high temperature oxidation - nucleus ·  · 2013-12-12high temperature zrcladding ... russian...

73
High Temperature Zr Cladding Oxidation, Hydriding and Embrittlement Presented by Mikhail S. VESHCHUNOV Nuclear Safety Institute (IBRAE) Russian Academy of Sciences Workshop on Fuel Safety, Safety Criteria and Changes in Fuel Design Characteristics During Operation Islamabad, Pakistan 1620 December 2013 Nuclear Safety Institute Russian Academy of Science

Upload: buinhu

Post on 15-Apr-2018

219 views

Category:

Documents


1 download

TRANSCRIPT

High Temperature Zr Cladding Oxidation, Hydriding and 

Embrittlement

Presented by Mikhail S. VESHCHUNOV

Nuclear Safety Institute (IBRAE)Russian Academy of Sciences

Workshop on Fuel Safety, Safety Criteria and Changes in Fuel Design Characteristics During Operation 

Islamabad, Pakistan16‐20 December 2013

Nuclear Safety InstituteRussian Academy of Science

IAEA

Outline: Introduction: Mechanistic Code SFPR for Modelling

Single Fuel Rod Performance under Various Regimes ofLWR Operation, including Design‐Basis and SevereAccidents

High Temperature Zr Cladding Oxidation High Temperature Zr Cladding Hydriding High Temperature Zr Cladding Embrittlement Zr Cladding Embrittlement under LOCA Conditions SFPR Code: Development Plan

2

IAEA

Introduction:

Mechanistic Code SFPR for Modelling 

Single Fuel Rod Performance under 

Various Regimes of LWR Operation, 

including Design‐Basis and Severe 

Accidents

3

IAEA

4

SVECHA code• Mechanistic modeling thermo-

mechanical and physico-chemical behavior of a singleLWR fuel rod

• Initially designed for SAregimes, extended to normaloperation conditions

• Collaboration of IBRAE with IRSN (France), FZK (Germany) JRC/IE, US NRC.

MFPR code• Mechanistic modeling fission

product release fromirradiated UO2 fuel

• Various regimes of reactoroperation, including severeaccidents (SA), and highburnups

• Collaboration of IBRAE withIRSN (France).

SFPR codeSingle Fuel Rod ↔ Performance

4

IAEA

5

Single-Rod Code SVECHADevelopment and Assessment

Objectives advanced mechanistic models for oxidation, hydriding andchemical interactions of LWR fuel rod materials and thermo-mechanical deformations of cladding and pellet, tightly coupledwithin the code initially designed for modeling single-rod tests

Development IBRAE with support of FZK, IRSN and JRC/IE in the framework of European projects: 4th FP (COBE & CIT Projects), 5th FP (COLOSS); ISTC Projects #1648 & #2936, bi-lateral projects

Validation QUENCH Rig (FZK: COBE & CIT), BOX Rig (FZK: COLOSS), AEKIRod Degradation (COLOSS), QUENCH Bundle (FZK: ISTC),Phebus FPT0 and FPT1 interpretation (JRC/IE: SARNET)

Applications after verification and subsequent simplification, specific separate-effect models were implemented in integral codes: ICARE2 (collaboration IRSN), SCDAP/RELAP (collaboration US NRC), SOCRAT (collaboration ATOMENERGOPROECT and ROSATOM)

IAEA

6

Single Rod Code SVECHA

Coolant flow:H2O(l), H2O(g), O2, Ar, H2

Vertical Mesh

PelletGap

Zr Cladding

α-Zr(O)

ZrO2

Important features:• Mechanistic simulation of

clad multi-layered structure +core degradation (eutecticinteractions, molten poolformation, oxidation andrelocation, etc.)

