+

----- l.l,~

---=+- I

-=:==r:=;= - ~ ·-t

·-+--e-·

-~ -----· _--a..-.::::.__ +-~ ... -

· :-:~<=!:~:~~::,F .:;<I:::_ -2.~-=:T=-=r~ : ::~;:-L:c::::L:::+:: · -~~r-:-~~~.r:±~

i~-·-s

. ...,_ -+-·

--·

~::A\.,"'.-: ~--'~

_, . .._

.::::::__...:=_

1/1.M::J OM,OSITllJAJ. --;,i1UI£~ FJ.IJll/.: . -- -· ·- _ .... ----' . ··-

-~·

>--

:::::+= ·--<-~ ,-·~-:-:~·~l~==~ --· ---~-~ .. ~ ----

·-

--z_

---+--

-- ---=-.:.:=

==t=::_:. __ ~

-t--·

::!-. -r-- •·--+- --- -· ............ ·--~~- ·~· - ..__.. .... -­____ ...__ -- _,.._:::::

·-:=x:.--- -- ~ - _;.. __ ----+ ~-

···-+· .. -:-__

. -t---.:. _ __...... __ ·- - --=-===:--· ·-:

·-·---+--~---+- - --

----· ---~_;_-~:~- .. :=~ .. -::-_.:.::::t:::...=y--c :t==:= ,_ ... ::t:~

---~- ...:.:::=t=t:::::= ~-~-- -~ - ~ :.::::+=t=--= - -- . -·--

-r--~ -- __ -· -~::! --~~ ... :.:::= _ .. ..::---+====: - - .

= -- -- .. :--.:r- _.... -. =~--~---r-=4-:-.:::1=:::+==::--=r- -- -t-:--= ·=1=- --~· :j.. ~::::1= .... ·- .• --

__ ::;: : . .".~~~~~:~~-~E: :~~~~- :::._:_ --- --t-· ·r- ._,. -+--

.::i:=-+=t==.;-:::· - ~~--~ .~ -----~~~- t: - . -:g_ .• :-+_-·:.+-:~

Page 64: him L. - authors.library.caltech.edu · choices on SCRAMJET dynamic performance in the context of real gas effects. Procedure is based on one-dimensional fluid flow analysis. The

:'::!: 0 co

I Cl)

<

a:: UJ ;-w l: ;::: z w 0

w ::i::: ;-

0 ;-

Q

x Q

w a:: <(

::::l 0 Cl)

z :2 :;; :: ~ ~ :.:

" "' z c ..;

~ c ;

q !~1 1 .. , ·0.1

~I .. 1

g1 I i

!

~

<I

"' = =

-~

~ z

" ~

:.:.:.~ •. 3.=-·-: =-"_:__~ ~~::,L_~~~~- .. ::.__._ ~~.i=-:t==t:::·+~--. ·-- --'=:.t:::::"-:l:-'rc. •.

~0v"ii.11.s"ii!wA"i8ii£3iTIL{j>; ~-~= -· ·:i::.:.=:-~' :_'.::::.:t.:..--. - . . .. :::;:!;I_ -

-· .. :-:= r=t .::.~.-_.,. __ _ .....

:---=

::::::i:::_,__. -:::::+:=- ..__:::i

·t::::. --~--- .... ---- --r ·-~-

·:~,_: F-= _ ___.._ ,..----..- I- :±::~.

64

.~-

-=------ _:~-:-. ::::i:!! -- -~-------

--:::::::i=::: ~ .. ____ ·- '+--- ... _.,.

'~~-~-:~[:::~:_$=~~-: --~: : J3~- -J~::;t~-'-T- _::::-::_:::~: •. -

--- -·--t· .• :-:;:..::=- --~-~~ :: -i:- -- ..: ___ ;·;:- --: . --t-- -

- ·- --+-·- - ------==- ===r:. ·- =~-= . -~- -~ ~3- -=: ~~-~~ ~~

-- -- - .,....... _; := -:::::r_-:- ~ --4'=-:. -=+---1-·

---~-

. - .. ---

......... -:...-=~­

:.::: - ---+-

-:=::=::r:::

~ ·::--· ·"?-­

--~~-~-·

~~--

..... -+--­_,_

- :_+::-::;::: . ·---!-

- - -.-:.=:.: -~· _,__ __ ._

-+-.-=:. ~ -- - .... --------. =-=----4-

-::...+

---

--

·­--

-­·~

- !.'I:: ii/;';;-)~ P~IJL--- ,....__ ...... ·- _......__

-- ""':'--+-- - ~

- --' .,-: 4 1-~

' ~~M_~X.-;?d;~-~-~~~ .£:-~O :fu ·- ·- ~ .. ;::=

-~:._: .. : ... .r:·.:.· ... 1 .. -!-.-._ +=-::t=t=-

--t-----

·-T-.=-

-=:+:=--~--__. __ ·-- ---..·-

·- -~ ~ .. -+---.. --

~===i:._ :::==t=-~---. -- ~- -0----+-·-... --=r:---.:.

.:::-• ...:..~ --r---­:.h- .. -

·- :::..:~ E~-f..=·--:-­

_::-=.r~~ :t-.:_;._~---·­-=-..:r~~--- ~----1~:~:- z·-::=.=

----- ~- ~ -. ---~- ~ E¥~~~~~1~:~.Ci- __ ~~ ~~--=t·:-:.~~J;_-:-:!::=f ~~

. -~:-~- ~~:·:1:::~~~ ::=t-==;:~:i~ ~±:.::~~::~: ::~>~- ~~

Page 65: him L. - authors.library.caltech.edu · choices on SCRAMJET dynamic performance in the context of real gas effects. Procedure is based on one-dimensional fluid flow analysis. The

:;; ..., 0 co

I Cl) <(

.a: w ..... .,_ w

·.:;: ~ ;:::: z w 0

w :c f-

0 f-

Q

x Q

LL; ::i:: <(

5 Cl)

- " § ::0

i c '-' -"' ;:

c

"' (j

?

~ i4!

I"' ::t'

\;;: :1 l!ll

L: ~

65

--~+ ---=- :.:----:----- --.._,....-.:.= .

·-

"~-·:\::

:,~

31=~

' .

':l::=t=J' -~-------l0-.\.1- • ----., \. :-=:\:·:

-1'~-· -- ··---.,. -~ ·- '_, .. ___ ,.-~:. _ __,._

_ ___...--:....-. _, 4 ... ~

... -a

·~=--

_, __

-· .

=-~=:3~"X=--_ __;_ : ..•

~-~ - . ~'. , ...... -: ____ :n.._

-- .L.. ~ ......... --

.... __ ............ •· ----- -t--· --

- . _:.:c:·_::____±:---.:::_;:_ -:F. . ----: =-----+---_ . :t: -

-~~~~~~;i;J\:~~~~~~~:::~~=::F~~=~-- -~-±:.-:~_ __ L~~-::::r::_ -¥-=~;.w. l,/, ::~- - f ] __ -- ... ""' ..

--- ----+----t .. _ _: ~ ..:___._::_ --

-- ___ .;:i. ·: -- -----.... -== -· ·--~-

- ·-+

-n•t:--t. tlii :jil .iiriffoJl... :-.... . ---

0. 00-~;,-:r. '-+·- . -=--+ -

_____:;---·-·• .- ::t:;::·-- _:::;_-:.._.

- -- . .:t:=:: - ·-~ --+

·.:::

--~...:E=~ ·::::.~- : .. _::=i:~

-= :_~--__; __ -----r-+----"- ... ...._. - ·-- ·-·--·· -- ------

=t:::: ·- --· -~. -. - -~ -- -~~~-~

. .,..--~-~:::==±==---'-:---­- . ...J-. ~- .!'.:::-:t:=--+---

-~~~. ~_:-~f.::~~:;~~r:--~~~-~1~~-~:-~ -r- ;3~~:~~ ---~ -: · ~Fht:-~~~!-~~--~i.~~~~-: ... ~~~:·~~~--:~= .:~~:= -:~-~::; ::~>::i:-:::::-~::F::::.3 =~--=- -=:.... -_ t:~-~:~r- __ :_=r ;:::51-:-:_ ~"-- ::::::2:E:_:~::::q~:::~:-::J:~~0_-::g:~--~=-= --=~~~f-=:;~:=~=~=:-:~:~j':c~~;;~:~L.:::~~:<t-~~~~:~T~:~::~ --~ -·=--= :~ .. -- - -+=]:; =·::,:r~:~~: k· .:="'::L-:i: --=-:; ::~:~==J=::::=:A~:.::--~T:;~~-~~E~::==t:~---=-~::±= '.\:::~;~:::::r:.:::::f:-:·:~: f.-: :~:~:~~~= ......... ·• --T ~:·f~=-:..-:~f:_::=~_:J=~::_--t. ~~~~~:.:_=i:-_ ·-=-~ -- , - .. ----_ :~~-F(NHX) ~:~::1:-..:~---~F~::=:=~~::~

-~~::--t:~"::::-=~t=':-:~=i::~==::::-T::~~:.:_::t:.5~=..:1~~==-:...=t~~~ -~.:~=~=-=:=::£:::~:=.~=r~::=: :-:i':-=::::_:;:::~~:~=~: .. ·::;:~

Page 66: him L. - authors.library.caltech.edu · choices on SCRAMJET dynamic performance in the context of real gas effects. Procedure is based on one-dimensional fluid flow analysis. The

'

;;

"" 0 co ,n <(

a:: :..u ...u ~ -z Lu C,)

t,o! ;= c t-

Q x

£

~ ...,, ::i 0 :;."')

n I I •:ZJ

66

_....,..., __ ==--:Jllo.."

·=t=:

. -- --- r

··.··=-: .. :=£· j

0

.. ~- -

.,..

-t-- ~-........ --1:.. ·+ . :!.;::-::-t-._ ~---- ·-+·

--· ::i--::-..:::r::· __ ~·----f---=r-::: . - ·---:-;- - -- +---

--- -r- -r· - --==

__,.....,._._ __ ~ --:-- --_-=.;..,.._ __ :

--

--~-- --.. --· , ____ "'!

- ... UHC/rJl)IJ. ~A/.bl.UE' J!J.0/11_ ': ·---

•JI ·•

-'.:-S;,.\"

--·~ ~- ""'- --..

-~to~~~--=<-

-~-

·+-::_~

:::::::t::=:

-. --

-:;_..__ ..,._,. __ _ =-== _ _;.-. :_ ·--....-- ---

--+-

--

-- ..

--+-· - -r- --· - ---t --

=--=t=.~_ ~=--

---- ..---+-. -

.::.._~:.._ -

Page 67: him L. - authors.library.caltech.edu · choices on SCRAMJET dynamic performance in the context of real gas effects. Procedure is based on one-dimensional fluid flow analysis. The

:;;

::!: 0 CD ' Cf)

<

a: w ......

:~.; w I: ;:::: z w ()

w ::r: ...... 0 ......

Q

x Q

w a: < :J c t:JJ

~ " ,,. ;: 8 J;

-~

g

" <;

i

n !a:i :r. • .11 ,:..j

I"' o.;

':Z:' fa.i 1..:1

l~l ! I t=

""'

" --

A It:

~-~~~:t=~ -- ..:::-:=r:

__ ...._ --::t".:-

==:~ ~-:±=±:-~ :=· :::-:-:c§-

·. ~~- _;-~~1:.::_;_:; =

-·- -ri.

-::::- t1

--~---· .. ---11.·T

·--t·•

. :~~--~~--:~_:::i=.:.::±-_ ·­J~is:~::;_i~ ;:__ · .::.:E=E~J~:: c:~~-u:;

D

,, -:il:

- ~;

67

·\ :!\.-,.,·,_

~'Y ....

.:.,,..

...

... __ -- ::.-::+--

·-+- - -t=_ --- -·- .. + ----____ ,_ ____ ....___. -- -- ·-

---::::: __ ::.r-.:..:+:-:-:: - -=== ···::-:-:·::--i-:--',---+------l

_--~~-·-~~~

--£~;--~~! ·-... - r--- ··t-=- -- _., ___ -- -. -_ ___:.

- : .... - :.:t: __: :--::::::.:-.:-_ -=~ .:...

-1--- :~ -:· :---

--+- --+:~~ :~?---- ~~-l=-=

-=~r-- :-:!:=E.::--y-= ---=~ ~----~- -· ·-- ----- - -·- ...,. -- --·----- -----

::!=:~;-=~g~- : -~~~=~~~-=

r-_-- ===- -:_ ..... .+:"= ::.: . .:.: -= -- -==---. -:-_f.:- -: .. ..:::=

-:.:t g~~ -==:::=:-- ::..:::+==-·t .:_ . ..:- -:== :::::::= ·==~--=±= -. -=:-.:

~=2.-:_:-~; - :~_-····..:-:::

: ·i=.:::r-... ~· -• .;:-::+=.: :;:-··-

--~---=-=-=-- ~~-~~ .. ~~ ·=---=== ~-:~ ~~=-- -r :~ ::~~-=..:

- • - :J= ..• ' .. --- --..w.::::: . -~=---t:. __ -::_ = -.. =~·--- .-

4f-• +---~ _ __!_::.:-.=.. -

:::::5 .: §~~i;;i~=:

--i:-_ T~=~~-~;?=:::~:=: -~ =~~---;F:~~

=-= =-;:1:-:d~-. :=-: h--~: ~~-~·~ :~~

Page 68: him L. - authors.library.caltech.edu · choices on SCRAMJET dynamic performance in the context of real gas effects. Procedure is based on one-dimensional fluid flow analysis. The

a:: w ...... w ~ ...... z liJ c w ..,... i== c ......

Q

x

Q

1.:.1 a:: <(

::i 0 Cf)

~ .. ~ ~ -J;

-:; <::

:; i:: :>

n '' I I 1e:• ;C!.l

"" I•.

!:I '~I lo:r ,;:1 . I

~

., "'

:-.:: ·-- -7-· . • -- ....... . , .

. ~Ll(tl/,l~;Al.Tiiuoii-l [.Qf: :~.~--+--- --+---~--~ : =t:==. -~~-

·---· -+--:1110 ': -~- ~--

E:3-::= -·- -. :::l==-

.. ~-- ·----e-- •. -- .

__ ::;-:- -- . ~-

--#-·

.- :/~ ·• :t·

-;:/ . -----

..:t ·· l:

68

...

:-'--

_,.._ . ,~·

.,,. --~ ..

-+--:~:-·

.Jf! _,_ ..

,_._ -

-~-:·

-·-+::r..•

' -+--- ---+--•i

-~·-

-- --+--- ... _. ---+---

_, -:·

... 3:.·-~ ~::~~-::~

·- ----· -- . ---;--

~-'"T:::.

--

---..- ·-.:::::::::=

.-- _.;-·:::--

. ....!:..:.::.... -..... _... __

.,... -

-~

- := -==+ ,__:._ _ _, . -------==-- -. -- -

~ ~~ ~~~~;.::=!-~:~--~= ==~~~---~ ----t-- "-1· -· ___ __..,._

/: -~::.-~ :·~-::-:;::: -- .. :::.._ .;.--:t;:!:!:::"

---=~-=-~~::· ~ ~- __ :r..:-:- ...:-:-··~-=--=--· : ~~;:.:·~~~4~-=~:§:::t~L:

Page 69: him L. - authors.library.caltech.edu · choices on SCRAMJET dynamic performance in the context of real gas effects. Procedure is based on one-dimensional fluid flow analysis. The

c; '¢

··::: 0 (()

I Cl) <(

a:: w I-

!\\- w :L

• . .',·_r ;:::. z w 0

w J: I-

0 I-

Q

x

Q

w [J: <( :;) 0 Cl)

~ .r.

< "' ;

~ ~ - ~

-.. 0

;;

'3

"' ;i

l:i .... o.: "'I !a.I

l~I l"'I 1~1 I i ~

69

·--- ··--· - - .. ----...... -

:.-:7 --:-~~:.:::::- : __ -+- ·--'~

:··-1--- -- ·-r-- - - .........__:+.:~ ::.:.. - -- --'- ..... ___ :t . ~::::.t=:.:tof~.' .::::::t=.... :t.

~:J.:.-= ;;,EL-~ S~i::e.JJMpguE]s~ ' =~.:....·~=-~11....:::+: _ _j

·~-t

-··-· --....

-~--. :·:\\: t:\ :·f·-~-

a

. .:t="~::·~~-~

·-=4-1 . .111 w1 li.ifAcIO~-:__.:- .. == --- =..,. . - ~ ' 3:=+-.:±=·~::~;~

...... ~'.:-:- .. -~:~--::--- ::--r:-'"·~.L-DW::_£-=~=t=:_::= . -4 ·-::r-- .....:~:..: ~-=-.:---- - ·•8CT().' ":IMl6.T.::M~ II :Al//Mll/iL._·-:::- = - :: .. :==t~

--- --:=:-=:--7·-~~ -- --·-r-- ~~----~ ~~ ~L~_f: ~--~·--- -;: _t~---:~~.::==

:::+= -+-· :-:::.:-=: .=--::-:--::-:=·: .. +·- l­

--+ ·- ··-~·==t:==~---:-::r ..

.. ~- . ........._. - ........ --- . ··==i= ...

--~~~~:.:.....:.:----::-- --r----4 --

·~:::::--~ :.::.!:•=:::!=~ ----:r

:z--= ----.:

·-~--.-=:..- ;- __ . . - = t-- ----·- ···- . .

-~--

Page 70: him L. - authors.library.caltech.edu · choices on SCRAMJET dynamic performance in the context of real gas effects. Procedure is based on one-dimensional fluid flow analysis. The

':f 0 co (/)

<

x Q

0 !:....., :~1

""' 1,.,

~I I C:~

: '

~

f Cl'tl :::~::=--- :.;.::-'-~:_;{:.. - --t- - - - =---=+ --' ~~ ·- ~ -r4tft::=3PGe.JJ:ICJJMllliiliEI(~0_111J"S.. ::-:::i-= :--:. __ ::_ :.;_:----=L~-:--E::::+--:£-'::::i:::-_ ___;_:::_.

:.~--~ : ~:-=:~: ·~g_g~;::__. ~.r_~~~~r:--~ ~ .. :_:_:: ,:::-T- - --

" :l ... ____,_.

-'A~ _:-:t:_\.-

- .--J- -- ·---- .. .. 1000. ::-_-: :··l:::::=::.:=~

- :,::~~-:~::~-_: ::~::~_~, ::.:~-±:~-~=-:

0

70

·Ill ... ,.

---~ -

- - --+--r-:--r:_

--

+-=-=::t==- - -r--·- --- -~· :.::E::: t~.:::::t:= ~:.=- ,_ -i--­

---±:::=t:=:. ~:':":::'.=c:::..:

...:.~--:~

------1 -- i 'ii.ii.. 'J. I l /. )" c;.::.= : ~ _'!ff: ___ ;.:j~~::s=- ..::±~g=::::

--'---+--

~­--

Page 71: him L. - authors.library.caltech.edu · choices on SCRAMJET dynamic performance in the context of real gas effects. Procedure is based on one-dimensional fluid flow analysis. The

·:···:/;~ '-'. ~ I

~: ........ · ... --;•·

@[_:--tRAPU P--;r~(!i:::)·~· GRAPl!IC CflNIHOLS (.Oftl•OAATION SQUARE 10 X 10 TO THE CHJTIMETER AS-801A 01

lh1ll,1!0 f"'t'W Y101tc f.l1111!1~d 111 1J 5 A

0 ,r\ .': 11·1 : '.:i11 H ;;;: ~l'tf· ;!11 :11~!;1:~1 illli~j ~~u1:1.,:jfi ;11! lji1uliJ! !11t,'j ~1~'1iJ1 11;·r1 l11!; ht'~µµ, 1·rn"· \j~: 'r

1

r:I il!l d1;~·,1 J f,~"j111i:i1ff ~I~: i~Ji ltt''I l!t'~· it-[~; 1~1;·w1 ··u l'."'Hl:j1

-t'~l IT! ": 1;11'1l'ij'1jTl~1 !E '"I I:. ili'J ' ''1 '" .... J I. : . :. I 1· .' 'Ii Ill I "'C) ,I I' : I" 1111 I I ·ill I: .!iJ 11 ~I 1H I I I I; 11 I C)J I I ti. ~ : <-'" ...... ;[.,; : .. : ·m 'a"iH' I! .. I m :··HI iijJ ift' '1.j !ml··~·'µ~ .... :.lllii" Ii I :1,; 11:11111 :iiC)+l-4' 1·: I 1:! lit• JI '111 I 1~1 1 ·1 :! I i I I I

. : .. : .. :I:!:'. iL 1 i1l~111']; li1: :!JU< '.:tij ,t· 1,1 Lili '.t!i] uU !'id Jrm1il! 111! jt;ti llU +·1JlW''j :l+~;liil,1: lU! fftt:J; 1lli :id ll!iJi!J' :lli. lfl:it1 :UI l +· 1·1,111 I l j lJlli i l.~1'ltil 11

• I 1

;; . It l 1'i '11; ~·:. ' ' ·::·;I ill! " ""Ii' I'. ' " '1 '" , .•. ' . 'I I" 1'1 . I" r~m 11 mm· H+tpM • 1 ·1:+1! f ' ·11+! !I ' t .l

... :i:": .. 1.µ~µ8+tt4~~.;;i;~.::~~w;ul*f1~mrU:111~~1:!:1.1 1 !i!JJ1~:' 1 ·~~lliilJi~(!i::n11 1 µ11!!' 11:1r11ir. 11 : 1n1 . 1L;.·,::1 !1 Ii! 1!1ir !