• Initially designed for SA, thecode inherited themechanistic approach inapplication to normaloperation conditions

IAEA

High Temperature 

Zr Cladding

Oxidation

7

IAEACladding Oxidation Kinetics

8ANL  oxidation tests train assembly (from Yan et al., JNM, 2009)

IAEACladding Oxidation Kinetics

9

Oxidation of Zry‐4 alloy at temperatures of 700‐950C:a) 700 C;   b) 800 C;   c) 900 C;   d) 950 C

IAEACladding Oxidation Kinetics

10

Oxidation of Zry‐4 alloy at temperatures of 1000‐1200C:a) 1000 C;   b) 1050 C;   c) 1100 C;   d) 1200 C

Post‐transition

IAEACladding Oxidation Kinetics

11

Appearance of  E110 alloy after  steam oxidation  for:a) 5s at 1000 C;   b) 290s at 950 C;   c) 400s at 1000 C

Post‐transition oxidation (break‐away effect)

IAEACladding Oxidation Kinetics

ntKG /1

Oxidation rate exponent of Zr alloys with temperature (Baek eta., KAERI, JNM 335 (2004) 443)

12

IAEACladding Oxidation Kinetics

Parabolic ZrO2 scale growth according to literature sources 

2/1tKL oxox

13

IAEACladding Oxidation Kinetics

Comparison of mass gain rates

2/1tKG Tox

14

IAEACladding Oxidation Kinetics

Parabolic correlations

RTQAK exp2/1tKG Tox

15

IAEA

• Simulates kinetics of fuel cladding oxidation and physico‐chemical interactions with fuel pellet (UO2/Zr/steam)

• Based on numerical treatment of oxygen diffusion throughmulti‐layered structure of the interaction system up to 7layers

• Best‐estimate diffusion coefficients for ZrO2, ‐Zr(O) and ‐Zr for Zry‐4 and Zr1%Nb (E110)

• Tightly coupled with cladding thermo‐mechanical module

Cladding Oxidation Model

16

IAEACladding Oxidation Model

rctrrD

rrrctrv

tc

ii

ii

i),(1),(

)2(1

)2(1

)1()1(i11

)2(1

)1( )(

iiii

rri

rr

ii

iii vcvc

rcD

rcD

dtdrcc

ii

)2(11

)1(1)( iiii

iii vv

dtdr

Diffusion equation

Flux matches

17r r r

OXIDE ALPHA BETA

C

C/

C

C Cg

r

IAEACladding Oxidation Model

Microstructural changes of Zry‐4 during oxidation

18

IAEACladding Oxidation Model

Boundary conditions

Binary phase diagram Zr‐O, assessed in (Abriate et al., 1986)

19

IAEACladding Oxidation Model

Calculated oxygen diffusion coefficients in ZrO2 for  Zr1%Nb и Zircaloy‐4 

Oxygen diffusion coefficient in oxideT,C

104/T, [K-1]

Df,c

m2 /s

1500 1400 1300 1200 1100 1000

1e-6

1e-5

1e-4

5,4 5,8 6,2 6,6 7,0 7,4 7,8 8,2

- Zry-4 calc. from [6] - Zry-4 calc. from [7] by metallography - Zry-4 calc. from [7] by weight gain - Zr-1%Nb present work

20

IAEACladding Oxidation Model

Calculated oxygen diffusion coefficients in ‐Zr for  Zr1%Nb и Zircaloy‐4 

Oxygen diffusion coefficient in alpha phaseT,C

104/T, [K-1]

Da,c

m2 /s

1500 1400 1300 1200 1100 1000

1e-8

1e-7

1e-6

5,4 5,8 6,2 6,6 7,0 7,4 7,8 8,2

- Zry-4 calc. from [6] - Zry-4 calc. from [7] by metallography - Zry-4 calc. from [7] by weight gain - Zr-1%Nb present work

21

IAEA

1 10 100Time (min)

10

100

1000Zr

O2 t

hick

ness

(mm

)Temperature :

1273 K1373 K1473 K1573 K1673 K1773 K1823 K1873 K

Calculation results for oxide thickness (solid lines) in comparison with experimental results (dashed lines)

S. Leistikow, G. Schanz (KfK, 1978)

22

Cladding Oxidation ModelIsothermal conditions

Analysis of KfK tests with Zry‐4

IAEA

23

0 500 1000 1500 2000 25000

20

40

60

80

100

120

140

1600 500 1000 1500 2000 2500

T=1000o C

- -Zr(O), calc.

- -Zr(O), exper.

- ZrO2, calc.

- ZrO2, exper.