· I" ~ :; :i!: lH :i!:, ii!: :{ 11:: 1!; 1 1\il +!111 ifl

1

1 :i1

.jl !Ill i!il :,ii! iffi i~it iij; ~1li 1111 ~4tJ .. ~; ·r:

1H 111,·1,· 1~ Hµ f~~ Hf 'Jfjf f~J Ji'i1 i:t1 :r' r ~,:1~ ~ 1 ~ 11: 'l~~!li illJ i

1

I ill~ it~ ~ri . ... : :1:; .11+ ttti tw .i-:: Lt• :_!t 11H w !HI :.r' L·u~~ H 1~i ;.µ,. lw ;·;1.~Li ffi11 . .., i1111w i1. :"11$

13!L.'1w JW. +~ u 111 u 1111 ·; '1 11 "~ ,11: .. 1 .i.i 1.m11 1 111 ~. 1 :1

1 ~ !i \;i; 1',lfi 111\ ~!Ji~;;: 1::1 :!!!iii~ 111 jllj lM HI! !f[j ~ ~J 1''1

1· !Hf iftj JI I !ijl i1111.jij it11J Hii J~~/ilf.i jµ~::. l.l!!i1'i "1

1j I l ~111' 'ii;. 'i~~, .. 1, T ;It'\! ;:~: ~.'.l :1li ~ills Lkt: !~J ~.J; Jjl JU rtLJ141~ lilt ~ lil \;i 1: I 1i~ I i1·i lL1 !ii: ~!1!i\1 lili iii !:1: ! ii . I •ii ' :r. t I T1 11 !b tal .:j

I : . • ~· ! : : / I j ! i iii i Ii ' : I . " j : ' ; " t •• ; : I i I. 1, 11 ! u I I LI ii j 1 I !Iii JI ':' : i 11 j . i ..,., ·~ .l.4i. l!ll II t I l! i H I - i~ . I I ] I .i . ~'I ~1 ... ;

·~: ~. \~ !Wi ~11 Ji 'IJ, \ii' llJj W ! 'iii I!! 1 'I iii; lilW llli~ Hif if: '..r~!A ~ :" t ll 1 i11-i'' i 1 iii ' · " .. .lL

1 1 iii J: .f u" ~ . , ~ , " 1'. ~

·:;: ~ii !ill , 1111111111!TII: ~!jj' 1111111111 iii' ·µ,;jli ~l:;jH4f, µiµ l~ij~11l1l- j (i~ [I ll[ T t •. ~ ~ WI ~ 1!1!1 :1l ~! .. ! .. ·~.-.~ " ( 1·;.i b .~t. ; o. 4 i1~ tr+ L ~ 14 1.u. .. i1 1 11 ~ 1111 ~~ ~qµ,u_ 1 .111 , · ::. ~ 1,111 i ;lll .. r.w~ ·1 J ~ ~· .;:·: 11ll111·11 ·11 ... , .JJlll rm . i· ~ , . ,,- i ' --~.. • T ! ~JD!ri r .j nl!l ii ·If. 1, 1 ilfl i :: 1'1 :;. 1b 11 I l t i~ 111 lit; ' I II~ ~~~ rtJl!ib!~~4 I I

: : . ' I '-ll I i: µt +ii IJ ti ! 1111 i ' I :..~ I . ' It I: I;. 1 ~ ~ i' ~ l;..-IJ.- :;;. . I I l ~ "1 "I ' 11 j ' 1 · fl I ...,_,. I I 1 '" I I I l J Ll• . --· . ~. ·:i; • 1i I Ill I : I ; ~.... If l I '' 1H-j I. 1 1~ • i I"" ~ ' ' ' iii ti ;~ .. ,iJ ·p

1+;. + r+rl ILj 1 ·1 ~. ~. , l • IJ · 11 1 1·: I i ~J ;1+, 1 ~1 ~. . Ll~ ~ . lllllltllj/11ut111tt111mrnu1tm1

1w i 1 w1 · · 1 11 llL ·· ~~ 111 11 11 · '1 ':tl. .. . · ~ 11i1 I/~~ ... · . rnHnrn11m111t11111111111uHHll ~I! f j. j llf1 f 1 l ~.·I ' , . ~ H .. N Jl \ !1 ~ ii ' ..

·i;f~!~ 1 :J ~~ .•. ,L~1 .~ "c~r: 1Ul ,J . 1 -~- ii! 1; §!llm1rm1111m1t ~:~'!l.1/ f 1 ir 1

.1 i~' r .1~~·:;yl ii .L ·11 ~ , ... ll

11

.i . :~i f tl jll ·1 1 \~ • I:~ iW ~. . tt t 1.1. .. 1. ' • l • . i.;,...; .. ! , • I

:Jfll ! lljj " !t , ~\!I !Iii~; J\ !i I ·,, . . , ~ : ii I tttitl4 r.+T1 ~l \ ~1 I . r1~ ~ rl I! I i..lt' ~ : Ii ' I ·I • :I·;~ •;; "l ' Ii -;ll~ - 1,, I t+I• -! I I\

:1:: 4: ll'' ~!i 1 •1uP'( J. 1 . • . 1 1j 1 ~. · i 1

1num11lta'tultlllltt ;m 1'1\ 1

1' iin Ill !! ~·~ 1111·1""' :.11. ' i 1·~ I; 1q. I. . ~~II ~IHlllllilltUI : : ! 1 j; 1l !• +i.: -· ., . r 111~ J I , " , • , ! p ir. !I Li (

1' 11 I 11 ~ I 111 • , • l·j' 1: 1 :.1:12! .. :: 11'' u 1 Ii J.i.-"1 u -; ... rw · !.'l . ·: )l}.:LP. :ff! lTj1 1ll!I :1p ~11 t'' .. ~ ~ '.ltl~iPi 1" t I l 1 •. ·::"'IS"'. ·:11 ~fl! 't :Hr .1 ::i ,1-H :~ H- U. ; ,, .lfo , Ii J: •I -

·11j 11 1··1 i:111!ii1L .. r?·tiif·111n : LI-". 1. .~:m . 1 .1 1 ffi11 u . . j1

11

1 II' 1 ~ '1

':'J' 1-f.+. 7!-i'tft':"t~" •t + +fl±\St" 'I -1 - · •IH Ii I'\ 1J1 I I llllllllfll

r:; i:L !·:! !'.1 17 :;! l!1! ;! '.V .;!. '!1 1! IJ: . ~1 ' J lJ iJ I. I 1

l i 1 J ~·~ i~ 1

·11 11! 1

"« 1).;P,: 4lr~ ii' ~Ii:~ lll! : I ' J I I 1,f Pj~ '.i ii : I .~ !I ,!ii j i ~l ' ,! I 'I l ~a I ~Ir l 11! , ,

:,:;: .. •;li 1 ii1 1 1lli;11 );;!!!Ji!; di:, l!' _:'!·I': 1 !I I: IT1:l·l:!!·\J 1 l 1i' i '· ._.1 1!· i lr~I:~: ~. 1 l

1! •i

.:1· :ii;.~:: ;J!\ '..1!i!111:: \u! ii:; !i \ H1!1·1! \Ii m· ![111111ill,11,1 r1\! i' t 1 lj1~, I ~! r tf :1 I~ 111 I I .1:1 • U!f ~ t IL I I 1! I !'I ~Jr ~ l;1 ~, 1~1

' d 1llp! ·1-m•··~·l:.Wr .. ~nrf+ii~•-!'j *;i1111 it •Ii 1tli n: 1 Ji ·w ""µ . I I! . ~u Ill i

•;iliJill Hi ill I~ tt!tr" llil tlill lt1[ If i1 ii Wi iii " :::: It ~i'lln 1Wi ' ' : ' i " ' I 1!!: :: n '~' ii I ilil I I 1

1 Ii' i ,, j I i ' I ~ .••. 1

1 .. 1.1 !tll lift.

11 ,, 1 .,

11 ... '"· 1 , J! l 11n .::1 1: , i!! rr11 ll'' 11111 11· t I l · t 11• · 'I iT ·

! H i ~ ! i ! ~; ll~ ' ' f J l~ ~ 1 : !f. [ ! iq I i ! ii . I • ! ! ! ! : ! ! . J : f! l j l ! !it ! l! ti ! ii ! I ' t I t' I! I! ! ! I 111 ! ! I i 11 l l 11 I II I j I I

''" !~ :Iii Ill it1!1 1111 rt1l 11!1ol!l:1!lL1 Ti,1,:1.11lliiil ! 11!1 Iii lilt m 11CT ~,!tt 1,, 1111 ' I ' ' ' 1:1 m1 ,\1i t, ' ITI! Ii I LI L.i1 II I 11 I I ~!1 .i 111 ,r\ I 1111 inl rll

~

....... I-'

Page 72: him L. - authors.library.caltech.edu · choices on SCRAMJET dynamic performance in the context of real gas effects. Procedure is based on one-dimensional fluid flow analysis. The

:= "<t

1.·.·1 0 ~ .. <O

' Cl)

<

er w I-

,.-r:· w 'i.o ... :I: , .. ~ '-: ;:: z w 0

w ::c: I-

0 I-

Q

x

Q

w er < ::;) c Cll

- i._ ___ • ::i..::: ____ __, -

-:::t::- ,=- .-.i.: ·-t-:-....:C- .

:r-· r--- -t---~

~::1:=--.::-r7-rn~ - •-t- >--· ·M t,:1 ~:=-=t=.= -=-.:.: --:::..4f - :::.r:· ·- -- ·+- -.,. .;.~ooo ---::-_:__>-· --~;~±~ ~-- -~~F

_;..,_ --

~· ·•· --o.-

.. i.:­

.,..1-:"" -·.::, .... :~ -'='.\:\: .-

>:~~ =:f-:::~J _.--~~=;_ '"

.. , ____ ._.££_~:

_:~-~=-·=::y:: .:_r:: :~~:E~ ~~A~~:.: =~=- -:

.. =

:~~1--- -. . - -..

_,.......,.

\• .. -... .\~ ..... ·.\-

" .

72

_, __ .....

-1 l ~-·-:::'l::'J

= ·:. 1--:-

... -- - ... ·-·· ---------.. ..:.=.~-- :.-:=

·-

:rrn.=Ine-r:· ~4,ii1JiJM.AP :='= :_.,--- -~___:_ :+:..._._ ·c= _:r--·--- ::· __ .

..:~--- ~-.:-

..., --- i --=

----~

--== --

::t:· ::=.:f:-3=~~-iK.=~- _:-: .,_= --- --· - - -~-- ~----=::t::;::_>- - . ...,..

_;.:..:;.+:=. :.=..::n::= --.,--- t==:~ . ·===- ---

Page 73: him L. - authors.library.caltech.edu · choices on SCRAMJET dynamic performance in the context of real gas effects. Procedure is based on one-dimensional fluid flow analysis. The

= .,, 0 co Cf)

<

c:: w ..... w :; z Lu (.)

~ t-

0 t-

g x Q

~ c::: ::; a ({;

-., "

'i , I \0:1 -~· :~I .;:.,

73 f C',/111

. ···--+· -··-··:i··- . -- ·- - -.:. :~-~-J:.::::01ff."i!6Pea£ii.#JAp111- •~'I. I

-·~=~:!:- ·-:~...: -::i:-·.1'1i...:

.... ___ .... ·:.::..---

- : ____ 1:·- .····'=::::1::--= : .. f·_ ...... ·--'=~ .. ····-. -•- ·- ___ .. '-- ._, •. II ..

. ·-·-::::::t::..-:- ·- -+-· ~ -~---.: . =t::::.-.r.::.::+:::·--+--=-=.-: . .:--~:_:- -:1:_;~-:::;~~f-:.:- ~-... :=\\" __ :\\.

_..._ .,.

--~:--~~a:

,. ::--

-·-··-~-

-~--

-· ·---.f. _.:§ - . ··-· -- -·---~ -:·:---- ... :: ... L::. ~.-.. -.~-~~-----_-___ ;__~-.-.. -.·.~-:-~··.

·~SIJO

-~--- ::::f::~ -~~--::.~=¥.=:.~c :: ::: :~~:. :.:L=-'=~:=t~::- --d~- r __ ;::::::t=:=E-- - ·:i:::

---.. :..~:·

-- ... l~LLl.fiL .

7 -

:~ ,.

----+___:_::::--· - --...--~

--- ~4-=r --~-::=

--= __ ......_ -

----

. .•. ::i::--·-· - - .....:~- -----== _ ___,___ -., ... - ·---:-.:±.. - .:.:: === :. _ ;- --

__J_·~ --r----... -- __ :-~

,.._ -~-~: :· _:}~:.; ,..__ --t:::..::::

-- ·----+--~

:::..L= --~=--,:_.._:~--

--- -=-!= .....=:....:... -:-------- --·::i::::..-::. . -- ·---. ·------

Page 74: him L. - authors.library.caltech.edu · choices on SCRAMJET dynamic performance in the context of real gas effects. Procedure is based on one-dimensional fluid flow analysis. The

;;;;

::: 0 ~ (/)

<

0:: w I-

.· .. w ·, ~. ~ ,. ~

z w (.)

l.J.J J: I-

c I-

£ x Q

w 0:: .... :::i c (/)

~

~ ~ -.?

--

~

' I lc:1 •.:,,j

'.t:.J !~I !C.I

\:1 0.\ ... , I~!

--.:.:

"' "' "

:: _:-=i=-:;:· :!!\~ -~¥fiftspfl:1F1~~ : ~J'._:\ _ .. __ .. -· ·-· .. ........ _:..): • :::::t= ~/lfPULSE{SEaJNIS)- .. :r: . .,.. ~~~- ~ . ·~::~ ~-~ ;· ~;:_:.-=. ~~ : .. _::-:;r:::=r:: -- .

t ·- -

--- -~- :~~':

\~€ :~-ct;j:-;:---:; ~~L: ::~=E-=:~:.--=:::-;:: ::::..

()

I _ ___._ ... "\;,;-

. :.......,.__ ...::::..~ . ". -- - --

.,, :.-::::i_ - -.::t1.· '.

__ ;=§

74

-··- ·-

-I.' -

"9'.Y ~~· -~ l~

\ -- ..... ·:t ~. --- .~ii.

,,. ·i:£Jl. - ......

._, ·- --·­.. -- -•:;I"-_ -

-• -::::E::::: ") ~'-::::

-· '_, ---=t :--=-

- ---+::: +-..:---

·-

.~:::-=

~--~=---~=~ ·--,-.-- --. --.:.._....._..__ --r::==

·---i-· t.

·--·~----

·+- - - ------~- ·--. r · -~===- --~~ ·1.1 ( 1·-~= , __ _ il4AI-_ .·:: ·-..-- ~-

~.l. --~:::.;: ___ _,_ -·- - ·---- ·4- .. - . ----t--

- . _£ ______ ~--+- .. -:±?.::::". - - ---- ........ --_.., - -- . ..

-....- -------·-·-f--· -~~-.:.:.

·- -=!:-===:-:====--~~?-=::­-~F~ ~~T~:.~

;;:=:j;-:: E=___a::-:-~--=0::: :::::::=~~:::_;~~~:--=-:: :~=i=~-

Page 75: him L. - authors.library.caltech.edu · choices on SCRAMJET dynamic performance in the context of real gas effects. Procedure is based on one-dimensional fluid flow analysis. The

1=

~

"" 0 co ' Cl)

::_ ~=+=f-:--::-- ±-A:~~ ----::,;_: ~- ~~: ~ ·+---1:::·-~-~

. _..... ._.,. .. -- . -+·--·I~-... .---·:.··'_·· .. :&-uiii~k£d gc3j,jpdj;_ci~ ~-JUI.IS

< ___ _:t,:_ - -·--. ·- .,,. .... ~E: - ·~ - - ..... ~--

c:: I!-~ ... ·- J. -·-::.:.:....·--

w ,_ ~~~J. w

:: ;:::: z w (.) -~--= ~ -:=:-.:__--:-;: ___ ~~~

·--~ f'.: 0 .... s: x Q

w a:: <(

:::l 0 Cl)

.. ..::.:-::::::=: ~-- ' .. ·==::::;;::::::= ~-=--- -· t:-~:~·

D

75

-.

·--r..::

·-r"T"·- - --··-~~ ... ,, .... - -,;; •·· .,,,,

II>:_

-·- ----·-

.._...._.. __ ..... .,.._

-::::+:~­."":--:::;::::-::..

.__c:_:_

-- .::=: .

·----+:--= ·- ·---

--·:=-

..:..:_____._ ---+

.. :~~=t~-:~~: =:~··:p-3:~:: --+ __ :_= _--::. ~·:f_~~~3:::~~~=

+·-·:: ::-~_:~]:-~~~:.:~~~-~-=-:-.:i~~--:=i_:_g:·:;:

~ __ ; -- -r~:~:: ~:.-~ ~.~--~-~-r:~~~~;-

Page 76: him L. - authors.library.caltech.edu · choices on SCRAMJET dynamic performance in the context of real gas effects. Procedure is based on one-dimensional fluid flow analysis. The

;;

........ :· "'1

Ci . .,·,·. ~ ~-dt' (()

<

a: l.l.l I-

(•'· LU <- l: ...

~ --· z l.J.J t.1

!:!:! ~

0 I-

Q

x Q

LL.I a: !!; 5 Cf)

i~U" - ·-. :...·---.:.~.....:.-~--

-- ___ Ti ••

:.-·f:: __ .. --.i.:.:~ =.:..:.~-~:.-~f~--~

: .. +-•~-

:---===::==- ~t=~ :~·::f·:.:::~t---

•--'.

,, .:~ ~t---:_ -~· ----= {'"" . :· ___ =r-4 .. -. ~ ·-

·-i_ :·--:-.;,_ ·+· --- ..... ..J.. __ _

__....::c

.. .:..;......::· ...=-T ==:;___ -\---t--

-::=:=-::,.:.... ~--==t== =:::i::::=: ~ _ _,_ -_ ____;:.=\:~. ·-··- ---...-L---- --- ... - ==t::: _____ ::::1,

::--t=-· . ---r--f-- . -J

~=-::-:-r-::-·'!·-.:.t:----- ... .:-:::: -- : -- --- -­·::·:· =~:-:.--:-.:.: .. 1:::-·--r.:.__:r.:-· ··--t"·-~-..-

_·.:::::-. ---- -- ...... _ - --- ------+-~: :~· r--=:-:+- -:-:::--==-·

.. -----E£ . ~-_,_.

.•• i...__ - -----.t..-.. ·:r:---::- -- . - --

"i::=:~:::~::~~::J-~~~:;:~-=--::.: :-=:~. :~~

.:f .,, __ _ _,_

__ · ::.:=~::·~:~~ ~---~~ :-·-: ~: -~:r~~~:-= :~~:~~~~.--:=~5-~=:

76

--- .

~.