Thic

knes

s of

laye

rs,

m

Time, s0 500 1000 1500 2000 2500 3000 3500 4000

0

20

40

60

80

100

120

140

160

180

200

220

240

0 500 1000 1500 2000 2500 3000 3500 4000

T=1100o C

- -Zr(O), calc.

- -Zr(O), exper.

- ZrO2, calc.

- ZrO2, exper.Thic

knes

s of

laye

rs,

mTime, s

Simulation of the ‐Zr and ZrO2 layers growth kinetics in the RIAR isothermal tests on Zr‐1%Nb cladding oxidation in steam at 1000 and 1100ºC

Analysis of RIAR  tests with Zr‐1%Nb

Cladding Oxidation ModelIsothermal conditions

IAEA

24

0 500 1000 1500 2000 2500 3000 3500 40000

100

200

3000 500 1000 1500 2000 2500 3000 3500 4000

T=1200o C

- -Zr(O), calc.

- -Zr(O), exper.

- ZrO2, calc.

- ZrO2, exper.Thic

knes

s of

laye

rs,

m

Time, s0 500 1000 1500 2000 2500 3000 3500 4000

0

5

10

15

20

25

30

35

400 500 1000 1500 2000 2500 3000 3500 4000

0

5

10

15

20

25

30

35

40

T=1200o C

- Wt., calc.

- Wt., exper.

Wei

ght g

ain,

mg/

cm2

Time, s

Simulation of the ‐Zr and ZrO2 layers growth and weight gain kinetics in the RIAR isothermal tests on Zr‐1%Nb cladding oxidation in steam at 1200ºC

Cladding Oxidation ModelIsothermal conditions

Analysis of RIAR  tests with Zr‐1%Nb

IAEA

0,00E+00

5,00E-05

1,00E-04

1,50E-04

2,00E-04

2,50E-04

0 100 200 300 400 500

Time (s)

Oxi

de th

ickn

ess

(m)

modifiedstandardexp

0

500

1000

1500

2000

2500

0 100 200 300 400 500

Time, s

Tem

pera

ture

, K

1200 1400 1600 1800 2000 2200

Temperature, K

1

10

100

1000

Thic

knes

s, m

icro

met

er

Temp. rate

0.25 K/s

1 K/s

5 K/s

10 K/s

FZK tests (P. Hofmann)

Conclusion: being developed on the base of steady-state isothermal oxidationtests, the model demonstrates good agreement with transient tests data owing to:• mechanistic approach (diffusion equations, D(T(t)) );• coupling with Mechanical Deformation model (influence of oxide microcracking)

Validation of Oxidation Modelagainst transient oxidation tests

25

IAEAOxidation kinetics under steam 

starved conditions

ZrO2

-Zr

-Zr

0 200 400 600 800 1000TIME

0

2E+019

4E+019

6E+019

8E+019

1E+020

OXY

GEN

FLU

X

Evolution of layer structure

Oxygen flux

Mole fraction of water in H2O - H2 gasmixtures in equilibrium withhypostoichiometric ZrO2 (from Olander,1994)

t, s

Boundary conditions

26

IAEA

High Temperature 

Zr Cladding

Hydriding

27

IAEA

Zr‐HEquilibrium Phase Diagram

28

IAEAHydrogen solubility in Zr

‐ Sieverts law

‐ Sieverts constant

29

IAEA

Hydrogen solubility in ZrExperimental studies

M. Steinbrueck (FZK, 2004)

30

IAEA

Gaseous Hydriding Model Zr‐H2 interaction kinetics

• Dissolution of hydrogen in Zr metal as neutral atoms:

H2(g) = 2Hab(m)

• Sieverts law:

Zr

H2

sPKsC HSH2/1

2

• Hydrogen transport:

tot

Htot

S

HH

HHH

PsPP

rCD

sPbPk

2

2222

• Thin Zr layer: exp2 tDL HD

2

2

2

2

2 S

HH

HH

KCbP

RTk

dtdCL

Zr (metal) H2 (gas)

t = 0

PH2(b)

PH2(s)

PH2

r

31

IAEA

FZK tests on hydrogen uptake by Zry-4 cladding in H2 atmosphere (M. Steinbrueck, 2004)

Model Verification

0 5000 10000 15000 20000 25000 300000

5

10

15

20

25

- exper.