·-

--r-

,_ -~.::::*=~ . ,:~:E~:::-l= .:~..;_:

---= ~~:-:~~-=: ~~=$:=::~~ --~~ -=- -- ::-:::-::e--=t~

·'---'- . ·---t- ---=------ ·.+,:: ~-

---t= -~ +.:_~~:§___~

t:.=::::~--+- -1-

-=+=l ·----- ·c....:::r=.r::~7~

-~-=-==~r:~¥.'-=i=:~.:i: -:-:=::-~ >:::~: t--·~;=t~ :~;s -~~ --F-:~:. __ J:----~ -~--i --·· ---- -::. ·:_____ :-.=....i.: :.· -~ ---- -- - . _ _.._ - ---

- ~~: :;:£~:;~~;~ --~-k-- -- ---71~~~--r· ·:~---

-~- =§:::-:i.::~-: ... --= -- :J=_ ---+---- .. =-= ---..- ·-- - _. _....... . . -------i--. ·-- ------- -. __.__. . - ---- - . ---~= ~-- --~-- ::---

..,.- - - ._. __ :.: -r.::·::~.:.-·-

·-f-- -··~---=- -'=-=--- --· :J ___ :..t:. __ : __ .:.-

~- --~l:X::::

·FS-~~--§>:L"i • ..J.. ---+- --- •

:--+--- :.:=-r- ~~:::E- --;~:-·:t:.;;

- ~~ ~--F:. -~-;~§;--:£:~

_ -=- _ -~· --~:~c~=::==t:._~~~~~~f·- ~!;:_.f:::~~:~;:r::±-= -~ - ~;-~~-- ::: -==::?~~~=--1;-~~~..:J; >~I~~~-~E~=·~~~ ~1: ~~·:·;-;:~:~ ~~ :~-~i~~:~

.... __ ,._ =->-:r=-:~=;=:~::-::.::-=:::_f:~;:c:::~:::-:J~~~~-:::==:t:-=:~~:'.'.Q.10111 MAUI NIJIA.8EA.1 Mo :::~:::;i::_:;:.:::C~ : "!:: :: I~ .:: =:_-:·:.: :: ;= ::-;-::-· '= _@-R~-=:~:~O ;:::-:]~~:~_.:::J-~~: :::<~::-:::::~·::=:_ JO · !::.:::::,=-+:·:;::·:: 0

Page 77: him L. - authors.library.caltech.edu · choices on SCRAMJET dynamic performance in the context of real gas effects. Procedure is based on one-dimensional fluid flow analysis. The

c;

:::: ,, 0 cc ' D'.)

<

c:: I.LI I-

~- I.LI :' ~: ~. !: ... i==

z LLJ C)

LLJ ::c .... 0

Q x Q

LLJ a: < ::> a en

z "' £ " .. ::;

:::: 9 i . g

~ - ;: ~ u • ~

i

~ :;

"' Q -~· :o.l I~. ii C\

~I Ll iQi

77

. ·--=::+---::::-::-. ...::__=·· ;-·-

~PT)MIJM . ii11ii:TPEt.tm · ~ tMPliiSLlsttilJli.Bf -:~ ~ -~ .;--:-:r:-:-:-;-- -~--- ------=--:..!.::.::... - - --

-+---

:---- -

---+-~·

--·-"'4·· :.~:=;..,-._~

=-~\;-~­;._JllJO.~;· ,~ -:- -: :r=:: ~- \" :-~--

;:=¥ :=...._ --l3,~-~~

........... --~. -----1_.~i--

::~ . ...,. ~

....

---i---· .,._ .... -r--. --.,. - :i.'W. :=--- - -----+;.=._\. - --

_..:;:..::r:. - -·· ...... -_:..;_ ~=~ :=:=1'=·.

-· ·- ·-·- t----• - -- - ____ ......,_ - - :...:::::..t:::: :::---::-::-- -==r::-_ -~-... -

. ·-· -- -·-··;--:~- .. . -- -1.~ . -- -- - --- ---·----- -- ·- -- ---- -·· -: -... --- • =::::::::!:.: .. :-:-:-:t:::::: - .---=---:.-:--+- ... f - -~+-::

--·-!'II.·:_ -= --------f-:·-.;::.~ •!:.::::i:=:=t· . .. . . . ·-::. .... -··:t:· ___ :::-- --·

-- ::.::-::-1:: ·-+·. J_-· --i--=: -----i..--r--·--r-- • ..,........ ·-1 · - -

..... E:.:..:t:-.... •"-·

'Cl·

=·~: --s._: -~--·- :~ ...

__ ..

---·:::t=.t· +..: __ .....__. --+

---= ~-::::i::=.­~: ::- -

:.::r:= ~

- =!:~ -+ --- -·· -····.!.- ---- ·I-- . ----- ---- - _ ___.. ... - --+

--~. _..___ . ..____.

--.- :1-- . = -~= -==E3:= -. --r--· ·-- 1----.,-- -

-- _,

-- ~ -+--- -- --~- .... +:-::::::t=

.:.__.. ______ -.l_. - ....

::.::::t:·-~

. --

.. - ---i:.--•• ,.,,# ii.JI. - ·-­.. _ ..... __ .., +--.....--..:- -:::--.3:._,__

=::::!= ·-.~--· ---~- -·

==-. ....

·-~ --·­.--

--

.:.::c---=-~:. ~~-----

-~.-·1 -=-~ ---~---1=::1-.-=-=

. ~~-.:.:.t~.:-7~~:= --·-...+- :·r-.:.-:-..::.:r::::-i,.-- ----=-- - §" ·-: : ... +. :.J:::·~:. - ·:.:::=: -~ . :::=;::J--==1 . . .=.:::::t= ~--~ ·-· -·.:..-:::::!= ~- --

. :.:.~::::=--sr: ·:·-= _:==::!:=

_ ::;:::::::r-:-::: . .::::= -~-

- t:_---· • ..:..:::.::