- calcul.

Mas

s ga

in, m

g

Time, s

0 5000 10000 15000 20000 25000 30000

0

200

400

600

800

1000

1200

1400

H2 o

ffH

2 on

Temp

Tem

pera

ture

, o C

0 5000 10000 15000 20000 25000 300000

5

10

15

20

25

0.6 bar

Temp.

- exp.

- calc.

Mas

s ga

in, m

g

T ime, s

0 5000 10000 15000 20000 25000 30000

0

200

400

600

800

1000

1200

1400

0.2 bar

0.6 bar

0.2 bar

Tem

pera

ture

, o C

PH2 = 0/0.5 bar PH2 = 0.2/0.6 bar

ttbPKtC

HSH 2exp12exp12/1

2

t

CtC H

H1

0,

1

Uptake: Release:

32

IAEA

33

Hydrogen solubility in ZrO2Experimental studies

Park and Olander, 1991: gaseous H2 hydriding of ZrO2

Conditions: T=1300-1600C, PH2 10 bar Interpretation: H2(g) = 2H(ox) [H] PH2

1/2

Sieverts law (in agreement with observations)Results: H solubility: [H] 10-5,

H mobility: 0 (strong trapping)Conclusion: ZrO2 is impermeable for neutral H

Wagner, 1968: H2O dissolution in Yt-stabilized ZrO2

Conditions: T=900, 1000C, PH2O 10-2 bar Interpretation: H2O(g)+VO

2+= 2Hi+(ox) + O(ox)

[Hi+] PH2O

1/2; (in agreement with observations)Results: H solubility: [Hi

+]10-5, (PH2 10-8 PH2(Park & Olander) !)H mobility: DH

+10-6 cm2/s.Conclusion: ZrO2 is permeable for protons H+

ZrO2

H2

ZrO2

H2O

Fundamentally different dissolution mechanisms (neutral H / protons H+)

IAEA

34

Hydrogen uptake model   (1/2)

• Dissociation of water molecules in the gas phase:2H2O(g) = O2(g) + 2H2(g) (1)

• Dissolution of oxygen in oxide:O2(g) + 2VO

2+ + 4e-(ox/g) = 2OO(ox) (2) • Dissolution of hydrogen in oxide as neutral atoms:

H2(g) = 2Hab(ox) (3)• Dissolution of hydrogen in oxide as protons:

H2(g) = 2Hab+(ox) + 2e-(ox/g) (4)

Eq. (3) corresponds to Park & Olander’s mechanism:• gaseous H2 hydriding of ZrO2 : H2(g) = 2Hab(ox)

Superposition of (1), (2) and (4) corresponds to Wagner’s mechanism:• dissolution of water molecules in oxide: H2O(g) + VO

+2+ = 2Had+ + OO(ox)

Wagner’s mechanism of water molecules dissolution in ZrO2 might be responsible for high hydrogen uptake during Zr oxidation in steam

O2(s)

H2O(g)

ZrO2 gas

H2(s)

O2-(ox)

H+

H2(g)H

e-

VO2+

IAEA

35

In steam atmosphere hydrogen is dissolved (and transported) in ZrO2 mainlyin the form of protons (with high mobility)

PH2 /PH2O

CH+

CH

C

Hydrogen uptake model   (2/2)

Mass action laws

PH2O(s)2 = k PH2(s)2PO2(s)PO2(s)Cv

2 Ce4 =

γPH2(s) =CH+2Ce

2

CH = KS PH2(s)1/2

Charge neutrality condition

2Cv + CH+ = Ce

Solution

2(k1/2β1/2/γ)CH+3/PH2O(s) + CH+

2 – γ1/2 PH2(s)1/2 =0

if PH2 << PH2O CH+ PH2(s)1/4 >> CH PH2(s)1/2

IAEA

36

Hydrogen transfer in oxide phase

CH (s)CH (b)

CH+(b)CH+(s)

CH ()

CH ()

-Zr ZrO2-Zr

Steady-state approximationJO(ox) = DO

(ox)CO/(t)

JH(ox) = DH+(ox)CH+ /(t) + DH

(ox)CH /(t)

Experimental dataB.Cox, 1976 (review):H2 dissolution in thin layers of ZrO2 on Zr substrate,Results: * 1m, ZrO2 becomes permeable for H.

Schanz et al., 1984:Zry interactions with H2/H2O mixturesConditions: T=800 - 1300CInterpretation: mass gain in the initial period can be

attributed to the hydrogen absorption

Moalem and Olander, 1991:Zry interactions with H2/H2O mixturesResults: similar to G.Schanz

Model assumption

Two different regimes of H (neutral) mobility in the oxide:

> * 1m, DH(ox) << DH+

(ox).

< * 1m, DH(ox) - finite value

IAEA

KIT Tests on Hydrogen Uptakeby Neutron Radography (M. Grosse et al.)

Scheme of INRRO furnace

IAEA

KIT Tests on Hydrogen Uptakeby Neutron Radography (M. Grosse et al.)

IAEA

39

KIT tests on hydrogen uptake by Zry-4 cladding during isothermal oxidation in steam (50 l/h Ar + 50 g/h H2O )

Tests simulations

0 0.5 1 1.5 2Time (h)

0

2

4

6

8

H2 C

once

ntra

tion

(vol

. %)

ExperimentCalculation

0 4000 8000 12000 16000 20000Time (s)

0

1

2

3

H/Z

r ato

mic

ratio

(%)

ExperimentAxial position 1Axial position 2Axial position 3

0 4000 8000 12000 16000Time (s)

0

1

2

3

4

5

H/Z

r ato

mic

ratio

(%)

ExperimentAxial position 1Axial position 2Axial position 3

0 2000 4000 6000 8000Time (s)

0

2

4

6

8

H/Z

r ato

mic

ratio

(%)

ExperimentAxial position 1Axial position 2Axial position 3

T=1373 K

T=1473 K

T=1373 K

T=1673 K

IAEA KIT tests on hydrogen uptake by Zry-4 cladding during isothermal oxidation in steam (30 l/h Ar + 30 g/h H2O at 1473 K)

Tests simulations

0 2000 4000 6000 8000 10000Time (s)

0

2

4

6

8H

/Zr a

tom

ic ra

tio (%

)Experimentbottommiddletop

IAEA

41

.

Hydrogen Uptake under normal operation conditions

2/18/316/9 tttM H

Coupling of 2 models:

• Hydrogen absorption mechanism;

• Mass transfer through 2-phase zone (hydrides in metal Zr)

Predictions:

• Non-uniform distribution of hydrides (owing to oxygen concentration profile);

• Close to parabolic hydriding kinetics:

Metallographic cut of the rod cladding

IAEA

High Temperature

Zr Cladding

Embrittlement

42

IAEA

Cladding EmbrittlementCriteria

Criterion 17%‐ECR (and T<1204C)

43

IAEA

Cladding EmbrittlementCriteria

Criterion 17%‐ECR (and T<1204C)

44

Chung and Kassner(ANL, 1980)

IAEA

45

Chung-Kassner advanced criterion• Capability to withstand the different loading modes depends on

thickness of and oxygen distribution in -Zr layer:

1. Capability to withstand thermalshock during LOCA reflooding:calculated thickness of thecladding with 0.9 wt % oxygenshould be greater than 0.1 mm.

2. Capability to withstand fuelhandling, transport and storage:calculated thickness of thecladding with 0.7 wt % oxygenshould be greater than 0.3 mm. 4.6 4.7 4.8 4.9 5.0 5.1 5.2

Radial direction, mm

0.3

0.5

0.7

0.9

1.1

1.3

1.5

1.7

Oxygen, wt.%

100 mcm,1400C130 mcm,1400C

135 mcm,1400C

200 mcm,1400C

100 mcm,1600C

Cladding EmbrittlementCriteria

Low hydrogen content < 700 w. p.p.m. !!

IAEA

46

In the case of solid contact between pellet and cladding, Zry reduces UO2 toform oxygen stabilized -Zr(O) (internal) and (U,Zr)-alloy.

The external cladding interaction with oxygen or steam results in the formation of-Zr(O) (external) and ZrO2.