~:--

·+--__,......_ --- ·-+·-.. :+:. =t-=~::::::==t:=:·~~

~~~-:~ .~:-~:::; ~~~ -- --·

. -N~ - . ;g: . --~ 1·· --... :- - -~__..._.- -:--~ - -· -·-:.~ _:: - . :.-::::

.:s~o~~~=--~~ ... : ·=_-~.~---:~ .. _____ ... ____ .:-:-~- _. ____ ,----r .. =~---=~~-=:~~--=:-~~,~~;~:= .-:.:.:.:c:,:-·-;-:7..;:..:.:=-=:-c 1£t:.IFICJllPl/LSE J~-1JITllll'lEO WIT.JL6ES/JliCLI/J.. lG4lTJ}ll..JNJ.GTA/Jtll NIJAIJEL -~.-.-::~== :.·:..;~~=.:;=:~~~=::r~=: __ + • -~- r- -----1 --==== . . =±===1-.--:·:. ::: .. :.::::±: .: ~cF_:=:.::=

:~~~==i= ··::::~;_::~=g~--:~~l-:-+tll"'s·rAt-~"i~.(&. u1N;:-v.1.-;:;;. =-==;:=:-.-:-;; -1;. __ r=:: --)::~--~=

.I .

Page 78: him L. - authors.library.caltech.edu · choices on SCRAMJET dynamic performance in the context of real gas effects. Procedure is based on one-dimensional fluid flow analysis. The

:; «: Ci , .. c:o

I Cl)

<

a:: w :.:-~=-:t=.:- ~-- ,.::-::='=. . ··-+-

I-w

:. ~~; ~ ..... - I-

z

··- . ·-.....----: ~-~=.::::::-_:: __ _ w ·----.--0 .. ---- __,

w :I: I-

·-··---=-=-----=.±:: --.-5.~ :- ::::::E- -- ·- ~--

0 · ·--+ -- • ~

~

Q

x g

w c:: < :::i 0 Cl)

z .. <;;: -· :; " ::; 0 :: j ;:; u

~ ~

~ > • '-' i

;:: ~ <

~ "' ;-

n 10:1 , ... :~1 ... , )Cl.I

I~ !~. :..! ~

0

78

-0#-..:.

"t-·-·-1·

·-~

_7:,;

~---:::t==. -- ___ ., -- . .,_

-~· -~ .. • -#·-

,, ·----· . I

,,, .

-~---=-+­_,- +:

--

·--·---+--~·

... ::::j:::_ ::;:::)·---.-- -- ·­---/. -~ :. -·

-.-.=J r : __ _. :=i: .. ,, --·

--+ - --

--+--

- 1· - -i._ - -..--. .,, . -:::.:r::: - - --- =t:::::-

-- ------.. ----~-

. ---~ ~~-~._:~~:::~£ ~.;~2~= , ~~-~~:i~~~~-~E --~~~~-=

.. _

-- --~~-;; "!~~:_~ ·:---f---~~ ::~~~:_~

;:=: ~~:.~=3=~~:;__;: -t• _,. ..__.:.:: ::=t:=r-~:-=: --

.,__ -'1-- .... -- -- r-··-

-.... =·~..;.._:==: .. :t:.:.= . --· - - ~---

--~F-~ -- __ . ..: ---1-::- - ~--- ===

-~ -~~f ~~:~~~#:-~ --E:t:::...£::·~·:t:::.;.:r=~-t:

_:_: _r:~-==·';r.-::~· +:-:=:= ~.J=-~ :t===!- ·::;;r~:::: __ -~f-_:: :·~ ;.-~-f-- :~--=~-~:J :~ --- =r-=--~~~~--==- :f~~:;+=--1:=::~~

·:=- ~:5? _=p--:~--~-~~+-.:~ -~

-~~-~3~·-:·;~~=:~~~·~:~~~~~;~~~:~: .. ~!~·~::~ ~~~ :.:~- --~:;;·~~:~~ - =-·~;1~:~:::~--3~~~~~~

JO

Page 79: him L. - authors.library.caltech.edu · choices on SCRAMJET dynamic performance in the context of real gas effects. Procedure is based on one-dimensional fluid flow analysis. The

79

3Dm. (JS') __.,.J

Page 80: him L. - authors.library.caltech.edu · choices on SCRAMJET dynamic performance in the context of real gas effects. Procedure is based on one-dimensional fluid flow analysis. The
Page 81: him L. - authors.library.caltech.edu · choices on SCRAMJET dynamic performance in the context of real gas effects. Procedure is based on one-dimensional fluid flow analysis. The

l',:J '> J ., ".i -i t .J Hl J ·~

~I ]Ill UI 1l ~,)I

Page 82: him L. - authors.library.caltech.edu · choices on SCRAMJET dynamic performance in the context of real gas effects. Procedure is based on one-dimensional fluid flow analysis. The

81

APPENDIX A ON THE CHEMICAL EQUILIBRIUM MOLE FRACTION DETERMINATION

Introduction:

When chemical reactions are near equilibrium, partial pressures of various chemical species are governed by the law of mass action, which states that for any chemically interacting compounds A,B, ... ,L,M, ... that satisfy the stoichiometric equation:

(A-1) I I

where ~ , ~, • .. , ~' .• . are number of moles of compounds A, 8, •• • , L, ••• respectively, then there is a function JGp of temperature, alone such that

_,,, w ( ~ )YA (Pa ) IJ • • •

(A-2)

where IGP(T) _ is call~d the partial pressure equilibrium constant of the reaction and t,. , .. , , p'" , •• • are partial pressures of compounds A, ••• , L, • • • normalized with respect to a standard pressure, p 0

It is convenient to use the mole fraction equilibrium constant, K.3

( T, p ) instead of XP ( T ) , where .

>l i>.c, "- , f... • --

/(, u ( T, p) = t Y.1 (A-3) ti 9AA-f8 8

where 1'. , , .. , Ii. , , . . are mole fractions of compounds A, .•• , £, • ~ ~ •

Normalized partial pressures of compounds are related to mole fractions of compounds, that is to say, 8, :::t ;, •.. with 'fo denoting normalized mixture pressure, consequently K,

6(7ip) '\s related to ,(,o (T) in the following manner:

~ I I

- [(~fte+· .. )-(~+~f···)j (A-4) /(,! (T, p) = ,(P (T) ·(fo)

JANAF Thermochemical Tables (reference [2]) list formation equilibrium constants of various compounds, as they are formed from their elements, as a function of temperature and at standard pressure, ~0=1 $1r. These formation equilibrium constants denoted by "J are in fact partial pressure equilibrium constants as specified in equation (A-2).

Page 83: him L. - authors.library.caltech.edu · choices on SCRAMJET dynamic performance in the context of real gas effects. Procedure is based on one-dimensional fluid flow analysis. The

82

In this analysis nine compounds are considered, namely o, H, 011} llr. o, It, NO, HOz, NIJz 11nl NzO • Below are reactions that form these compounds from

elements Oz., Nz. , and Nz. as indicated in equation (A-1). For each compound forms of equation (A-3) are presented.

rOz~ 0 ~.t -1/.t

1) ' 5c =~, fo2 IJJlt l.l't. It,=( K.;)o (fa)

1/z - -Vz 2) J.. llJ. ~ II ' YH = K.z V11l 1A/11tt K.z={K..f.)N ( f)

J.

j llz +} IJJ. ~ 011 ~ Yz

~/Jttt. /(,3 :: ( i.t- ) Dll 3) ' 90/I=~ ~l foz

llz +f 11z ~ 11za ~ - 1/J,

4) '111,0=~ ~ Vol. IAJhtre. ~ =(K_;)11zlf)

fl(z ~II tfz.

1Jnett ls =tK..,_i ( F )-vi. 5) 'y" =Ks f111.

fllz"-fOl: NO '/z Vz

6) '~O = .e, tl ff)L /tJhere K., = ( K:.t-J /Ill) (A-5)

14 V.z. 7) 1 Hz +-02 -;:_ JI OJ. '~Oz= l.7 f11z 9oz llJivt /(,? =( ~)llOz ( p)

f Nz +~z ~ N()r. 1/z

ullt.1.1e. t/z.

8) '!11c2=S ~ Yoi IG1 =(4:),v() ( fo) "l

9) I Oz +"z~ "'zO '/z

1 YNzO = K.J ~Nz l/4 dtete. - Vz.

llJ =(~i1.o(fi)

Fuel Dissociation or Recombination: Fuel is assumed to have only two species: H and Hz. at a specified

temperature, T and pressure, p. The objective is to determine their respective mole fractions 111 and /IN. • For this purpose a known quantity, say n~ moles, of fuel is considered to i>e at a convenient temperature, r' and pressure, p' such that mole fractions f; and I~ of species H and Nr. respectively can be determined easily (normally r' = .tf8 dS K. anll p' = I HI' ). Next, the same quantity of fuel is brought to desired temperature, T and pressure, p as if the following unidirectional chemical reaction is taken place:

(A-6}

where nr is the number of moles of fuel at temperature, T and pressure, p. By definition,

(A-7)

Page 84: him L. - authors.library.caltech.edu · choices on SCRAMJET dynamic performance in the context of real gas effects. Procedure is based on one-dimensional fluid flow analysis. The

83

and conservation of mass of H requires that I I I

nr ( 111 +.t fHz ) = nr ( fN +.t. INz) (A-8)

By substituting 1',=Ki f~lz in equation (A-7) and then solving for fN, one ~~ l ~

'It. K.z { K.z. z.. J'/~ INl = - T + J + (:r:-) (A-9)

Finally, if need be, fir is determined by using equation (A-8).

Air Dissociation or Recombination: Air is assumed to have following species: o, 11, NO , NOi. 1 ~ o, O.i , tlz. , 11ni Aff •

The unidirectional chemical reaction for this case is: f I I I I I I I I

11.7 (V,{)+1/,/I +/. NO+[ N4 -1-£_, 0"'zO+l dz+[~ +11 Ar)~ O ~A "NO IVi1l "'Z vl ~ tlq

fir ( foO +f,/./ +fNaNO+l Ndz +t_o NzO+ fozOl +f/J/"z + ~r Ar) (A-10) 'N~z z

I I I

With known values of nr , fo, • · • fAr , the objective is to determine n, ft. , ... , t «f specified temperature, T and pressure, p . By definition, T

0 Al'

(A-11)

Conservation of masses of O , N , ond Ar yield following relations respectively I I I I I /

nr (fo +/No +J."'Oz + !10 +J.fo) = IJ; ( fo +fNot.t.fN11 +{N1/J./t;l.) (A-l2)

/ I I I I I

11r (f"' +!Nd +fNOz +J.fllzO +.!.fNz) = /J;(fN+fNI +fNOz +.t~{) +.l.fNZ) (A-13)

I I

and nr yAJt = nr fA,, (A-14) 'l.t. 1/z.

By letting U=ID~ and W= llNz and utilizing relations in (A-5), the equation (A-11) is rewritten as follows:

t A

1 U + 81 U + C1 = 0 (A-15)

where

Page 85: him L. - authors.library.caltech.edu · choices on SCRAMJET dynamic performance in the context of real gas effects. Procedure is based on one-dimensional fluid flow analysis. The

and

84

81 :: K., + (1+?4 ) K6 W + (l+J.~ )K.J WJ,

c, = U+J.f") wt+ (1+~,)K.5 w -I

(A-16)

By combining equations (A-12) and (A-13) and utilizing relations in (A-5) one obtains:

Az. wi + 8z w + C.i. = o (A-17)

where l ~

Az=J. +(.t-~a)llJU , 8z.=K.5 f(t-?J)K.,11+(1-111z)l.1d 1 Cz=-~l<,U-.t~U f I I I I

f11 + f 1i10 + INoi +.!. ln10 + J. ! N, and ~ :: f 1 1 1 1 (A-18)

fo +f1t10 +J.J'/t/Oz +.J'NzO +.tJIJL Equations (A-15) and (A-17) are solved simultaneously for U and W by casting them into a minimization problem and then solving the minimization problem via 2nd order Newton's Method. Finally, '"" and n7 are determined as follows:

(A-19)

and I I f I I I

nT ( JiN +I No +I NOz t-J. INzQ + J. /Nz. ) = <vN +!No+ $A1oz .µ./~,o -1-J.f"'1..)

(A-20)

Non-Reactive Fuel-Air Mixing: Fuel-air mixture as a result of non-reactive mixing of fuel (species: H and #J.. ) and air (species: o, f'IO, NOi. , Ni. o , OJ. , IJ1 , and Ar )

is not permitted to have new chemical species. Consequently, unidirectional chemical reaction for this case is: ,

1 , ,

I I f I I' f )

~(/JI JI.+ 911/J+flr (go O+/AllJ +!/NO IJD + #t.1cz. NOJ.. +"',o /11.i.fJ+~,ol +J'N/li +,..,.Al' __......

hr(JoO+f11 J1 + fJJ /II+ fNo NO+!-, NOz +~ 0 NzO +~ Dz. f fH Hz +f11; Nz "-fM Al' ) ( A-2 f) B d fl . u· "~" l z 'l z y e rm on,

lo+ f11 f fN + fND + fNDz + fA!zO + foz. + l11z t- fAJi. +,A, = ( (A-22

>

Conservation of masses of o, N , and A,. are identical to as stated in equations (A-12), (A-13), and (A-14). Conservation of mass of His

(A-23)

Page 86: him L. - authors.library.caltech.edu · choices on SCRAMJET dynamic performance in the context of real gas effects. Procedure is based on one-dimensional fluid flow analysis. The

85

The manipulated form of equation (A-22) is identical to that of equation (A-15) namely

z. A1 (J + 81 U + C1 = O (A-24)

where I

A, .:: I + (I+ f,, ) JC.1 W . . ' .t

51

= K.,+{lf'141)K., Wf(/f.t.i)K.g W

I z. I) t Ii I c, = (1+J.'f/-1-) w + (1-1-14 K.sW+ r~11-' I

I I e/Je. ("' f J./llL ) (A-25) and f, = f.,, + "£° 11; • ti,:-+- f~D + 1;(),, + f~zo +J./~ ) Yz

The equation (A-17) holds as is and by letting V=/11. of equation (A-23) is -z.

the manipulated form

z. J. y + Kz. V - CJ = O (A-26) . ¢i I I

where C3 = n: (IN + J. !112 )

Equations (A-19) and (A-20) hold as they are.

In principle equations (A-24) and (A-17) are to be solved simultaneously for U and W however equation (A-24) contains the mole fraction ,f11 • An iterative solution procedure may be as follows: Make an initial guess to the value of fN . Carry out simultaneous solutions of equations (A-24) and (A-17) and then improve this guess by using equation (A-26).