The internal and external -Zr(O) layers of the cladding grow with the samerates. Initially the reaction-layer growth obeys a parabolic rate law. After thedisappearance of -phase, the cladding tube is completely embrittled and nomore mechanically stable.

Double‐side oxidation (interactions with UO2 pellet)

IAEA

0 5 10 15 20 25 30 35 40 45 50Время, с0.5

0

250

500

750

1000

Расстоя

ние от

UO

2, мкм

ZrO2

(U,Zr)O2(U,Zr)O(U,Zr)

-Zr-Zr

расчет

экспериментExper.

Calc.

Time, s1/2

T=1700 K

47

Diffusion Model for Double‐Side Oxidation

IAEA

48

Cladding Embrittlementdue to “Fuel Bonding”

• Formation of Zr(O) layer at the inner surface of the cladding as a result ofUO2/Zr chemical interaction (“bonding”) can lead to cladding embrittlementeven in the absence of oxidation atmosphere at the outer cladding surface.

3.8 4 4.2 4.4 4.6Distance, mm

0

10

20

30O

xyge

n co

nten

t, w

t %1400°C

outer oxidationUO2/Zr interaction

Maximum extent of oxidation and fuel‐pellet interaction to remain intact under thermal shock.

IAEA

Effect of hydrogen uptake

Cladding EmbrittlementCriteria

49

700 w.p.p.m.

IAEA

Combined effect of oxygen and hydrogen uptake

Cladding EmbrittlementCriteria

50

IAEA

Zr Cladding

Embrittlement

under LOCA Conditions

51

IAEA

52

Observations in KIT Tests (Stuckert et al., 2012)

Temperature escalation at different elevations and appearance of ballooned zones

IAEA

53

External and internal cladding oxidation

Ballooning zone

Non-deformed zone

Observations in KIT Tests (Stuckert et al., 2012)

IAEA

54

Secondary hydriding of cladding

Increased microhardness at positions ofhydrogen rich bands

Observations in KIT Tests (Stuckert et al., 2012)

IAEA

55

Observations in ANL Tests (M. Billone et al., 2008)

Temperature and pressure histories

Post-test appearance

IAEA

56

Observations in ANL Tests (M. Billone et al., 2008)

Axial distribution of oxygen and hydrogen content for:

OCL#22 sample held at 1204ºC for 1 s (left) ;

OCL#17 sample held at 1204ºC for 120 s (right) .

IAEA

57

Observations in JAERI Tests (Uetsuka et al., 1981)

IAEA

58

Modification of Gas Kinetics Module

k = N

k = 0

k= 1

)( kiI

)( kiJ

Ar

H2O, H2

Processes:o Oxidation of clad outer surface

and transport of gas mixture (H2O-H2-Ar) in channel

o Oxidation/hydriding of clad inner surface and transport of gas mixture in gap

o Flux matching at breach position

H2O, H2

H2O, H2

H2O

H2

Ar

H2O

IAEA

59

Modification of Gas Kinetics Module

tzQunzz

nDtn

iii

ii ,2

2

Transport in gap:

Oxidation (i = 1); hydriding (i = 2)

)(

0

000 extiiiii

x

iii nnnu

dxdnDQ

tzqtzQ OHOH ,,22

- H2O sink (calculated by oxidation kinetics module with consideration of steam starvation)

tzu ,

tzni , - concentrations of gas components (1 = H2O, 2 = H2, 3 = Ar, 4 =…)

,i

inn ,tkTtntP

,,,,222

tzqtzqtzQ HOHH - H2 sink (calculated by hydriding kinetics module)

- gas net velocity, induced by: 1) pressure drop between inner and outer after breaching ( 38s);2) gas thermal expansion (during temperature escalation);3) gas advection due to H2 uptake by cladding (Stefan flow)

- flux matching at breach position

,),(

),(1

,

ki ik

ik TPD

xTPD1

i i

i

i

ii

nnx

,dVSDK

cl

dii 50K - best fit

tzqH ,2

where

Veshchunov & Shestak, Proceedings QW 18&19, KIT (2012&2013)

IAEA

60

Simulation of QL0 Test (1/6)Temperature distribution

Temperature evolution at the burst position

Cladding temperature axial distribution at the calculation time

moments 40 s, 60 s and 80 s

0 20 40 60 80600

800

1000

1200

1400

LowerMiddleUpper

Pressure equilibration

IAEA

61

Simulation of QL0 Test (2/6)Burst geometry

Axial distribution of rod dimensions at bundle elevations from 1150 to 850 mm

0 50 100 150 200 250 3000.004

0.005

0.006

0.007

0.008PelletInner Clad.Outer Clad.