Reacting Fuel-Air Mixture Dissociation and Recombination: The reaction products of

fuel-air mixtur~s is assumed to have following chemical species: o , H , OH,

HJ. 0 , "' 1 .NO ' #Oz.. 1 N01., , N,1, 0 1 Oz J Hi ' N.t ' (Ind, A,.. The unidirectional chemical reaction for this case is:

f 1 f I t 1 I I I I I I I

11;( fo a +f11 II+. fOll ()II f ~z.O l/iO + f1/V ffN4A!() + f11ol H&z +fNOz. Ntlz f~z/JzO+~/l f"'/lz+JN1. Alz +~,Ar) -...n7(fDO + f11 11 f fo11 OH+ fNzo ~o +V,./I + fNo Nil+ fno/ld,,_

+~~z N~ f "'zO N.tO ffoz Oz +f,z 11-i f f#zNz + ~r Ar )

By definition,

(A-27)

(A-28)

Page 87: him L. - authors.library.caltech.edu · choices on SCRAMJET dynamic performance in the context of real gas effects. Procedure is based on one-dimensional fluid flow analysis. The

86

Conservation of mass equations for N and Al' are given by equations (A-13) and (A-14) respectively. Conservation of mass equations for 0 and H respectively are: / / I/ I I I I I

Rr (fo +fo/I f ln10 f !Alo f.l"'Oz. +J-!1101. + IN10+.lfoz) = Or (Vo +/011+ f1111J + fNo +J.flldz +J.iNoz f f,;10 +J.foz.

f I I I I I

flr(f11+fo11 +J./1110 +ftto/~)=- 11r~+fN +J./1110 +fHoz +J.fllz )

Equation (A-28) is rewritten as

where

z A1 U +81 U + e, = O

At= I+ llr V + (t+IJ+ )K.1 W

81 ::: l<.1 + (/(~ f~ V )V + [(If~ )K., f (Int?~ pt_g W J W

c.1 = ( Rz + V ) V + [(I+ 1+ ) ~s f (If J. ~'" ) w ] w - I ~o

f4 definition is the same as in equation (A-16).

Equations (A-13) and (A-30) are combined to yield:

where

and

'Z.

AJ. W + 8..t W + C.t = O

Ai. :: J. ( I + K.J U ) z.

8 z ::: IC5 f K6 U +Kt d

C,_ .:: - ~o Y [ J. ( 1+K+ il) '{ + ( Kz +K3U f K.r/·') j I I I I I

1}0

= /,J .J. JI.Jo + $1J01. f J./Nz.O f .l,f!I z. £, I I I I I

111 + ¥011 +.1.!11,0 + !11oz +J./111.. Similarly equations (A-29) and (A-30) are combined to yield:

2. A3 V + Ba V + C3 = O

where

(A-29)

(A-30)

(A-31)

(A-32)

(A-33)

Page 88: him L. - authors.library.caltech.edu · choices on SCRAMJET dynamic performance in the context of real gas effects. Procedure is based on one-dimensional fluid flow analysis. The

87

83 = ~J. + [(1-f,) K3 + (1-.t~)K.7tJ JU z.

CJ :: -% U [ K1 + .tU + ( K, t-J, Ks d) W + lt.9 W j

and. I I I I I

71

= fN .f llJll t J.f1110 + fNoz +J./llz. If I I I I I /

fo + fo1 + / 1120 +!No + J. f1112 + J. f Aldz + fNio +.t /01.

Equations (A-31), (A-32), and (A-33) are solved simultaneously for U, V, and W again by casting them into a minimization problem. Finally, f,.,, and n7 are determined from equations (A-19) and (A-20) respectively.

Page 89: him L. - authors.library.caltech.edu · choices on SCRAMJET dynamic performance in the context of real gas effects. Procedure is based on one-dimensional fluid flow analysis. The

88

APPENDIX B AN IDEAL FUEL-AIR MIXING MODEL AT REACTOR INLET

Physically, the propulsion system does not have a component that can be identified as a mixer. However, in order to refer to various quantity ratios across the reactor with a reasonable accuracy, an ideal mixing of fuel and air is visualized to exist at reactor inlet. This mixer does not have any physical length along the direction of flow. The sketch below identifies various stations of the mixer:

MIXER. All. --+- @

The governing equations are:

State EQ.uations:

' '

I

: ~ ----1.,...,.... /:11£1. -All.. MIXTt/Je.E I

(B-1)

Note that the fuel is assumed to be in gaseous state.

Conservation of Mass:

1 ''/ ., where Je = "!, mJ.

. ' (I + fe ) m; = Ill~ (B-2)

is the effective fuel-air mass ratio •

Page 90: him L. - authors.library.caltech.edu · choices on SCRAMJET dynamic performance in the context of real gas effects. Procedure is based on one-dimensional fluid flow analysis. The

89

Conseryatjon of Momentum:

(B-3)

Note that this mixer does not have any physical length, thus no frictional flow losses are included in the equation (B-3).

Conservation of Energy:

/.J. ( ~ 1 Pz , d1. ) + fe. • /.J. (G 1 /) , U3) = (1t-Je) II (J; J /;_, , tJ,,) (B-4)

Where in above equation the conservation of mass equation (B-2) is utilized. The equations (B-1), (B-2), and (B-3) are combined to yield.

(B-5)

• Where in above equation we have utilized the fact that m = S t!A •

Since the reactor inlet pressure 1'-t is a specified quantity the equations (B-4) and (B-5) are to be solved iteratively for T+ and 11+ •

When fuel entering the mixer is in liquid phase, then in equation (B-3) the term ~ & is neglected and the following equation replaces equation (B-5):

tiJ 7i. T+ ~ - + (U1.+Jelf3 ) = i (t+Je>n- +(t+/e)f4 (B-6)

LA.z dz tM4 11+

When fuel speed, UJ entering mixer is zero then tJ4 = ~ is used which is a degenerate form of momentum equation.

Page 91: him L. - authors.library.caltech.edu · choices on SCRAMJET dynamic performance in the context of real gas effects. Procedure is based on one-dimensional fluid flow analysis. The

90

APPENDIX C ONE DIMENSIONAL FWW MODEL OF REACTOR

The governing equations of one dimensional flow reactor are well known (See for instance [6]) and are summarized below:

Equation of State:

Conservation of Mass:

~s Us As = ~ U4 A4

Conservation of Momentum:

Z. L Z. I t 2 z. gs ds As + Ys As = ~ ~ A4 + fi A4 + J:(~ t&)(As-A.J)-~ CD~ eti~ +f 9.s l1s)

Conservation of Complete Energy:

/./ ( 7S 'P5 'Us ) = II ( "4 / P4 1 u., )

(C-1)

(C-2)

(C-3)

(C-4)

The last term on the right hand side of conservation of momentum equation is an average shearing force acting on lateral faces of reactor control surface (see for instance [7]) and a0 is a drag coefficient (C 0 = 0 for an ideal reactor).

Equations ( C-1) through ( C-4) contain five unknowns: ~ , /} , U5 , S5 and As • The molecular weight of combustion products, v«,,5 is a function of Ps and 15- • As a consequence, one of these unknowns must be specified, and in addition the equation ( C-4) is reserved as if it is to be used to determine ~ since in iterative calculation procedures ~ is efficiently utilized as an iteration parameter.

Conveniently, one may wish to specify either pressure ratio across the ·reactor or area ratio across the reactor or gas speed ratio across the reactor. For this reason the following dimensionless ratios are introduced:

- A I - k I - ,J -* Ts JJ.,,,. A = ~ A+ , P = 5 P. , U = IJ5 / U. , ana T = - • -• 4 ~ ~s

(C-5)

and the equations (C-1) and (C-2) combined and the equation (C-3) respectively are

-* APU=T (C-6)

Page 92: him L. - authors.library.caltech.edu · choices on SCRAMJET dynamic performance in the context of real gas effects. Procedure is based on one-dimensional fluid flow analysis. The

91

and

(C-7)

An abbreviated iterative calculation procedures of equations ( C-4), ( C-6) and ( C-7) are presented below for respectively when reactor pressure ratio, reactor cross sectional area ratio, and reactor gas speed ratio across the reactor is specified. These procedures start from the point at which a trial value of 7$­is already assigned and proper care during iterations is taken so that reactor at all times remains in supersonic gas flow state.

1. When Pressure Ratio. P is Specified

The equations (C-6) and (C-7) are rearranged and put in the following computational order:

z. * 2. * l<P"-l)P J A

3 -{C<.t~M;)(1-;' )-(P-J~P }A +{(.t~"il)T }A+f(~0)(.t~Aj)T J = 0 (C-8)

and -* - T (} -­- A p (C-9)

-* Note that when Ts trial value is specified then T value is fixed since combustion products molecular weight Jk,5 is a function of 75 and 'fs only.

The cubic equation for A , the equation (C-8), is expected to have two positive real roots or none. The value of A that corresponds to supersonic flow can be determined in a routine manner and this solution of cubic equation can be obtained via Newton-Raphson method. Final step in iterative procedure is to test whether or not trial values 15 and t(s- satisfy the equation (C-4).

2. When Area Ratio, A is Specified

The equations (C-6) and (C-7) are rearranged and put in the following computational order:

Pz.-{11- (~t.~)(1- c')} P +{ (t.!•~)(He, 1 )!°"} =O (C-10) (A+f) + (A+f) .,. A A

and

-u :: -4 T

PA (C-11)

Page 93: him L. - authors.library.caltech.edu · choices on SCRAMJET dynamic performance in the context of real gas effects. Procedure is based on one-dimensional fluid flow analysis. The

92

.i.

For this case when 7S trial value is specified then T is not fixed since combustion products molecular weight j./.g5 is also function of pressure 'lj. wA.icli is to be determined from (C-10). Thus a secondary iterative procedure for p5 is necessary. However, this particular iterative procedure need not be sophisticated since .Al5 is a weak function of l's

The quadratic equation for P , the equation (C-10) is expected to yield two positive real roots and the value of P corresponding to supersonic reactor is to be determined.

-3. When Gas Speed Ratio. U is Specified

The equations (C-6) and (C-7) are rearranged and put in the following computational order:

_L * c :L ll -} 2. { .# 2. - { z. (. ).ilJ _J_ -l [1+( /)(.ttM+Lf* JU P + T t[(.t.i4 M4 )U - H-(J.t4M4 )(t-f ri ll P - T = 0 (C-12)

and -~

- T A=-PU (C-13)

The iterative solution procedure of this case is analogous to the case when reactor area ratio, A is specified.

Figure ( C-1) presents variations of P and A with /1 as dete.rml11eti from equations (C-12) and (C-13) for a typical case that has T*=1.2s,2{_1;1s (may correspond to M4 = S. 37 ) and for values of drag coefficient, li

0 = 0 and 1.0.

Page 94: him L. - authors.library.caltech.edu · choices on SCRAMJET dynamic performance in the context of real gas effects. Procedure is based on one-dimensional fluid flow analysis. The

93

llJ

().(

2 3 4 5 6 7 1 2 3 4 5 6 7

d = U5 /U4

:tt~ultt:ttt!:!!ftfttot::ftH±i _ 1

! iho ,! ;11 sgl

1 2 3 4 567891

Page 95: him L. - authors.library.caltech.edu · choices on SCRAMJET dynamic performance in the context of real gas effects. Procedure is based on one-dimensional fluid flow analysis. The

94

APPENDIX D A GUIDE TO USERS OF SCRAMIET PERFORMANCE ANALYSIS PROGRAM

Disclaimer:

Although this version of SCRAMJET performance analysis program, SCRAMJET.FOR, has been tested by the author of this manuscript thoroughly, no warranty, expressed or implied, is made by the author as to the accuracy and functioning of the program and related program material, nor shall the fact of distribution of them constitute and such warranty, and no responsibility is assumed by the author in connection therewith.

Remarks on Program Particulars:

1. Response to all program messages that end with a question mark,? is either any word begins with the letter Y for YES or else for NO.