IAEA

62

Simulation of QL0 Test (3/6)Gas partial pressures in gap

Gap gas components partial pressures axial distribution at the time moments 40 s, 60 s and 75 s

Axial coordinate (mm)

0

4

4

4

4

4

IAEA

63

Simulation of QL0 Test (4/6)Internal oxidation

Specimen inner surface oxidation layers thicknesses axial distribution at the time moments 40 s, 60 s and 75 s

Axial coordinate (mm)

2

2

2

IAEA

64

Simulation of QL0 Test (5/6)Cladding oxygen content due to double-side oxidation

Axial distribution of total oxygen content at the calculation time moments 40 s, 60 s and 75 s

IAEA

Simulation of QL0 Test (6/6)Cladding hydriding

Axial distribution of cladding total hydrogen content at time

40 s, 60 s and 75 s.

Exp. Rod #1 #7 #3 #14

Oxidation period

~ 74 s  ~ 71 s  ~ 64 s  ~ 32 s 

Hydrogen (w.p.p.m.)

2560 2140 1940 1050

IAEA

66

Simulation of ANL Test OCL #17(1/7)Temperature distribution

Temperature evolution at the burst position

Cladding temperature axial distribution at the calculation time

moments 60 s, 80 s and 200 s

0 100 200 300Time, s

1000

1200

1400

1600

LowerMiddleUpper

IAEA

67

Simulation of ANL Test OCL #17(2/7)Burst geometry

Axial distribution of rod dimensions

Axial coordinate (mm)

IAEA

68

Simulation of ANL Test OCL #17(3/7)Gas partial pressures in gap

Gap gas components partial pressures axial distribution at the time moments 60 s, 80 s and 200 s

IAEA

69

Simulation of ANL Test OCL #17(4/7)Internal oxidation

Specimen inner surface oxidation layers thicknesses axial distribution at the time moments 60 s, 80 s and 200 s

-150 -100 -50 0 50 100 150Axial coordinate (mm)

0

40

80

120

160

200

ZrO2, Time1ZrO2, Time2ZrO2, Time3Zr(O), Time1Zr(O), Time2Zr(O), Time3

IAEA

70

Simulation of ANL Test OCL #17(5/7)External oxidation

Axial distribution of gap gas partial pressures (left) and of outer surface oxidation layers thicknesses (right)

at the time moments 60 s, 80 s and 200 s

IAEA

71

Simulation of ANL Test OCL #17(6/7)Cladding oxygen content due to double-side oxidation

Axial distribution of total oxygen content at the calculation time moments 60 s, 80 s and 260 s

-150 -50 50 150Axial coordinate from the burst position (mm)

0

1

2

3

4

5

6

Calc. 60sCalc. 80sCalc. 260sExp. Hold 120s

IAEA

Simulation of ANL Test OCL #17(7/7)Cladding hydriding

Axial distribution of cladding total hydrogen content at times 60 s, 80 s and 100 s in comparison with experimental measurements 72

IAEA

The first version of the fuel performance code SFPR, designed bycoupling of MFPR with the mechanistic thermo-mechanicalmodule SVECHA, was released and tested in 2008

Validation (by IBRAE) and commercial applications to operationconditions of the new VVER-2006 reactor design (byATOMENERGOPROECT) started in 2009

Implementation of SFPR module in the advanced version of theRussian integral best-estimate safety code SOCRAT (for LWRs),started in 2010 (Russian collaboration under IBRAE coordination)

Extension to the Fast Reactor (FR) fuel and implementation in thenew generation integral code EUCLID (developed under IBRAEcoordination) for FR design and safety justification, within the newRussian Federal Target Program “Nuclear Power Technologiesof a New Generation for the years 2010-2015 with a perspectiveto 2020”

SFPR Code: Development Plan

73