2. Program performs a limited number of checks on the validity of user entered responses. Consequently, program execution may terminate ungracefully. Program trapped error conditions shall display error messages that may not make any sense to the user. These messages shall be followed by the following message:

Wish to carry out another performance analysis?

A YES response to this interrogation message is a restart of program execution.

3. Stagnation temperature values may often exceed 6000K (temperature upper limit of JANAE Thermochemical Tables [2]), in such instances the following message shall appear twice during calculations:

TEMPERATURE rs OUTSIDE OF RANGE 100-6000K

Computations shall continue, thus user should ignore these messages.

4. Units of physical quantities to be entered by the user are clearly indicated in user prompts.

5. Results produced during program execution are displayed both in engineering and in SI units. These results are stored in disk data file, DATA.DAT automatically. The user may save this data file by responding YES to the message:

Wish to save detailed results in DATA.DAI file?

Page 96: him L. - authors.library.caltech.edu · choices on SCRAMJET dynamic performance in the context of real gas effects. Procedure is based on one-dimensional fluid flow analysis. The

95

This is the last program message that user must respond to before program execution termination.

Remarks on Program Inputs:

1. Primary inputs to SCRAMJET performance analysis program are flight Mach number, M: and flight altitude, z!

2. Flight Mach number is always specified by the user.

3. Flight altitude, z: is specified by the user as one of the analysis options ( s 'ft' z: '- J.80 l(t ). There are two other analysis options:

3.1 User specifies reactor inlet Mach number, M4- • 3.2 User specifies (free-stream) dynamic pressure, q:

"*' Both of these options are reduced to the determination of flight altitude, Zo at which specifications are met.

4. Either pressure ratio, p5 / P+ or cross sectional area ratio, A5 /A+ is specified across reactor.

S. Static pressure, f.t. of air at diffuser exit (or mixer inlet) is identical to that REACTOR INLET STATIC PRESSURE, P+

6. Liquid hydrogen fuel tank pressure, p11

10.0 atin. range is from 0.1 atm to

7. Phase and state of fuel at fuel energy augmenter exit may be specified in three different ways.

Option 1 Sets the state of gaseous phase fuel entering the mixer to be "proportional" to state of air entering the mixer; namely, 1j =4 7.z ,&-'P & ,

U;=~~· lf-,~,'U. are proportionally constants to be specified by the user. This option does not permit heat exchanger specification.

Option 2 Sets the state of gaseous phase fuel entering the exit by specifying stagnation temperature, 7.f 3 , stagnation pressure p~3 , and static pressure, p3 This option does not permit heat exchanger specification.

Page 97: him L. - authors.library.caltech.edu · choices on SCRAMJET dynamic performance in the context of real gas effects. Procedure is based on one-dimensional fluid flow analysis. The

96

Option 3 User specifies phase of fuel (liquid or gas), fuel static temperature, 7ix , static pressure, P,x , and speed, lJ1x at

fuel energy augmenter exit. In this option a heat exchanger either at diffuser exit or at reactor exit may also be specified by the user. When unmixed fuel in the combustor is in liquid phase its contribution to fuel specific impulse is neglected. Fuel bypass in liquid phase is not permissible.

8. FUEL AIR RATIO [EQUN ALENCE RATIO] either default or user specified is mixer fuel-air ratio, !,,, [mixer equivalence ratio, ¢,,, ].

f ro = (I+ 1'1. ) • p 8.1 Overall uel-air ratio, 3i 11. ( 1+ /3~) Ill

where

P1i = fuel bypass ratio and ~Q. = air bypass ratio.

8.2 Effective fuel-air ratio, fe = 9N • /111

91..t

where "111 = fuel mixing efficiency and ~A = air mixing efficiency.

8.3 Equivalence ratio, ¢ is an alternative measure of fuel-air ratio, f ¢ .!. 361- - J.J !

9. User should avoid using effective equivalence ratio, ¢e identically equal to unity. For good numerical accuracy ¢e. = 0.99 or ¢e = 1.01 is recommended instead of ¢e. = 1.0.

10. Range of reactor drag coefficient, c, values is from 0.0 to 4.0.

11. PERFECTLY MIXED, UNMIXED AIR, AND UNMIXED FUEL STREAMS are introduced to simulate mixing imperfections in the combustor. In order to emphasize the fact that these three streams are non-interacting streams, each stream is assigned to have its own nozzle as depicted in Figure 1, 2, and 3. Composition of flow through each nozzle may be in chemical equilibrium or frozen chemically or composition may be forced to freeze by the user at a particular location in the nozzle as explained in the body of this report. For the latter situation the program shall display the following message:

***AT THIS POINT COMPUTATIONS SWITCHED TO FROZEN COMPOSITION CUl***

Page 98: him L. - authors.library.caltech.edu · choices on SCRAMJET dynamic performance in the context of real gas effects. Procedure is based on one-dimensional fluid flow analysis. The

97

(U) signifies that this composition freezing was requested by user. Similar message may appear with (P) qualifier. This signifies that equilibrium composition calculations cannot be continued, in most cases it corresponds to natural composition freezing.

12. IDEAL EXPANSION refers to ideally expanding nozzle with nozzle expansion coefficient, Ce = 1.

... Pe = nozzle exit static pressure and Po= f.J, = ambient air pressure at

altitude, z: . Same value of Ce is assigned to each nozzle associated with perfectly mixed, unmixed air, and unmixed fuel streams.

13. Same value of nozzle velocity coefficient, Ca. is assigned to each nozzle associated with perfectly mixed, unmixed air, and unmixed fuel streams.

14. Due to Microsoft FORTRAN compiler limitations, PC version of SCRAMJET .FOR does not contain air bypass option.

Remarks on Program Outputs:

1. Area Ratios:

* AOL= Ao = capture cross-sectional area (free stream).

AO = Ao = diffuser inlet cross-sectional area.

Ai ~· ,P,,j ll.J' T,· general form: - =- - ·- • - --A; Pi Jhi u,· ~·

Normally, station i = element exit and station j =element inlet. Nozzle station x =a particular location within nozzle.

Reactor area ratio and nozzle area ratios are correct for only perfectly mixed fuel and air.

2. Stagnation TemDerature Ratio = ~i / ?t;· Station i =element exit and station j =element inlet Stagnation pressure ratios are defined in an analogous fashion.

Page 99: him L. - authors.library.caltech.edu · choices on SCRAMJET dynamic performance in the context of real gas effects. Procedure is based on one-dimensional fluid flow analysis. The

98

3. Heat Input to a Stream:

Positive Value= Heat added to a stream Negative Value = Heat removed from a stream

3.1 FUEL AT ENERGY AUGMENTER EXIT:

HEAT INPUT AT AUGMENTER is heat input to fuel stream per unit of mass of fuel, that is

3.2 FUEL AT HEAT EXCHANGER EXIT (OR MIXER INLET):

HEAT INPUT AT HEAT EXCHANGER is heat input to the fuel stream per unit mass of fuel, that is

~ = II ( T, 'p, ' U, ) - II { T,x 1 Ptx > tJ, x ) •

fnN

This heat input is displayed whether a heat exchanger is present or not.

3.3 MIXER INLET:

HEAT INPUT AT DIFFUSER EXIT is heat input to air stream per unit mass of air, that is

- ~ x = /.I ( 7j ' A > lf.t ) - H ( 7i,x J h.x J IJ.tx ) 111.t

MIXER INLET quantities are displayed only when heat exchanger at diffuser exit is present.

3.4 PERFECTLY MIXED REACTOR STREAM NOZZLE INLET:

HEAT INPUT AT REACTOR EXIT is heat input to combustion products per unit mass of combustion products, that is

- ~ = II ('S 1P5 1 ds) - H(T;" i Psx J dsx) ms

Page 100: him L. - authors.library.caltech.edu · choices on SCRAMJET dynamic performance in the context of real gas effects. Procedure is based on one-dimensional fluid flow analysis. The

99

PERFECTLY MIXED REACTOR STREAM NOZZLE INLET quantities are displayed only when heat exchanger at reactor exit is present.

4. LOCAL SPECIFIC THRUST, 7;, = r I (~ .. a:)

Also note:

~ = (Is,)(}/!' I oo* = l M: CF

I * *) where Cr: = T (fa Ao is the conventional thrust coefficient.

Program Error Messages:

It is questionable that SCRAM.JET performance analysis program can handle all conceivable analysis cases that the user may wish to try. Consequently, the program execution shall terminate, occasionally, ungracefully. In such instances, the user should keep an accurate account of particular cases that cause ungraceful program execution termination and transmit that information to the author.*

A limited effort was made to trap some numerical procedure irregularities. In such instances, there shall appear program error message(s) and program execution of a particular case shall terminate gracefully which is acknowledged by the following message:

Wish to carry out another performance analysis?

Some program displayed error messages may not have any meaning to the user and their explanations are beyond the scope of this report.

Below are some program displayed error messages and their probable causes:

1. TEMPERATURE IS OUTSIDE OF RANGE 100-6000K

Appearance of this message during stagnation temperature calculations is normal and user should ignore them since program execution shall continue. This message shall also be displayed when temperature range outside of JANAF Thermochemical Tables [2], thus an iterative solution procedure fails.

* Horvei Motld Co//e!e, , C/al'emont, CA 91711 " 'PAone.1 (909) GJ.l-8000 ,Ed· 3J,f'

Page 101: him L. - authors.library.caltech.edu · choices on SCRAMJET dynamic performance in the context of real gas effects. Procedure is based on one-dimensional fluid flow analysis. The

100

2. TEMPERATURE ITERATIONS FAILED!!!

Temperature is a primary variable in number of iterative procedures. This message simply signifies that iterative procedure used fails to find a solution. It may not mean that the problem at hand is an ill posed problem.

3. AT DIFFUSER EXIT STAGNANT STATE ENCOUNTERED!!!

Flow speed at diffuser exit must be greater than zero. Increasing flight Mach number, 11i: or decreasing flight altitude, Zr,* may remedy this problem.

4. FLIGHT ALTITUDE RANGE IS FROM 5 TO 280 kft!!!

Either user managed to specify an altitude value outside of this range or for some performance analysis options, when program tries to adjust flight altitude in order to meet specified dynamic pressure, ~:or combustor inlet Mach number, M,. altitude range of U.S. Standard Atmosphere Tables [1] is exceeded. Readjust flight analysis specifications.

S. PRESSURE CANNOT BE LESS THAN l.OE-20 (atm)!!!

Program does not allow any pressure value identically equal to zero. The appearance of this message is extremely rare.